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Semi-Custom (Digital) ASIC Design Flow

« Semi-custom design flow: RTL Design
» Starts from a Register Transfer Level 2 ‘
description in a hardware description fcj / HDL Description /
language (HDL) 2
o RTL Synthesis
= Front-end flow: handles the transition ! -
from RTL to the gate level Y %
/ Gate Level Netlist / 2
= Back-end flow: handles the transition from ! §
a netlist to physical design data Physical Design
©
. L] C <
- Each step Is always accompanied by & / Layout /
verification I
= Check functionality, timing, and physical constraints Sign-Off & Tapeout
B¢\ | .
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Verification Continues Throuhgout the Design Flow

Frontend design flow Backend design flow
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Goals of Design Verification in VLSI

« Verification can have three distinct motivations (after A. Richard Newton):

= During specification: “Is what | am asking for what is really needed?"
= During design: “Have | indeed designed what | have asked for?"

= During testing: “Can | tell intact circuits from malfunctioning ones?“

« Verification should be done
= against formal specifications (as available): often partially possible even with formal methods and simulations

= against «examples» from less formal sprecifictions: typically by means of simulations
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Verification vs. (Production) Test

T O v Cmole guite A3t
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______

Verification (Production) Test
e Carried out prior to production e Carried out after production
e Application of stimuli through a «software» e Application of stimuli through «Automatic
testbench in a simulator Test Equipment» (ATE)
e Checks conformance with specification e Checks physical implementation integrity
— Testpatterns designed to uncover logical — Testpatterns designed to uncover physical
bugs in the implementation production defects

Main difference between Verification and (Production) Test is the type of errors to be
discovered and the design of the test patterns
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Connections between Verification and Test

Verification (Production) Test

« Both check conformity of a realization with some form of expectations

« Both apply test patterns and check conformance of the output with expected
results and specifications

* (Production) Tests often reuse some testpatterns generated for functional
verification as (small) part of the test sequence
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Functional versus Parametric Verification

* Verification checks two different type of requirements:

= Functionality describes what response a circuit produces at the output pins when presented with some
stimuli at the input pins

Expressed in terms of algorithms, equations, state graphs, truth tables, and the like.

= Parametric issues relate to physical quantities measured in units such as Mbit/s, ns, V, A, mW, pF, etc.

* A design's functionality and its parametric properties are best checked separately since
goals, methods, and tools are quite different.
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Dynamic vs Static Design Verfication

* Dynamic verification techniques

= work by applying stimuli and by observing responses

" involve time
Examples:
Simulation, circuit testing.

 Static verification techniques
= do not depend on signals, waveforms or test patterns in any way

" involve no notion of time, they operate at “time zero”
Examples:
Code inspection, equivalence checking,
formal verification and property checking (well known in SW development),
electrical rule check (ERC), static timing analysis;
layout rule check (DRC), layout versus schematic (LVS).
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Dynamic vs Static Design Verfication

Frontend design flow

Backend design flow
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How to Uncover a Bug with Simulation or Testing?

 Example:
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flawed design
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Two bits exchanged on select input of a 4->1 MUX
e Used «1 to O» instead of «0 downto 1» in VHDL




How to Uncover a Bug with Simulation or Testing?

Preconditions necessary for uncovering the mistake:

1. Make the design error provoke a condition other than the normal one.
2. Propagate the erroneous condition to observable nodes.

3. Check the observed values against expectations for a correct design.

functional gauge
flawed design
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Automated Stimulation and Response Checking

* Each simulation run generates waveforms, tabular printouts, event lists, ...

* For reasons of efficiency and quality, purely visual inspection of simulation
data is not acceptable in VLSI design.

* Hence, designers must arrange for the simulator to automatically
= apply stimuli to the model under test (MUT)
= acquire the actual responses from the MUT
= compare them against the expected responses

= report any differences in a meaningful way
 We refer to

" the set of stimuli and of expected responses as a functional gauge.

