
EE-429

Fundamentals of VLSI Design

The Semi-Custom

Frontend: Functional Verification

EE-429: Fundamentals of VLSI Design 1

Andreas Burg



Semi-Custom (Digital) ASIC Design Flow

• Semi-custom design flow: 

▪ Starts from a Register Transfer Level 

description in a hardware description 

language (HDL)

▪ Front-end flow: handles the transition 

from RTL to the gate level

▪ Back-end flow: handles the transition from 

a netlist to physical design data

• Each step is always accompanied by 

verification

▪ Check functionality, timing, and physical constraints

EE-429: Fundamentals of VLSI Design 2

RTL Design

HDL Description

RTL Synthesis

Gate Level Netlist

Physical Design

Layout

Sign-Off & Tapeout

Fr
o

n
t-

en
d

B
ac

k-
e

n
d

V
e

ri
fi

ca
ti

o
n



Verification Continues Throuhgout the Design Flow

Frontend design flow Backend design flow



Goals of Design Verification in VLSI

• Verification can have three distinct motivations (after A. Richard Newton):

▪ During specification: “Is what I am asking for what is really needed?"

▪ During design: “Have I indeed designed what I have asked for?"

▪ During testing: “Can I tell intact circuits from malfunctioning ones?“

• Verification should be done 

▪ against formal specifications (as available): often partially possible even with formal methods and simulations

▪ against «examples» from less formal sprecifictions: typically by means of simulations



Verification vs. (Production) Test

Verification

• Carried out prior to production

• Application of stimuli through a «software» 

testbench in a simulator

• Checks conformance with specification

– Testpatterns designed to uncover logical 

bugs in the implementation

https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcQ_iteAhoyZ8FZgJSGl-I4ifrP5iwoIUHT8_JS_HVoPx7wWTRmw

http://www.file-extensions.org/imgs/app-picture/10821/modelsim.jpg

(Production) Test

• Carried out after production

• Application of stimuli through «Automatic 

Test Equipment» (ATE)

• Checks physical implementation integrity

– Testpatterns designed to uncover physical 

production defects

Main difference between Verification and (Production) Test is the type of errors to be 

discovered and the design of the test patterns

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwju2OWr7b3JAhUHVRQKHfIFAlkQjRwIBw&url=http://www.ardentec.com/content/services/tc/service5.htm&psig=AFQjCNG7SGD0yFK4NbOLvfcsXISS2pCwFQ&ust=1449168979688006
http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjO6aW27b3JAhULPBQKHdPFAHoQjRwIBw&url=http://www.file-extensions.org/tbw-file-extension&bvm=bv.108538919,d.d24&psig=AFQjCNGuJbKlXZQJsItswMLLZmkjUlVDuA&ust=1449169011918079


Connections between Verification and Test

• Both check conformity of a realization with some form of expectations

• Both apply test patterns and check conformance of the output with expected 

results and specifications

• (Production) Tests often reuse some testpatterns generated for functional 

verification as (small) part of the test sequence 

Verification

https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcQ_iteAhoyZ8FZgJSGl-I4ifrP5iwoIUHT8_JS_HVoPx7wWTRmw

http://www.file-extensions.org/imgs/app-picture/10821/modelsim.jpg

(Production) Test

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwju2OWr7b3JAhUHVRQKHfIFAlkQjRwIBw&url=http://www.ardentec.com/content/services/tc/service5.htm&psig=AFQjCNG7SGD0yFK4NbOLvfcsXISS2pCwFQ&ust=1449168979688006
http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjO6aW27b3JAhULPBQKHdPFAHoQjRwIBw&url=http://www.file-extensions.org/tbw-file-extension&bvm=bv.108538919,d.d24&psig=AFQjCNGuJbKlXZQJsItswMLLZmkjUlVDuA&ust=1449169011918079


Functional versus Parametric Verification

• Verification checks two different type of requirements:

▪ Functionality describes what response a circuit produces at the output pins when presented with some 
stimuli at the input pins
(aka logic behavior, input-to-output mapping).
Expressed in terms of algorithms, equations, state graphs, truth tables, and the like.

