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Fundamental Element.: nMOS & pMOS Transistors

 Complementary Metal Oxide Semiconductor (CMOS) circuits are build from
complementary transistors: nMOS and pMOS transistors
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« CMOS transistors have 4-terminals: source (S), Drain (D), Gate (G), Bulk (B)
= We will often connect Bulk (B) to Source (S) and omit the Bulk (B) terminal
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The Switch Model

e Boolean electric model for functional considerations
= Logic ‘0’= GND Logic ‘1’ = VDD
= BooleanterminalsS >s,D>d, G—> g

« Gate terminal (g) controls current flow between source (s) and drain (d)
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Basic CMOS logic Principal

* With the switch model, we can construct the basic CMOS gates

e Basic idea:

= Start from the truth table (input/output relationship)

Pull-Up network (PUN):
Connect OUT to VDD for input combinations that lead to a ‘1’
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Pull-Down network (PDN):

Connect OUT to GND for input combinations that lead to a ‘0’
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A Simple Inverter

 The most simple combinational CMOS logic gate is the INVERTER (INV)

A Y
0 1
1 0

INV truth table

= PUN: pMOS
= PDN: nMOS
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A Simple Linear Model

« Controlled switch with an internal Ves J—
resistance between source and drain < I 5
VDS IDS
« Characterized by two transfer functions G
= |55 VS Vg Characteristics ! R,
= |, VS Vs Characteristics S o—\N\\/— D
« Small signal model: only Ioe los
accurate over a small V5 range R
- on
« Still often used even for a large
swing of Vs with a properly
fitted R,, \V Ves Vbs
n
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So why not this one?

« Can we also build a BUFFER (BUF) in a similar way?

A Z
0 0
1 1

INV truth table

= PUN: nMOS
= PDN: pMOS
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nMOS Operation ", "™ |o

N e e e e e e e e e e e e 8

* MOS transistor has three | —' Vbs |V, >0: Threshold voltage of
operating regions depending \ the nMOS transistor
on Vgg and Vpg Vs IS SOURCE: most negative
terminal
Cutoff:  Veg<Vy, il % {Saturation:  Vgg>Vy,
i i : ! E(Current source) Vps > Vs - Vo
i i i i i Vep <V
| lbs =0 | i1 lps = ~independent of Vg
i 9 i i @
; AN i ) S
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| p-type body i : | i p-type body
| b i b i b
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PMQOS vs. nMOS Operation

« pMOS and nMOS operation are symmetric
= Source and drain swapped (nMOS: most negative terminal €= pMOS: most positive terminal)
= All inequality conditions swapped

Ves— Vos D S

—Vy %Ds chj Ibs
V,>0 —‘ lVDS —d ‘VDS Vi <O
Vs _‘s Vep= _ID

VGS - VDS
Vg < Vo, Cutoff Vs >V,
Ve >V, Vps<Ve—V., V>V, Linear Ves<Vq,  Vps>Vgs—Vq,  Vgp < Vo
Vo> Vg, Vps>Vgs—Vq, Vep <V, Saturation Vgs<Vq, Vps<Vgs—Vq Vgp>Vq,

ol

ECOLE I
FEDERALE I

OLYTECHNIQUE Fall 2020 EE-429: Fundamentals of VLSI Design 9 (((m

b



Transistor Parameter

Design parameters

L : channel length
W : channel width

g
SNl 77BN

=

|

Technology parameters
V;: Threshold voltage
C., : Oxide capacitance
un, W, : Carrier mobility

= Hnp* Cox - Transconductance

W
J[0x¢

R >
n+ L n+

p-type Body

J
k n/p

SiO, Gate Oxide
(insulator, €y = 3.9¢()

_ !
Bnp =K n/p . Drive strength
)
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Shockley 15t Order nMOS and pMOS Models

150 -
( 0 VGS < VTTL CutOff
VDS . 100 A
— P\ Ves —Vrn——|Vps Vos >Vrn Vps <Vgs —Vrn Vgp > Vry linear
IDSn ) 2
\ ﬂ_n (VGS VTn)z VG'S > VTTl VDS > VGS - VTTl VGD < VTn saturation >’
0
« pMOS model:

r
Ipsp = 3

\
-(I’fl-

nMOS model:

= Currents are reversed (since source and drain are swapped), Ipg, < 0

= Relation operators for operating region are swapped

l‘t]l(_.IINJ !_

0 Ves > Vryp cutof f

Vbs

—ﬂp (VGS — VTp — T) VDS VGS < VTp VDS > VGS — VTp VGD < VTp linear

_% (VGS — VTp)2 Ves <Vrp Vps <Vgs —=Vprp Vep >Vrp saturation
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NMOS and pMQOS |-V Characteristics

e (LA) 1 08 06 04 02 0
150 - Vas V=04 °
Vg = 0.6
Vgs = -0.8
100 - —50
Vgs = 1.0
50 | F-100
0 T T T T 1 VdS | (_;)‘I 50
0 0.2 0.4 0.6 0.8 1 dsH
(a) (b)
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Implications of the MOS Transistor on CMOS Logic

* Realization of PUN and PDN from nMOS and pMOS determines if a function is
= Positive unate: rising input causes rising output
= Negative unate: rising input causes falling output
= Non unate: rising input can cause both falling or rising output

negative unate positive unate

vooi —OI voo? AI

_ ? L
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Problem of Positive Unate Functions in CMOS

* Positive unate (or non unate) functions would imply driving the output
= to ‘0’ with an pMOS or
= to ‘1’ with an nMOS

« Unfortunately, for a pMOS

= A Gate-Source voltage <Vt is needed to turn on the PDN and pull output low (non-inverting)
= PDN network turns off before output reaches GND level

Vin ON if Vout>Vt |

OFF elser> — Vout
Virr-q

= The nMOS shows the opposite behavior -
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CMOS is Limited to Negative Unate Functions

* Driving a ‘0’ with a pMOS or a ‘1’ with an nMOS prevents rail-to-rail outputs

= pMOS is a good driver fora ‘1’
= nMOS is a good driver for a ‘0’

PMOS only

Vv Vv
PUN —= —= _ﬁhg
S D

— VoI In1 —

- D 0 _>VDD V& S 0 _>VDD _ VTn In2 : PUN
To Lo N

PDN Vo — 0 Voo = [Vl In1T —

VGS/' L In2 = PDN

vDDHi L& i L& INN—
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CMOS Inverter VTC

« \Voltage Transfer Characteristic
» |nput-output relationship of a component (e.qg., digital gate)
= DC characteristic (i.e., not immediately useful for dynamic considerations — no time aspect)

« The VTC provides important information on
= Useful input range and achievable output range
= Voltage gain and sensitivity vV
. out
= Voltage margins

Vout = f (Vi)
o — >0 - VTC

T — Vin
(Ul . (@
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CMOS Inverter VTC

 To construct the VTC of the CMOS inverter, we need to graphically

superimpose the I-V curves of the nMOS and pMOS onto a common
coordinate set.

. . f"
 Basic idea: equal pMOS and nMOS current -
L ]
] — VGSp/S 4 VDSp
DSp — DSn G
_(4 =1 | logp
D
VGSn = Vi VGSp = Vin — Vpp Vire "Vm*
| D Voo
G V]
| N1 1 S:UVDSn
. Vi, \5
VDSn — Vout VDSp — Vout VDD Vesis v J
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CMOS Inverter VTC

« Graphical approach: transfer I-V curves of nMOS and pMOS into the same

coordinate system
= Start with the |-V characteristics of the nMOS transistor, parameterized on V;,,

Vout = Vpsn 0 —V,.=Vpp
Vin = Visn
V, =0
> Vout
(i
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CMOS Inverter VTC

« Graphical approach: transfer I-V curves of nMOS and pMOS into the same
coordinate system
= More complex for pMOS since V;,,, V,,;, and Iys,, are only indirectly related to the pMOS I-V

Ipsn =

Vout T

_IDSp

Vbop + Vspy

Vin = Vpp + VGSp
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CMOS Inverter VTC

 The intersection of corresponding load lines, where the currents of the nMOS
and pMOS are equal, shows the DC operating points.
= Putting all the intersection points on a graph with the corresponding output voltage will give us

the CMOS inverter’'s VTC V.t
IDSn VDD g
Vin=0 } — Vin=Vpp
% V DD
Vim = “—V, ==~ 2 °
2 2
Vin=Vop === \\-Q V;,=0
~ \
oV
Vout VDD/2 VDD "

)
M- e ()
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CMOS Inverter VTC

 The intersection of corresponding load lines, where the currents of the nMOS
and pMOS are equal, shows the DC operating points.