= The means to apply the stimuli, check responses, and provide a proper environment for

operation as the testbench
P - (E®)




Functional gauges are specs that have materialized

 Example: 4 bit Gray counter with enable and asynchronous reset

clml:k f I o
cycle P unctional gauge expect
stimuli responses
K HST ENA OUP[3:0]
0 1 0 deel under test ) L
1 0 0 I 0000
3 10 0000
RST
4 1 1 0000
S R R Ci Ha
- 11
7 N T o > 0010
8 11 & = n 0110
9 11 > 0111
. .. o g QUPI3:0 e
| . SE =0 L
A =
18 11 =3 1001
19 1 1 1000
20 1 1 0000
gé :Il é eventually to be g g ? :Il
59 11 . turned into silicon , 0011
24 1 1 M e - 0010
25 0 1 0000

Objective: cover all possible cases
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Testing Distinct Functional Mechanisms Separately

Consider a 4 bit Gray counter example.

ST CLK ENA QUP

0 - - 00...0

1 - OUP

1 0 OUP

1 1 | graycode((bincode(QUP) + 1) mod 2*)

o 2WitWs = 22%4 — g4 cycles is a lower bound for exhaustive verification

* Truth table suggests the existence of three distinct mechanisms:

= Asynchronous reset mechanism

= Enable/disable mechanism

= Gray-coded counting mechanism
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Testing Distinct Functional Mechanisms Separately

Reconsider the 4 bit Gray counter example.

« State graph of a 4 bit Gray counter with edges colored according to the functional
mechanism they implement.

T P
A [ )

O regular state
O parasitic state

E— reset
RST=0 mechanism
" AST-1 and ENA-0  mechanism

|

|

|

|

o | // // ;- : \\ \\ \‘1‘-“ ~
’ "10___ e s ooy *\ A 5_/{

, Ay \ NN |  — enable/disable
) - e / : 5, “ - /

|

|

|

|

™ T 7 _ — counting
N ~ VA RST=1 and ENA=1 mechanism

DR T SR e pi
« Selection of few state transitions for verification from “similar” groups reduces
the number of test patterns significantly, but leaves also many transitions
untested
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Testing Distinct Functional Mechanisms Separately

 Though a workable solution in the Gray counter example, partial
verification suffers from four limitations:

= We have refrained from traversing all edges. Yet, the problem of combinatorial
explosion persists as visiting all states rapidly becomes impractical on more
substantial sequential circuits.

" |dentifying mechanisms and subcircuits for verification requires partial insight
into its inner organization and working.

= Verifying each mechanism and subcircuit separately holds the risk of missing
those problems that relate to the interaction of two of them.

" There exists many buggy implementations where identical functional

specifications of the original truth table behave differently: Functionally identical
mechanisms may be based on different pieces of code that may differ due to bugs (see next slide)

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Testing Distinct Functional Mechanisms Separately

« Writing HDL code that is safe when testing distinct functional mechanisms separately?
= EXxpressing multiple instances of the same condition in separate statements is prone to errors
(statements that should be the same may accidentally differ = bug)

p_comb : process (STATExDP, ENxS) p_comb : process (STATExDP, ENxS)
]:lEeg'lI'L nroc .:::.: 1:|_|::|:|I|'|]:| ]:IE!I;[iI'L - A J_.l_l:ll:lTI'L]:l

do =

then
1;
LTATEXDE ;
ernd 1t;
when 1 =3»
when 1 =3 STATEXDON <
1f ENxS =l '0"' the
STATEXDN-Z="3; when 3 =3
els : STATEx=DON <
when 2 =3
STATEDN <
when 3 =3
1f ENxS he when 6 =3
STATEXDN <= &; STATEDN <
M CPr (@
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Use Stimuli Collected from the Real-World

* Collect stimuli from the target environment.
= Often difficult when DUT interacts with components that generate the stimuli

* Integration of prototypes into the target environment.
» Limited by limited speed of prototypes (no real-time operation)

 Problem:
= Some bugs are limited to very rare events

= No expected result available: manifestation of a bug may be subtle

= Example: Pentium division bug (1994)
By mistake, 5 out of 1066 table entries had been omitted from a lookup-table.

