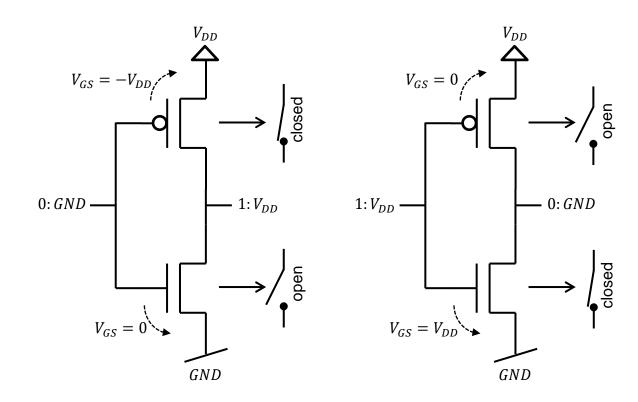
EE-429 Fundamentals of VLSI Design

CMOS Power Consumption

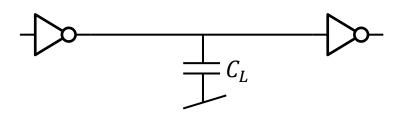

Andreas Burg, Alexandre Levisse

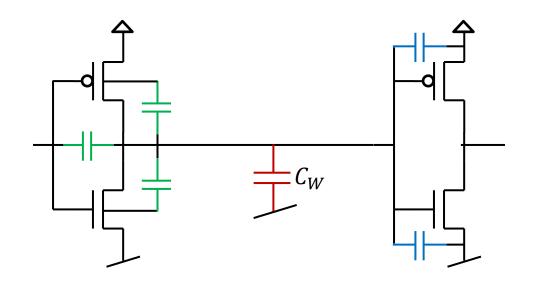
CMOS: Two Types of Power Consumption

- CMOS circuit power/energy consumption comes in two forms:
 - **Dynamic energy/power consumption**: depends on activity
 - Charging and discharging of capacitors
 - Cross (short-circuit) currents while pMOS and nMOS are on during switching
 - **Static power consumption**: independent from activity
 - Constant biasing currents (intentional)
 - Various types of leakage currents (parasitic)
 - Contention currents when driving opposite directions (mostly accidents)

Basic Inverter (Unloaded)

- PMOS performs pull-up to V_{DD} , NMOS performs pull-down to GND
 - Complementary gate
 - Static (steady state): output connected to either V_{DD} or GND


• Ideally, no current path from V_{DD} to GND: ideally, no static power consumption

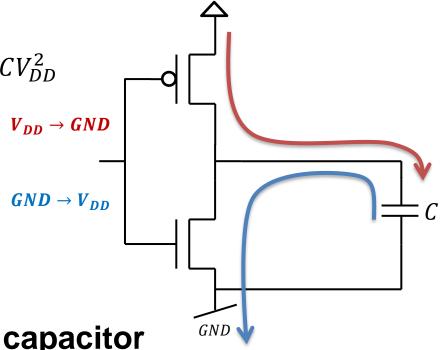


CMOS Gates With Capacitive Load

- Every CMOS gate sees a capacitive load from various sources
 - Intrinsic MOS transistor capacitors (driver)
 - Extrinsig (fanout) MOS transistor capacitances
 - Interconnect capacitance
- Various load capacitances are merged into a single load capacitor \mathcal{C}_L