= Putting all the intersection points on a graph with the corresponding output voltage will give us
the CMOS inverter's VTC

« Different points on the VTC fall into different n/pMOS operating regions

in0 DD

Vinl Vout T

in2

in3

<<

in4 @=

DD
out
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CMOS Inverter VTC: Operating Regions

« Analytical analysis requires different equations for each operating region
due to the non-linear model 1

out L ]
\ _ Vesp s
Vbp Vesp = Vin = Vpp < Vipy . G
— Linear —
*

Vin < VTn

|
S
VGSK 4

g= Vepp = Vin — Vour < Vrp

| D

8 Vis -Vout
= D

o Gl

. Vesn = Vin, < Vi = Cutoff ] K
|

0

O

=

c
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CMOS Inverter VTC: Operating Regions

« Analytical analysis requires different equations for each operating region

due to the non-linear model T
V.. Vin > VTn )|
i _ Vesp s
Vbp Vesp = Vin = Vpp < Vipy . G
_ — Linear —cl
= = VGDp = Vin = Vour < VTp P
| | D
é é Vit D-—vom
Vo2 = f Vesn = Vin > Vpy } o Sqt GI
= — M1
CID ? I/GDn — Vin - Vout < VTn KS
n %) V
5 3 GSn L 4
= = —_—
c c —
Von/2
DD Vin
V. +A4V Vop

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Considering Long Channel Transistors with V;<Vp/2

)




CMOS Inverter VTC: Operating Regions

« Analytical analysis requires different equations for each operating region

due to the non-linear model T
Vin > Vpp/2

out - VGW .
Vb VGSp — Vin _ VDD < VTp} S Sat G \
*

|
S
VGSK 4

= £ I VGDp = Vin = Vour > VTp P"D
| I I
é é Vm D.-vﬂut
/2 = = Vesn = Vin > Vi s
VDD 4 E V _ V . V < V — Sat N1
CID ‘f GDn — Vin out ™n
7)) 7))
O O
= =
c c

nNMOS —

Vpp/2 Voo "

Considering Long Channel Transistors with V;<Vpp/2

)
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CMOS Inverter VTC: Operating Regions

« Analytical analysis requires different equations for each operating region
due to the non-linear model 1

v Vin <Vpp = Vryp
out [ ]
_ Vesp s
Vb VGSp — Vin _ VDD < VTp S Sat G \
k= = I VGDp = Vin = Vour > VTP P1D
I I I
UO) 8 8 Vm" "Vnut
2 2 3 Vsn = Vin > V. [m=
= . . G
Vool2 | o = _ . GE”V mV T"V } — Linear I g
CID ‘? —T ¢pn = Vin — Vout = Vrn S
8 8 8\ 8 e |
= = = —
c c c p—
Vin
Considering Long Channel Transistors with V;<Vp/2
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CMOS Inverter VTC: Operating Regions

« Analytical analysis requires different equations for each operating region

due to the non-linear model T
v Vin > Vpp = Vryp
\Out [ ]
VGW S
Yoo Vesp = Vin — Vop > Vi = Cutoff ¢
f= — < s = GSp — Vin DD Tp =
= = wn n o =
| I I | |
Vo /2 = f < = Vesn = Vin >V = Linear |
O - T E £ Vepn=Vip =V, >V | I
| | _I _I n n out n KS
0p)] 0p)] 0p)] V ®
O O O 3 Gsn
S S S = —1
cC cC cC - —_
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CMOS Inverter VTC: Operating Regions