Fraction of the total input number space prone to fail estimated to be 10719
Several months to become aware of the problem
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Assertion-Based Verification

 Many errors are not spotted due to limited visibility on primary outputs

functional gauge
flawed design
ST el T \
: gl “~.. sensitize the bug
: ,f" two 5|gtmls permuted s, report unplanned
l ,#' by mista ".L condition
stimuli L actual expected
b (_\/\\ response responses
|
A P O~ Y oy N, T Iy e~
00110 ¢ o "
! W “ D instead of 1 Y :
01010 1|nstead0f[] ’r a "
d

11011

r/Ijo]:i
Ef«@
Y;:_
gm%*
13:’5 [
3 5 A

Preconditions for uncovering the mistake are often complex
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Assertion-Based Verification

* Assertions are “in-code sanity checks” facilitate providing visibility

= Assertions can further be used to ascertain that the result of a calculation is correct or at
least plausible and inoffensive.

 Three approaches:

= Cross check data produced by the DUT or a sub-circuit against others computed
by a different piece of code that is made part of the verification code.

* Code used for checking is not subject to synthesis and can therefore be behavioral and high level.
Hence, it is less prone to errors and can even use verified (but not synthesizable) libraries and functions

= Check for logical conditions that can easily be derived from specifications

= Checking by way of reverse computation.
Example: Computing the square root is fairly complex and thus prone to error while
checking the result is straightforward.
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Assertion-Based Verification

* Assertions are statements embedded within a MUT that do not affect
functionality.

* Instead, they report anomalous or unexpected conditions such as

= Memory addresses that point outside their legal range,

» FSMs that assume parasitic, illegal or otherwise suspect states,

» Unforeseen input symbols and other out-of-the-ordinary conditions,

= [llegal instruction codes (opcodes) and unexpected status codes,

= Numeric over/underflows, out-of-range values, and other scaling problems,
= Event sequences unforeseen by the application or protocol,

» Resource conflicts and other situations of mutual lock-up,

= EXxcessive iteration counts or other unexpected variable values.
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Assertion-Based Verification

Typical design flaws

= QOverrun (overwriting locations prior to readout) => loss of data

= Underrun (reading where no valid data have been stored before) => bogus output
» |Imperfect FSM code => hangup or other unpredictable malfunction

Imagine a faulty FIFO in a substantial data processing chain:
= Difficult to locate the culprit.
= Many clock cycles before erroneous FIFO data affects output pins.

Problem fix: A few well framed assertions involving the address pointers
= can help monitor the FIFQO's fill level for comparison against expectations.
= will report any anomalies in FIFO operation as soon as they occulr,

Example: FIFO queues, popular as temporary buffers in data processing chains.
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Benefits of Assertion-Based Verification

* In-code sanity checks nicely complement response checking:

= Immediate feedback. No need for an abnormal condition to propagate to some distant
node placed under constant monitoring.

= Short link from problem manifestation to cause. No need to trace back a mismatching
output over thousands of cycles and statements in an attempt to locate its place of

origin.
= Lasting investment. No need to repeatedly adjust assertions when submoduls are being
assembled to form larger design entities.

* Enter an assertion into your HDL code wherever you explicitly or implicitly
assume that a certain property should hold in real life service.

* Assertions can reduce the number of unit tests (separate testbenches on
small sub-units/components)

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Criteria for Quality / Coverage of the Verification

e (8 fem Ceple Jeisie &M Huedbwsh Tk Ll Eedes e
I | X R

* State coverage =
= Number of states explodes with number of registers |

" FSM coverage: H e
* |dentifies FSM (as opposed to dataflow registers) '”;‘E:_i Ereemenend’ W
* Considers individual, but coupled FSMs independently 3" jﬂ':““j e .
:,:';:m ails : .I:im:;lns Instance Coverage
* Code coverage S
= Checks for excitation of all parts of the HDL code
= Different granularities: statement, expression, condition
" |gnores complex dependencies
* Toggle activity
= Ensures that all signals toggle at least a certain number of times
" |gnores correlation between signals
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Alternative Ways to Build a Testbench