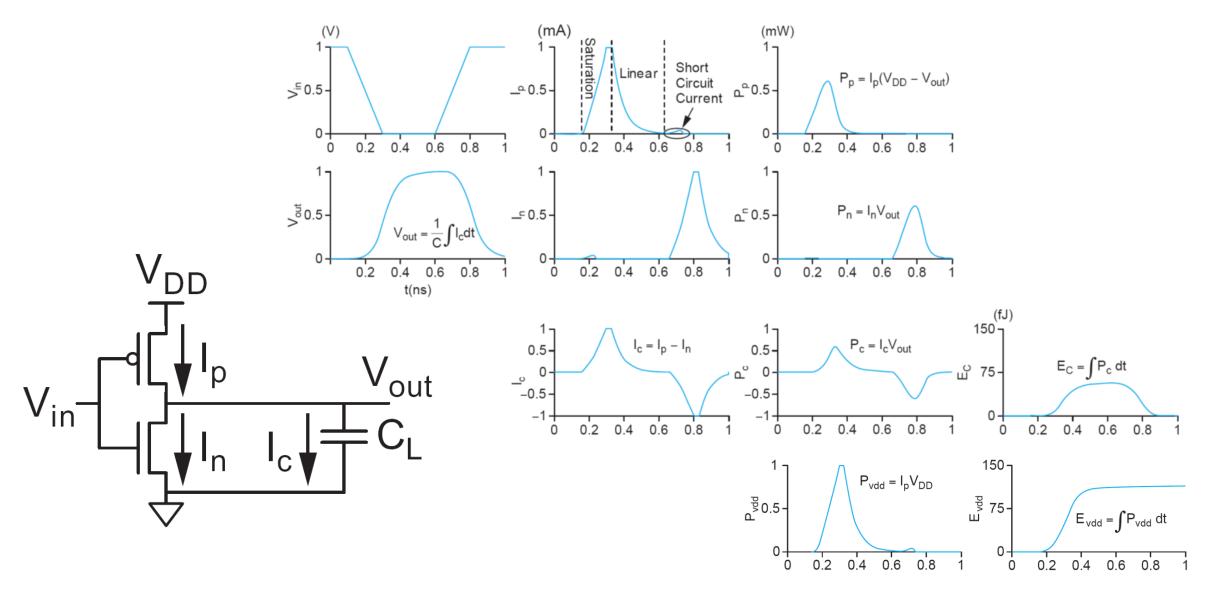
Wider transistors increase the gain factor (drive) but also increase the load (capacitance)

Energy of an Inverter with Capacitive Load


- Switching the output from 0 to 1 charges the capacitor
 - Energy delivered by the power supply

$$E_{VDD} = \int_0^\infty I(t) V_{DD} dt = \int_0^\infty C \frac{dV}{dt} V_{DD} dt = C V_{DD} \int_0^{V_{DD}} dV = C V_{DD}^2$$

■ Once the output transition is complete, the energy stored $V_{DD} \rightarrow GND$ on the capacitor is given by


$$E_C = \frac{1}{2} C V_{DD}^2$$

Energy difference is dissipated to heat in pMOS

- Switching the output from 1 to 0 discharges the capacitor
 - Energy on capacitor is dissipated to heat in nMOS
- NOTE: energy consumption is independent of the waveform

Active Energy Consumption Waveforms

Active Power/Energy Consumption

• Energy consumed during one pair of transitions $E_{\downarrow\uparrow}$:

$$E_{\downarrow\uparrow} = (CV_{dd})V_{dd} = CV_{dd}^2$$

Energy/transition

$$E_t = CV_{dd}^2/2$$

- Average power consumption: energy per time T
 - Depends on the switching frequency f_{sw} of the output

$$P_{SW} = \frac{E_t}{T} = \frac{2f_{SW}TCV_{dd}^2/2}{T} = f_{SW}CV_{dd}^2$$

- Activity factor α : average number of transitions per cycle
 - Relates activity of a node to the clock frequency f_{clk}
 - Energy/transition * average-transition/cycle (α) * clock frequency (f_{clk})

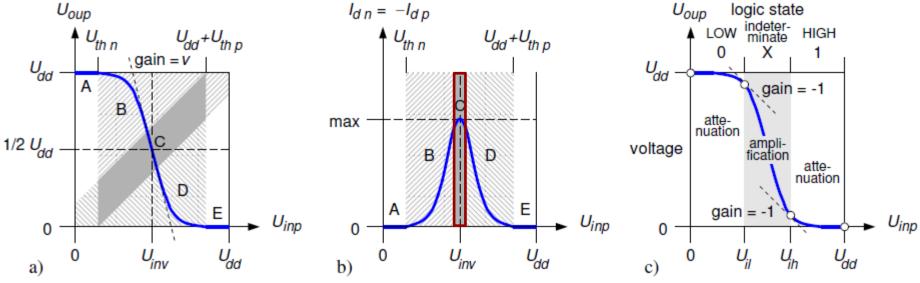
$$P = \frac{\alpha}{2} C V_{dd}^2 f_{clk}$$