« Analytical analysis requires different equations for each operating region

due to the non-linear model T
Vput - Towards the rails, one of the transistors vV *
Vv is cut off, and the other is resistive. G“/) S
DD G x
= = § 5 Once the cut off transistor starts \ F”D
I I I I . . . . .
8 8 8 8 conducting, it immediately is saturated. Vit V.
= = = = As we approach the middle input | 2
Vool2 | = - _ voltages, both transistors are saturated. Iz
@) (7)) = =
8' 8' 8' ) The VTC slope is known as the Gain VGSKS'
2 g 2 C§> of the gate. 1
c c c c —_
Vin
Voo-Ve  Vob
Considering Long Channel Transistors with V;<Vpp/2
-(I’fl-
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Switching Threshold

 The Switching Threshold, V,,, is the point where V, =V,
» |nverter has the largest gain at this point

= Knowing V,, is desired to define threshold Vv fou .
for delay measurements bD q d ¥
= Skewing V,, skews the delay for rising or falling

= Placing V,, at Vpp/2 maximized noise margins

« Graphical calculation: /L

intersection of the VTC with V, =V,

« To understand the impact of design parameters on V,, we are interested in an
analytical solution
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Switching Threshold

« Analytical computation of V,, : equating the currents through pMOS and nMOS
= Switching threshold V,, lies around the point of largest gain (center of the VTC)
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Switching Threshold

« Analytical computation of V,, : equating the currents through pMOS and nMOS
= Switching threshold V,, lies around the point of largest gain (center of the VTC)

= Both pMOS and nMOS in saturation Vou IMOS — sat -

Ipsn = % (Vin — VTn)2 Vbp PSS >3 5.
Ipsp = —% (Vin — Vop — VTp)2 —
*Vout
Ipsn = —Ipsp Vo2 S

= Threshold defined as V,;,=V,, ms.
% Vy = Vr)? = o
2 (Vi = Voo — Vp)”
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Switching Threshold

« Analytical computation of V,
= Switching threshold lies around the point of largest gain (center of the VTC)
= Both pMOS and nMOS in saturation

_ FPn

Solving for Vy,

IDSn — 2 (Vin T VTn)2
By 2 Vin + T(VDD + Vr )
Ipsp = 2 (Vin = Vop = VTP) Vi =— 1+7r -
Ipsn = _IDSP N
_ By
» Threshold defined as V,,=V,, T .3
V n

Bn
B3 (VM — VTn)2 —

Bp 2
2 (Vi = Vpp = Vrp)
MCPr\-




Switching Threshold

* ris an important factor in setting Voo
the switching threshold
* risset by the drive strength ratio
of NMOS and pMOS
B _ Wap
r = N ,3_: ,Bn/p — .un/pcoxm 0

« Using the current equations again, we can
find the drive strength ratio for a desired V.

" ln/p are technology parameters
= Wy, and Ly, are controlled by the designer
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Switching Threshold Optimization

 Asymmetric VTC (V,,=Vpp/2) Is often desired.
= In practice, we often find that u,, > u,, and hence

« Adjust the switching threshold with W and L of nMOS and pMOS
= Consider Vr, = =V, = V7

:Bn V L LTL

:819 T B VT I/Vp _ Un (Wn>
VDD _% _ VT

p Hp

« For digital circuits, we often use minimum length (L,;,,) to maximize drive

= Adjust only the width of the weaker pMOS W U Un

to compensate the drive mismatch "~2 .4 W W,, —
Wn Hp Hp
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Impact of Noise on Synchronous Digital Circuits

* In practice, digital circuits are affected by noise (e.g., coupling or supply noise)
= Other non-idealities affecting the output levels of a gate may also be understood as noise