* Cycle accurate stimuli application

= Stimuli and expected responses are prepared before simulation begins and are
applied and checked on a cycle-by-cycle basis

via state transition function

via output function l
cause * observable effect observable effect
_ | . s(k) | . S(k+1) i .
otk—1) | itk) o(k) | i(k+1) o(k+1) | i(k+2)
T A v T oA A ¥ T oA/
» simulation time
O O O
CLK ' ' " clock signal
______ e N R
cycle k—1 cycle k with its vector set cycle k+1 with its vector set cycle k+2

* Checks not only for functionality, but also for precise expected latency
= Stimuli generation is complex since all latencies must be known
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Alternative Ways to Build a Testbench

 Two alternative approaches for Cycle accurate stimuli application

= Stimuli and expected responses are included in the source code of the testbench itself:
« VHDL testbench often eases the cycle accurate stimuli generation
» not very flexible and only for small and simple blocks

= Stimuli and expected responses are prepared outside the testbench and stored in files:
«Application» and «reponse acquisition» processes read files, apply stimuli, check responses
and record response traces in files o

« Generation of cycle accurate stimuli and L expect

. - resp
responses is often difficult from abstract B .

ificati ' — — .
o i s (oG

a)

Often too limited and too rigid to be of any practical value.
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Alternative Ways to Build a Testbench

Example: JPEG image compression
1. Accept an image frame,
2. subdivide into square blocks,
3. do 2D DCT on each bock to calculate a set of spectral coefficients,
4. suppress all coefficients with minor impact on image quality.

e Relevant in the context of functional verification:

= large data items such as image frames, blocks, and coefficient sets.
= Larger operations such as the compression of one block or frame.

* Low-level details such as the reading in of pixels or handshake procedures would just distract your
attention.

* From an application point of view, JPEG compression is a combinational function and correctness
is defined only by the result.
However, typical image compression hardware spreads the operation over many clock cycles and
involves interactions with many other components that are tricky to model when preparing the
relevant expected response.
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Alternative Ways to Build a Testbench

* The duties of a testbench are
= translate stimuli and responses across levels of abstraction
= consolidate simulation results such as to render interpretation by humans as convenient as

possible.

* The difficulty is that

= hardware contains many (timing) aspects that are not easy to model on a high

abstraction level where functional responses are typically generated (e.g., MATLAB, C,
C++)

= Latency and other timing parameters of a circuit may change in the design cycle

= Hardware interacts with other components that are also not part of
functional/behavioral/algorithmic stimuli generation
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Alternative ways to build a testbench

« Abstracting to higher-level transactions on higher-level data
= Abstracting timing issues is best delegated to protocol adapters.

simulation . . - relevant
driven by 1st stimulus-response cycle 2nd stimulus-response cycle nth stimulus-response cycle data items
o o N y o - (example)
trans- | | b |
actions | A\ T A i I ad N ; frame
po - TN - RN rotocol adapters P
———————— E—F—;——“—\;———————————————’—;—‘—%—'—F—q——“:;—————————————a——'—!—i—:—F—*‘——r- d|s;[:]-ense cnngolldate —*——"——‘—f———————-
ACAA T T TA A A T T TA A A T T T; pixels
::Iock L] ng_| LI 1L |_| [ I |—2<ﬂ LI L \—I L LT L l‘(("' L1 |_'

_ i simulation
clock t|me
cycle

time zero end of time

= Emulation of interfaces to peripheral components (e.g., external SRAMs) is best dediated to functional
models of other system components
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Alternative ways to build a testbench

 Example: Simulation set-up for a wireless transceiver

functional gauge

co-model co-model co-model
: on-chip on-chip clock
g SRAM 1 SRAM 2 generator
and 7 I
expected
responses MUT
co-model
C \ Y N
; PCI _control | co-model protocol adapter
PClinterace  Ce—»  jioface [ *  MMO y =
HSPDA .| complex iF .| waveform | | actual
P transceiver ~| modulator F | deconstructor ' resp
— X T signal T
stimuli protocol adapter " mmpa%t signal
T > co-model rotocol adapter wavetorms
payload data refo{ianl'tlgtter i blgsse%gﬁd baseband : : T
3y propriet. filters | signals complex iF | waveform o
actual format - demodulator [*~ ¢ preparator stimuli
__resp_ signal —
generated generated
evsﬁggled MIMO = multiple-input multiple-output [or antennas] PCI = peripheral component interconnect evaallﬂgled
Mﬂwril‘-IhLAB HSPDA = high-speed downlink packet access IF = intermediate frequency MﬂwrilEthﬂB