▪ Parametric issues relate to physical quantities measured in units such as Mbit/s, ns, V, A, mW, pF, etc.

• A design's functionality and its parametric properties are best checked separately since 
goals, methods, and tools are quite different.



Dynamic vs Static Design Verfication

• Dynamic verification techniques

▪ work by applying stimuli and by observing responses

▪ involve time (either as physical time or as simulation time)
Examples:
Simulation, circuit testing.

• Static verification techniques

▪ do not depend on signals, waveforms or test patterns in any way

▪ involve no notion of time, they operate at “time zero“
Examples:
Code inspection, equivalence checking,
formal verification and property checking (well known in SW development), 
electrical rule check (ERC), static timing analysis;
layout rule check (DRC), layout versus schematic (LVS).



Dynamic vs Static Design Verfication

Frontend design flow Backend design flow



How to Uncover a Bug with Simulation or Testing?

Two bits exchanged on select input of a 4->1 MUX
• Used «1 to 0» instead of «0 downto 1» in VHDL

• Example:



How to Uncover a Bug with Simulation or Testing?

• Preconditions necessary for uncovering the mistake:

1. Make the design error provoke a condition other than the normal one.

2. Propagate the erroneous condition to observable nodes.

3. Check the observed values against expectations for a correct design.



Automated Stimulation and Response Checking

• Each simulation run generates waveforms, tabular printouts, event lists, … 

• For reasons of efficiency and quality, purely visual inspection of simulation 
data is not acceptable in VLSI design.

• Hence, designers must arrange for the simulator to automatically

▪ apply stimuli to the model under test (MUT)

▪ acquire the actual responses from the MUT

▪ compare them against the expected responses 

▪ report any differences in a meaningful way

• We refer to 

▪ the set of stimuli and of expected responses as a functional gauge.

▪ The means to apply the stimuli, check responses, and provide a proper environment for 
operation as the testbench



Functional gauges are specs that have materialized

• Example: 4 bit Gray counter with enable and asynchronous reset

Objective: cover all possible cases



Testing Distinct Functional Mechanisms Separately

Consider a 4 bit Gray counter example.

• 2𝑤𝑖+𝑤𝑠 = 22+4 = 64 cycles is a lower bound for exhaustive verification

• Truth table suggests the existence of three distinct mechanisms:
▪ Asynchronous reset mechanism

▪ Enable/disable mechanism

▪ Gray-coded counting mechanism



Testing Distinct Functional Mechanisms Separately

Reconsider the 4 bit Gray counter example.
• State graph of a 4 bit Gray counter with edges colored according to the functional 

mechanism they implement.

• Selection of few state transitions for verification from “similar” groups reduces 
the number of test patterns significantly, but leaves also many transitions 
untested



Testing Distinct Functional Mechanisms Separately

• Though a workable solution in the Gray counter example, partial 
verification suffers from four limitations:

▪ We have refrained from traversing all edges. Yet, the problem of combinatorial 
explosion persists as visiting all states rapidly becomes impractical on more 
substantial sequential circuits.

▪ Identifying mechanisms and subcircuits for verification requires partial insight 
into its inner organization and working.

▪ Verifying each mechanism and subcircuit separately holds the risk of missing 
those problems that relate to the interaction of two (or more) of them.

▪ There exists many buggy implementations where identical functional 
specifications of the original truth table behave differently: Functionally identical 
mechanisms may be based on different pieces of code that may differ due to bugs (see next slide)



Testing Distinct Functional Mechanisms Separately

• Writing HDL code that is safe when testing distinct functional mechanisms separately?

▪ Expressing multiple instances of the same condition in separate statements is prone to errors 

(statements that should be the same may accidentally differ = bug)

Bug



Use Stimuli Collected from the Real-World

• Collect stimuli from the target environment. 

▪ Often difficult when DUT interacts with components that generate the stimuli

• Integration of prototypes into the target environment.