Short Circuit Currents

- CMOS gates have a large, but finite gain in the transition region
 - Cross-over currents lead to power consumption during transients

PROBLEMATIC

range	applies when	n-channel ▼	p-channel ▲
Α	$0 \leq U_{inp} \leq U_{th n}$	subthreshold	linear
В	$U_{th n} < U_{inp} < U_{inv}$	saturation	linear
С	$U_{inp} pprox U_{inv}$	saturation	saturation
D	$U_{inv} < U_{inp} < U_{dd} + U_{thp}$	linear	saturation
E	$U_{dd} + U_{thp} \leq U_{inp} \leq U_{dd}$	linear	subthreshold

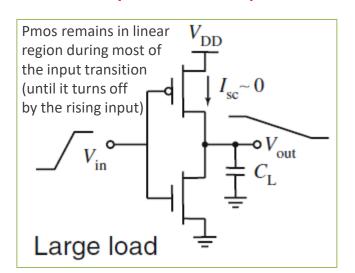

 V_{inp} – V_{oup}

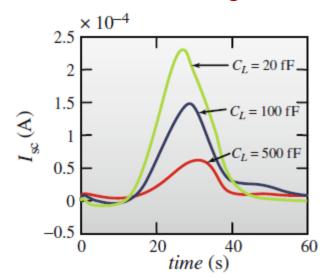
Dominant during transition region:

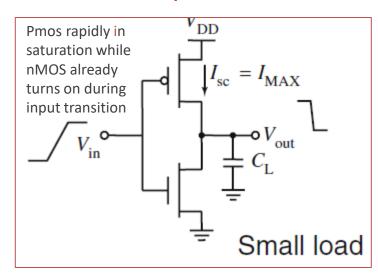
rapid opening of the driver for the new level

 Note: short-circuit power is irrelevant if

$$V_T < \frac{V_{DD}}{2}$$

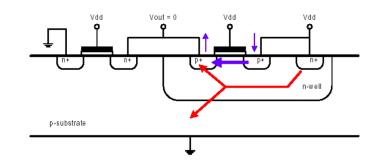

(a) Transfer characteristic (b) Crossover current (c) Logic states

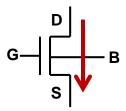


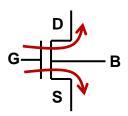


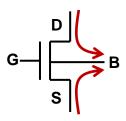
Minimizing Short-Circuit Currents

- Obvious approach: reduce input transition time
 - However, short input transitions require stronger driver => increase transition time (and load) on the driver of the driver
- Control short circuit current by controlling the output slope:
 - Fast input slow output: driving device mostly in linear regime => good for low power
 - Slow input fast output: driving device remains long in saturation => bad for low power


Best compromise: balance input slope and output slope

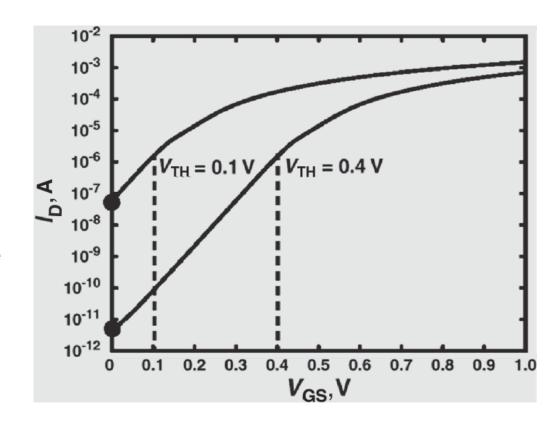





Leakage Power

- Transistors leak currents even when in off-state
- Sources for leakage
 - Sub-threshold leakage
 - Dominant component in most circuits
 - Gate tunneling
 - Generally low, even in modern technologies due to high-k gate dielectrics
 - Decreases very rapidly with decreasing V_{dd}
 - Junction current
 - Generally low
 - Decreases very rapidly with decreasing V_{dd}