VoH Voo ViL VoH ViH VoL

-------------------
1 ¥ LY ]
| 1 ] -

-

Interconnect Interconnect

-y
: /‘: ~s

_ B Late glitch induced at the
Noise ( Noise ) _
~~~~~ ‘ end of a cycle by noise

 Noise may increase the delay OR may cause failures in synchronous
systems due to transitions from noise late in the clock cycle

 Reducing the impact and propagation of noise improves stability
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Propagation of Noise

* Inject noise at the input of a gate.
- How does this noise propagate to the output of the gate?

[ out f(VlTl

_T_

= Large gain in the transition region
amplifies the noise

= Saturation to the rails limits gain and
attenuates the noise

-(I’fl-

a Vout
Vi

aVout
Vi,

Vout
A
E)V dv
—Vm“ = -1
Impact of Vi
noise on output
. Vour=Vin
> 1
Vin=Vpp/2 Y
<< 1 ‘,,’4/ N —
Vin=0,Vpp
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Noise Margins

OVout

0Vin

* Noise margin: margin between the min/max high/low output of one gate and the
noise insensitive region of the next gate

K1

* Noise insensitive region of a gate:

Vout VoHmax =T~ T Voo
} VoHmin
uﬂl"‘l . VlH
M, V|L
VOLmax
VOLmin — 1 GeND
NM = Vou min —Vin
Vou
NM =V, _VOLmax
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Analytical Derivation of Noise Margins

* Assume balanced inverter: g, = g, = g and Vp,, = =V, =y

* Find the unit-gain points of the VTC
= Consider only V;y4

Vo2

nMOS —off pMOS - lin
nMOS - sat pMOS - lin
nMOS —lin pMOS - sat

nMOS —lin  pMOS — off

= NnMOS linear, pMOS saturation } fw N
Vour” R
_ _ _ 2
Ipsn(res) —ﬁ Vin = Ve)Vour — 5 = —Ipsp (sat) = 2 (Vin. = Vpp + Vr)
= Note that g does not impact the NM if the inverter is balanced
= Obtain %VTO;: through implicit derivation (without the need to first solve for V,,,; = --*).
= Set ZVT(’;: = —1 and solve for V;, > Vig = é(SVDD — 2V7)

1
> ViL =1 (3Vpp + 2V7)

1
NMy = NMp = Vpp = Vip =V, —0 = §(3VDD + 2Vr)
M CPF\—
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Origin of Delay In Digital Circuits

« DC characteristic only indicates the stead-state behaviour
= Capacitances are removed (replaced by an open circuit)

* For the dynamic behaviour (speed) of a circuit, capacitances play a major role
= Time to charge/discharge the load (output capacitance) of a circuit determines the speed

ECOLE POLYTECHNIQUE
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Delay Parameters

 Delays impact the speed of a digital circuit
* Propagation Delay: V. A
= Measures the delay from
50% transition point at the

Input to the 50% transition ] 50%
point at the output

= Often different for rise-rise,
rise-fall, fall-rise, fall-fall

= Measured between 2 signals

 Rise/Fall Time:

= Time for a transition from
10%-t0-90% or 90%-t0-10% of the full swing

= Measured on one signal only
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Parasitic Capacitances

 The capacitive load (;,,4 On a gate results from three main origins
= Intrinsic capacitance Cyyr from the transistors of the driving gate
= Wire capacitance from the connected routing wires

= |[nput load of the connected (driven) gate(s)

EXxtrinsic: Cgxr

Driver in out
K) Load
9
Cout 1 - Cin2
Cr Co Cload = Cout + Cyire + N - Ciyy
6 (

-(I’fl-
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Parasitic Capacitance of Transistors

and input load are caused by MOS transistors and
depend on transistor parameters

= Unfortunately, MOS capacitors are highly non-linear and
depend on terminal voltages (non-constant)

Voo
pMOS
transisto

Output
MOS
transistor

GND

J [t

. ", . . . w T w
= For better intuition, we use a simple constant capacitance e 112 IR L IHE 4l
model that only scales with transistor geometries =
« Dominant capacitances: U -
» Gate/Channel Capacitance: capacitance caused by the
insulating oxide layer under the gate ~W - L Vo2t wMOS wansitor