▪ Limited by limited speed of prototypes (no real-time operation)

• Problem: 

▪ Some bugs are limited to very rare events

▪ No expected result available: manifestation of a bug may be subtle

▪ Example: Pentium division bug (1994)

By mistake, 5 out of 1066 table entries had been omitted from a lookup-table.

Fraction of the total input number space prone to fail estimated to be 𝟏𝟎−𝟏𝟎

Several months to become aware of the problem



Assertion-Based Verification

• Many errors are not spotted due to limited visibility on primary outputs

Preconditions for uncovering the mistake are often complex



Assertion-Based Verification

• Assertions are “in-code sanity checks” facilitate providing visibility

▪ Assertions can further be used to ascertain that the result of a calculation is correct or at 
least plausible and inoffensive.

• Three approaches:

▪ Cross check data produced by the DUT or a sub-circuit against others computed 
by a different piece of code that is made part of the verification code.
• Code used for checking is not subject to synthesis and can therefore be behavioral and high level. 

Hence, it is less prone to errors and can even use verified (but not synthesizable) libraries and functions

▪ Check for logical conditions that can easily be derived from specifications

▪ Checking by way of reverse computation.
Example: Computing the square root is fairly complex and thus prone to error while 
checking the result is straightforward.



Assertion-Based Verification

• Assertions are statements embedded within a MUT that do not affect 
functionality. 

• Instead, they report anomalous or unexpected conditions such as

▪ Memory addresses that point outside their legal range,

▪ FSMs that assume parasitic, illegal or otherwise suspect states,

▪ Unforeseen input symbols and other out-of-the-ordinary conditions,

▪ Illegal instruction codes (opcodes) and unexpected status codes,

▪ Numeric over/underflows, out-of-range values, and other scaling problems,

▪ Event sequences unforeseen by the application or protocol,

▪ Resource conflicts and other situations of mutual lock-up,

▪ Excessive iteration counts or other unexpected variable values.

▪ ...



Assertion-Based Verification

• Example: FIFO queues, popular as temporary buffers in data processing chains.

• Typical design flaws
▪ Overrun (overwriting locations prior to readout) => loss of data

▪ Underrun (reading where no valid data have been stored before) => bogus output

▪ Imperfect FSM code => hangup or other unpredictable malfunction

• Imagine a faulty FIFO in a substantial data processing chain:
▪ Difficult to locate the culprit.

▪ Many clock cycles before erroneous FIFO data affects output pins.

• Problem fix: A few well framed assertions involving the address pointers
▪ can help monitor the FIFO's fill level for comparison against expectations.

▪ will report any anomalies in FIFO operation as soon as they occur,



Benefits of Assertion-Based Verification

• In-code sanity checks nicely complement response checking:

▪ Immediate feedback. No need for an abnormal condition to propagate to some distant 
node placed under constant monitoring.

▪ Short link from problem manifestation to cause. No need to trace back a mismatching 
output over thousands of cycles and statements in an attempt to locate its place of 
origin.

▪ Lasting investment. No need to repeatedly adjust assertions when submoduls are being 
assembled to form larger design entities.

• Enter an assertion into your HDL code wherever you explicitly or implicitly 
assume that a certain property should hold in real life service.

• Assertions can reduce the number of unit tests (separate testbenches on 
small sub-units/components)



Criteria for Quality / Coverage of the Verification

• State coverage
▪ Number of states explodes with number of registers

▪ FSM coverage:
• Identifies FSM (as opposed to dataflow registers)

• Considers individual, but coupled FSMs independently

• Code coverage
▪ Checks for excitation of all parts of the HDL code

▪ Different granularities: statement, expression, condition

▪ Ignores complex dependencies

• Toggle activity
▪ Ensures that all signals toggle at least a certain number of times

▪ Ignores correlation between signals

http://www.ednc.com/images/pProducts/ModelSim/ModelSim/DataflowWindow.gif

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjh98LRib7JAhVEPRQKHcwaBFYQjRwIBw&url=http://www.ednc.com/pProducts/ModelSim/ModelSim.html&psig=AFQjCNEf5vLsBTLmnIYlCyb1ZPkOcXtb5g&ust=1449176276916230