Leakage Power

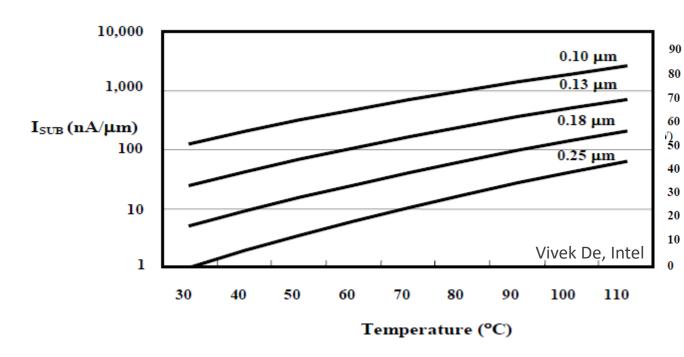

Long channel deices (>130nm)

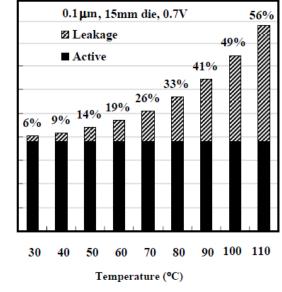
$$I_{DS} = I_0 e^{\frac{V_{GS} - V_T}{v_t n}}$$

 v_t : thermal voltage

n: constant

- I_{DS} mostly independent from Drain-Source voltage
- Leakage current depends strongly on $V_{GS} V_T$
 - Lower threshold voltage increases leakage
 - Higher threshold voltage decreases leakage
 - Subthreshold slope: slope of the logarithmic leakage current for $V_{GS}-V_T<0$



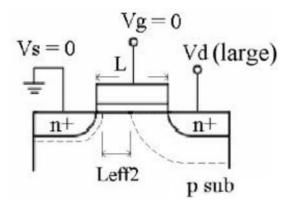

Leakage Power over Temperature

• Sub-threshold current depends exponentially on thermal voltage $v_t = kT/q$

$$I_{DS} = I_0 e^{\frac{V_{GS} - V_{th}}{kTn/q}}$$

• Exponential sub-threshold leakage (I_{DS}) increase with temperature

Example: 0.7V, 100nm process, 15mm2 die



Leakage Power (DIBL)

- Impact of technology scaling on sub-threshold leakage (<130nm)
 - Drain-Induced Barrier Lowering (DIBL): V_{DS} modulates threshold voltage
 - I_{DS} becomes a function of V_{DS}

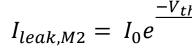
$$I_{DS} = I_0 e^{\frac{V_{GS} - V_{th} + \lambda_{DS} V_{DS}}{v_t n}}$$

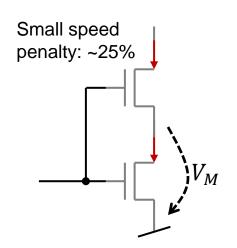
 λ_{DS} : DIBL coefficient v_t : thermal voltage

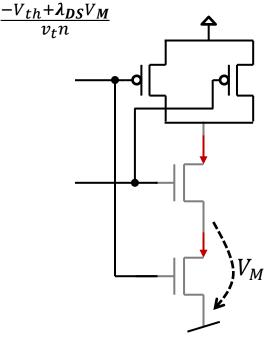
n : constant

• Impact on inverter leakage: no longer supply independent

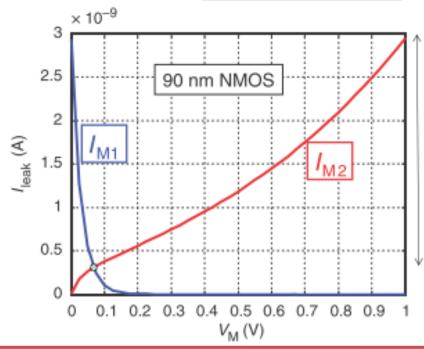
$$I_{leak} = I_0 e^{\frac{-V_{th} + \lambda_{DS} V_{DD}}{v_t n}} \leftarrow \text{Reducing voltage reduces leakage}$$




Leakage in Transistor Stacks (Short Channel)


Stacking occurs

- In many logic gates (> 1 input)
- When introduced intentionally for leakage reduction


$$I_{leak,M1} = I_0 e^{\frac{-V_M - V_{th} + \lambda_{DS}(V_{dd} - V_M)}{v_t n}}$$

Leakage Reduction		
2 NMOS	9	
3 NMOS	17	
4 NMOS	24	
2 PMOS	8	
3 PMOS	12	
4 PMOS	16	