(|
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RTL Simulation in the Design Flow

 RTL simulations are performed with an HDL simulator
= Event driven simulation of the HDL code

« Various inputs are required for HDL simulation of RTL code

= HDL models including testbenches, Stimuli files read by o
. behavioural code HDL models for instantiated
your RTL code, behevioral models S 3rd party IP macros or

for IP blocks and unfinished DL testbench unfinished blocks (.vhd or .v)
RTL blocks (vhd or .v)
= Data files with stimuli or \

expected responses that

are read by a testbench  RTL code \ R Sl
. .vhd or .v e T e ¢ _ _
or by a behavioural ( ) . RRERY |:| Simulation
== | I log files

model of an IP macro

or a model in a testbench |:| / e
i /

component Simulator command
scripts (.do)

Simulator setup

= Simulator setup (.ini) and imutaty
files (.ini)

command scripts (.do) __—
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The RTL Simulation Environment

« RTL simulation runs in a dedicated sub-directory of your project

* In this directory, you find typically
» Setup/configuration files for the simulator (e.g., modelsim.ini)
= Sub-directories for scripts
= Libraries (often as directories) containing the compiled HDL code
= Links to the source file location (e.g., to your HDL directory)

QUESTASIM/

ACTIVITY folder for VCD activity files

edadk.conf -> ../edadk.conf configuration file used in EPFL for EDA tools
IPE —-> ../IPS/ link to IPS folder

folder for compiled stdcells

link to VHDL/Verileog source files
configuration file for guestasim

ey
il Do

HDL -> .. /HDL/
modelsim.1ni

-(I’fl-
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The Simulation Environment & Libraries

« HDL simulators work with libraries

= Work library (or libraries)

= Technology and IP Macro libraries (often pre-compiled) / wvhd

Set up and maintained

by designer

local library in run-directory C

(automatically included)
.v,.vhd “ > S
__— \ .

.vhd

vhd

.vhd

vl el e

Set up and maintained

Simulator library [ Simulator setup file(s) by EDA team
(directory) (e.g., modelsim.ini)
EE-429: Fundamentals of VLSI Design 33 (((
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Setting up Libraries with QuestaSim (Modelsim)

» Start by setting up a work ESm e ©0 D S
environment/directory (often E

LIBS - - - fol
HDL -> ../HDL/ 1
modelsim.ini

given by EDA team)

« Set up reference libraries (for standard cells and IP macros)
= Often created by EDA team or project management
» Point to those libraries in the simulator init file (e.g., modelsim.ini)
» Defines the relationship between <library name> and <library folder>

. .. [Library]
Modelsim.ini from td = $MODEL_TECH/../std
. icee = $MODEL_TECH/../ieee
EDA-Labs showing  RESerae = ey S snprrys
IEEE libraries and

;uk651scllmvbbr sdf21 = ./DLIB/uk65lscllmvbbr sfd21 vlog local/
: 1ke651scllmvbbr sdf2l1 = ./DLIB/umc 65nm 11 uk65Lscllmvbbr sdf21 wvlog
UMC 65nm std.cell libs e = oMt L _HKEIESS —saret_viog

;uk651scllmvbbr sdf21 = ./umc_lib

Side note: many other libraries are often defined here as well
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Compiling Work Libraries with QuestaSim

 Work libraries are created in the run-directory of the simulator
= Often, there is only one work library, called “work”

* Creating a work library

> vlib <library name>

* This creates a directory (storage place of the work library) in the simulator run-directory

 Libraries in the simulator run directory are automatically read by the simulator

* No need to include or define these in the modesim.ini (only needed if directory name should
be different from the library name)

« Compiling your HDL code into the work library

= Compi”ng VHDL > vcom -work <library name> <VHDL file>

" Compiling Verilog > vlog -work <library name> <Verilog file>
 HDL files need to be compiled/recompiled bottom-up after every change

« Best practice: create a script to compile your code
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