] ] ] - thickness of Y _
= Junction Capacitance: pn-Junction capacitance thin oxide

between the diffusions and the substrate ~W - Dg;qin o 5 (V=0

« Larger transistors also bring larger load
(PR
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Gate and Diffusion Capacitances

« Affects delay of previous gate

 Approximate channel as
connected to source

Affects delay of same gate

Depends on area ~W - D;,-4in & perimeter

= Use small diffusion nodes

. Cgs =g WL/, = C,WL~WW - L = Comparable to C, for contacted diff
" %2 C, for uncontacted
Vi 74|
/ - /] Drain2
. - = j
/S - 4 Gate2  [(NANNNN ﬁ
S w Source? ﬁ NN "
L 7 Drain g Isolated N ' Shared NN
0X$< < ~ SA | lefusn::rn B i  Diffusion 3}1: ' Merged
L [ SiC ! L 'y  Diffusion
n+ n+ (good in Gate \\\\\\\ NN NN
p-type body Source! o # 5 52 ﬁj
)
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A Simple Delay Model: Current Source Model

« Simplest delay model considers transistor as a current source assuming it
operates in saturation during the entire transition
» Transition measured from Vyp to Vpp /2

Vbbp
Vbp VDD
)i Vout \ i Cy - 2 Cr - Vbp
- V > HL — _ 2
© Fout Ips BVpp — Vry)

| () CL

avi{ { B

Ipsn = E (Vin - VTn)2
Vin =VbD
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The RC Delay Model

« Unfortunately, the current source model
» Produces a rather inaccurate waveform

= Becomes inaccurate with more sophisticated
transistor models (e.g., long channel models)

[=Ippyy

| rr ==0(;v foir
IN \

N\

0

OF

h Vorrr
Voy — our

T
0 IppL

« Better model: replace driving transistor with an equivalent resistor

EE-429: Fundamentals of VLSI Design
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Delay of an RC Network

* Delay can be derived from well-known equations from RC networks

Vout(T) == VDD(]‘ - e_R_tC)

t
Vout(*l') = Vppe RC
V.fn =
C.-"um ed
_L_ ’

Time required to reach x%:
t

xX=e RC=»t=—R-C-lnx

50% rise/fall delay:
tsoy, = R+ C - 0.69
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Computing an Equivalent Resistance

* On-resistance of the MOSFETS changes during transition

« Use an equivalent resistance reflecting a good average of the transition region
= Start from onset of the transition: V,,; = Vpp
= Up to the midpoint: Vy, = Vpp /2

1 % 1 3Vps (1)

R., = average_ R, (t))= R, (t)dt= dt
g t=t;..t, ( ( )) t,—t, E'. ( ) t,—t, ;'l. |DS (t)
Ip a _ 1
Ves = szvz:: ] ~ E[Ron (tl) +R,, (t2 )]
Rmid l
S | o1 Vf Wos 3 Vo
Ry .= .-~ | “M T Vpp/2 ) BaWpp = VP2 25 2B, (Vpp — V)2
- I , Vpp/2
| L) ps
VDD/2 VDD

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Propagation Delay with Equivalent Resistance

* Analyze the parameters that affect the propagation delay:

t . = 0.69 : Voo C —1035L1 Voo C
P 2B Vpp = V)2 T T Wk, (Vpp — V)2 T

« Accordingly, we can minimize
the delay in the following ways:
= Minimize Cyyq4

» |ncrease W/L typically by making W wider
= |ncrease V)

tpl{normalized}
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Effect of Device Sizing

« To reduce propagation delay, it is tempting to increase the device width W

* Atthe same time we usually need B, > B, to compensate for the mobility
ratio of holes and electrons for a balanced inverter

* This generally equates the propagation delay of High-to-Low and Low-to-High transitions.
= However, this does not imply that this ratio yields the minimum overall propagation delay.

* For this, we will discuss two sizing parameters:

= Beta Ratio (B = B,/Br): ratio between pMOS and nMOS drive strength
= Upsizing Factor (S): ratio of the nMOS to a minimum-size nMOS
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PMOS/NnMOS Ratio

« Consider the average propagation delay for rise and fall

_ tpLH + tpHL _ 0'69610ad(Reqp + Reqn) Vi
tpd = 5 — >

= With W, = W, we get an unbalanced inverter since u, < u, which leads to