Alternative Ways to Build a Testbench

• Cycle accurate stimuli application

▪ Stimuli and expected responses are prepared before simulation begins and are 
applied and checked on a cycle-by-cycle basis

▪ Checks not only for functionality, but also for precise expected latency

▪ Stimuli generation is complex since all latencies must be known



Alternative Ways to Build a Testbench

• Two alternative approaches for Cycle accurate stimuli application
▪ Stimuli and expected responses are included in the source code of the testbench itself: 

• VHDL testbench often eases the cycle accurate stimuli generation

• not very flexible and only for small and simple blocks

▪ Stimuli and expected responses are prepared outside the testbench and stored in files: 

«Application» and «reponse acquisition» processes read files, apply stimuli, check responses

and record response traces in files

• Generation of cycle accurate stimuli and 

responses is often difficult from abstract 

specifications and high level models that

serve as a golden model

Often too limited and too rigid to be of any practical value.



Alternative Ways to Build a Testbench

• Example: JPEG image compression
1. Accept an image frame,

2. subdivide into square blocks,

3. do 2D DCT on each bock to calculate a set of spectral coefficients,

4. suppress all coefficients with minor impact on image quality.

• Relevant in the context of functional verification:
▪ Large data items such as image frames, blocks, and coefficient sets.

▪ Larger operations such as the compression of one block or frame.

• Low-level details such as the reading in of pixels or handshake procedures would just distract your 
attention.

• From an application point of view, JPEG compression is a combinational function and correctness 
is defined only by the result. 
However, typical image compression hardware spreads the operation over many clock cycles and
involves interactions with many other components that are tricky to model when preparing the 
relevant expected response.



Alternative Ways to Build a Testbench

• The duties of a testbench are

▪ translate stimuli and responses across levels of abstraction

▪ consolidate simulation results such as to render interpretation by humans as convenient as 

possible.

• The difficulty is that 

▪ hardware contains many (timing) aspects that are not easy to model on a high 
abstraction level where functional responses are typically generated (e.g., MATLAB, C, 
C++)

▪ Latency and other timing parameters of a circuit may change in the design cycle

▪ Hardware interacts with other components that are also not part of 
functional/behavioral/algorithmic stimuli generation



Alternative ways to build a testbench

• Abstracting to higher-level transactions on higher-level data

▪ Abstracting timing issues is best delegated to protocol adapters.

▪ Emulation of interfaces to peripheral components (e.g., external SRAMs) is best dediated to functional
models of other system components



Alternative ways to build a testbench

• Example: Simulation set-up for a wireless transceiver



RTL Simulation in the Design Flow

• RTL simulations are performed with an HDL simulator

▪ Event driven simulation of the HDL code

• Various inputs are required for HDL simulation of RTL code

▪ HDL models including testbenches, 

your RTL code, behevioral models 

for IP blocks and unfinished 

RTL blocks

▪ Data files with stimuli or 

expected responses that 

are read by a testbench 

or by a behavioural 

model of an IP macro 

or a model in a testbench 

component

▪ Simulator setup (.ini) and 

command scripts (.do)

Fall 2020 EE-429: Fundamentals of VLSI Design 31

Simulator 

(e.g. QuestaSim)

RTL code

(.vhd or .v)

HDL models for instantiated 

3rd party IP macros or 

unfinished blocks (.vhd or .v)
HDL testbench

(.vhd or .v)

Simulator command

scripts (.do)

Simulation 

log files

Stimuli files read by

behavioural code

Simulator setup

files (.ini)



The RTL Simulation Environment

• RTL simulation runs in a dedicated sub-directory of your project

• In this directory, you find typically

▪ Setup/configuration files for the simulator (e.g., modelsim.ini)

▪ Sub-directories for scripts

▪ Libraries (often as directories) containing the compiled HDL code

▪ Links to the source file location (e.g., to your HDL directory)