* Reqp > Regn and therefore t,q, > thqr

= We usually enlarge the pMOS to get a “balanced” inverter setting W, = W,y withy = 2...4
fOI’ VM — VDD/Z

 Itis worth asking: is the balanced inverter also the fastest?
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Optimizing pMOS/nMOS Ratio for Minimum Delay

» Consider two identical cascaded CMOS Driver
Inverters: K) Load |
= The load capacitance on the driving gate is: ‘DCJ_ =] >Q*
Cload — Coutl + Cinz + Cwire CI;‘ r TCM
= The input capacitance of the 29 gate C;,,, and Gt Cex

the output capacitance of the driving gate C,,;; contain both pMOS and nMOS parasitics

Cload = (Cdpl + Cdnl) + (Cgpz + anz) + Cyire
» Gate and drain capacitances scale linear in the width of the transistors
Can1~Wy Cdpl"'VVp = yWy

an1~Wn Cgp1~Wp — yWn Cload = (1 + V)(Cdnl + anz) + Cwire
M CPr (@)




Optimizing pMOS/nMOS Ratio for Minimum Delay

 Formulate the propagation delay, including the impact of ¥ on the parasitics

and on the pMOS R, (W,¥) = Regpy (W) /Y

0.69C 0.69
tpa = zload (Reqn + Reqp) = T [(1 + V)(Cdnl + anz) + Cwire] <Reqn +

Reqp (Wn)>
4

» Find y to minimize the delay: a;—’;d =0

R W Coi R
yopt=\/ eqp( n) <1+ wire ) N eqp

Reqn Cdnl + anz

(Cdnl +an2 >>Cwire)

» Atypical optimum y,,, is usually around 2
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Optimizing pMOS/nMOS Ratio for Minimum Delay

« Balanced inverter usually does not provide the shortest delay

-11

x 10

5

= Delay penalty compared to a delay-optimized
inverter is often small.

4.5¢

3.5+
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Impact of Device Sizing on Delay

 Recap: pMOS/nMQOS ratio can be optimized to minimize delay
» The balanced inverter is not always optimal, but often close

« See how upsizing both pMOS and nMOS affects the delay?
« Consider a minimum size balanced (y, for Vy;, = Vpp/2) inverter as reference
= W, = Winin, VVpO = YoWmnin. L?‘L/p = Linin

Common upsizing factor S
Wp =SWpO Wn=SWnO
Cine(§) =S - Ci?lt

Req (S) = R(e)q/s
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Impact of Device Sizing on Delay

« Start by writing the delay as a function of the intrinsic capacitance and the
external capacitances (fanout and wiring)
= |ntrinsic capacitance: scales with § compared to that of a minimum size inverter
= External capacitance: constant

Cioad = Cint (S) + Coxt

pd = 0.69 - Req(S) Cload = 0.69 - Req(S) [ int(S) + Cext]

RO
= 0.69 - [5 Coe + Coxt|

C C
=0.69-RY, - C2, - <1+e—’“>=t0<1+ e’“)
tz;eoq — S Ci?lt ? 5 Cref
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Impact of Device Sizing on Delay

-11

+ The intrinsic delay of an inverter (tp0) is 3.8
iIndependent of the sizing of the gate and 3.6
IS purely determined by technology. a4l
 When no load is present, an increase In 2ol

the drive of the gate is totally offset by
the increased capacitance.

~ 2.8
» N 2I6-
« Upsizing becomes relevant once the y
external capacitance starts to dominate

2.2¢

2 I

2 4 6 8 10 12
S
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CMQOS: Two Types of Power Consumption
« CMOS circuit power/energy consumption comes in two forms:

= Dynamic energy/power consumption: depends on activity
» Charging and discharging of capacitors
» Cross (short-circuit) currents while pMOS and nMOS are on during switching

= Static power consumption: independent from activity
» Constant biasing currents (intentional)
» Various types of leakage currents (parasitic)
« Contention currents when driving opposite directions (mostly accidents)

(gl | | («
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Basic Inverter (Unloaded)

« PMOQOS performs pull-up to Vpp, NMOS performs pull-down to GND

VDD
= Complementary gate 4
Ves = =Vpp,~
= Static (steady state): output connected O| E )T%
to either Vpp or GND