Fall 2020 EE-429: Fundamentals of VLSI Design 32



The Simulation Environment & Libraries

• HDL simulators work with libraries

▪ Work library (or libraries)

▪ Technology and IP Macro libraries (often pre-compiled)

Fall 2020 EE-429: Fundamentals of VLSI Design 33

Simulator library
(directory)

Simulator setup file(s)
(e.g., modelsim.ini)

.v,.vhd

.v
.vhd

.v
.vhd

.v
.vhd

.v
.vhd

local library in run-directory

(automatically included)

Set up and maintained 

by designer

Set up and maintained 

by EDA team



Setting up Libraries with QuestaSim (Modelsim)

• Start by setting up a work 

environment/directory (often 

given by EDA team)

• Set up reference libraries (for standard cells and IP macros)

▪ Often created by EDA team or project management

▪ Point to those libraries in the simulator init file (e.g., modelsim.ini)

▪ Defines the relationship between <library name> and <library folder>

Fall 2020 EE-429: Fundamentals of VLSI Design 34

Modelsim.ini from 

EDA-Labs showing

IEEE libraries and 

UMC 65nm std.cell libs

Side note: many other libraries are often defined here as well



Compiling Work Libraries with QuestaSim

• Work libraries are created in the run-directory of the simulator

▪ Often, there is only one work library, called “work”

• Creating a work library

▪ This creates a directory (storage place of the work library) in the simulator run-directory

• Libraries in the simulator run directory are automatically read by the simulator

▪ No need to include or define these in the modesim.ini (only needed if directory name should 

be different from the library name)

• Compiling your HDL code into the work library

▪ Compiling VHDL

▪ Compiling Verilog

• HDL files need to be compiled/recompiled bottom-up after every change

• Best practice: create a script to compile your code

Fall 2020 EE-429: Fundamentals of VLSI Design 35

> vlib <library name> 

> vcom –work <library name> <VHDL file> 

> vlog –work <library name> <Verilog file> 


	Slide 1: EE-429 Fundamentals of VLSI Design
	Slide 2: Semi-Custom (Digital) ASIC Design Flow
	Slide 3: Verification Continues Throuhgout the Design Flow
	Slide 4: Goals of Design Verification in VLSI
	Slide 5: Verification vs. (Production) Test
	Slide 6: Connections between Verification and Test
	Slide 7: Functional versus Parametric Verification
	Slide 8: Dynamic vs Static Design Verfication
	Slide 9: Dynamic vs Static Design Verfication
	Slide 10: How to Uncover a Bug with Simulation or Testing?
	Slide 11: How to Uncover a Bug with Simulation or Testing?
	Slide 12: Automated Stimulation and Response Checking
	Slide 13: Functional gauges are specs that have materialized
	Slide 14: Testing Distinct Functional Mechanisms Separately
	Slide 15: Testing Distinct Functional Mechanisms Separately
	Slide 16: Testing Distinct Functional Mechanisms Separately
	Slide 17: Testing Distinct Functional Mechanisms Separately
	Slide 18: Use Stimuli Collected from the Real-World
	Slide 19: Assertion-Based Verification
	Slide 20: Assertion-Based Verification
	Slide 21: Assertion-Based Verification
	Slide 22: Assertion-Based Verification
	Slide 23: Benefits of Assertion-Based Verification
	Slide 24: Criteria for Quality / Coverage of the Verification
	Slide 25: Alternative Ways to Build a Testbench
	Slide 26: Alternative Ways to Build a Testbench
	Slide 27: Alternative Ways to Build a Testbench
	Slide 28: Alternative Ways to Build a Testbench
	Slide 29: Alternative ways to build a testbench
	Slide 30: Alternative ways to build a testbench
	Slide 31: RTL Simulation in the Design Flow
	Slide 32: The RTL Simulation Environment
	Slide 33: The Simulation Environment & Libraries
	Slide 34: Setting up Libraries with QuestaSim (Modelsim)
	Slide 35: Compiling Work Libraries with QuestaSim