0: GND — — 1:Vpp
/s
Ves = 0\\\» T

GND

i/

1: VDD —

—

AY
\
Ves = Voo™ e

-
GND

« l|deally, no current path from V,, to GND: ideally, no static power consumption
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CMQOS Gates With Capacitive Load

« Every CMOS gate sees a capacitive load from various sources
= [ntrinsic MOS transistor capacitors (driver)
= Extrinsig (fanout) MOS transistor capacitances
= |[nterconnect capacitance

« Various load capacitances are merged ©
Into a single load capacitor C;

Do D> el o
L L

[T1

= Wider transistors increase the gain factor (drive) but also increase the load (capacitance)
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Energy of an Inverter with Capacitive Load

« Switching the output from O to 1 charges the capacitor

VDD

= Energy delivered by the power supply o
Eypp = foool(t)VDDdt = fooo C%VDDdt = CVpp fOVDD dv = CVpp _(4
= Once the output transition is complete, the energy stored vy, — GND
on the capacitor is given by |
E, = % CVZ, GND - Vpp ( izc
= Energy difference is dissipated to heat in pMOS 4'

« Switching the output from 1 to O discharges the capacitor 2
= Energy on capacitor is dissipated to heat in nMOS

« NOTE: energy consumption is independent of the waveform
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Active Energy Consumption Waveforms

I_|

(|
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Active Power/Energy Consumption

« Energy consumed during one pair of transitions E;:

Epr = (CVgg)Vaq = CViy
« Energy/transition
E,=CVi;/2

« Average power consumption: energy pertime T

2
ﬂ _ 2fszCVdd/2

= Depends on the switching frequency f,,, of the output P, === - = fowCV%4
= Activity factor a : average number of transitions per cycle
* Relates activity of a node to the clock frequency f
« Energy/transition * average-transition/cycle («) * clock frequency (f.x)
a 2
P = D) CViafcu
B




Short Circuit Currents

« CMOS gates have a large, but finite gain in the transition region
= Cross-over currents lead to power consumption during transients

range applies when n-channel v p-channel A
A 0 < Uppp < Uhn subthreshold linear V: _D)_ 1%
Uihn < Uinp < Uiny saturation linear inp oup
PROBLEMATIC inp ~ Ujpy saturation saturation
D Uiny < Uinp < Udd + U p linear saturation Dominant during transition region:
E Udd + Uthp < Uipp < Uqd linear subthreshold rapid opening of the driver for the new level
u : - A f Low 'MEEEl HIGH
Note S qrt circult _ Unn  YaUnp U, U *Unn o oW mingio
power is irrelevant if y, L1 _:gain=v | | | u,, g |
— m .
1% A | | .gain = -1
VT < 22 I . "
2 I max —+——————f—————1 afte-
lG : nuation oo
R e | voltage e
| atte-
: : nuation
| |
| E A | E ain =-1
0 i : » Uinp 0 i » Uinp 0 g | B —\])—h Uinp
o O Un Yy b 0 Un Uy o 0 U U 4

(a) Transfer characteristic (b) Crossover current (c) Logic states

(|
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Minimizing Short-Circuit Currents

« Obvious approach: reduce input transition time

= However, short input transitions require stronger driver => increase transition time (and load) on
the driver of the driver

« Control short circuit current by controlling the output slope:
= Fast input slow output: driving device mostly in linear regime => good for low power
= Slow input fast output: driving device remains long in saturation => bad for low power

4
Pmos remainsin linear |/ x 10~ Pmos rapidly in
ion duri tof =P 2 ! ! turation whil
region during most o saturation while
the input transition ——l_ 2 T (. =201F nMOS already MAX
(until it turns off l fgc'"ﬂ turns on during _Cl "C
by the rising input) —Ci — L3 Cp =100 fF | input transition _\_
\ i a4
S s o— V.,
_ Vout ? C, =500 fF | Vin |
V. C ~ 05
5 L
— L 0 — — —
—0.5 l ! =
Large load = 0 20 (jm 60 Small load
me s

« Best compromise: balance input slope and output slope
-(I’fl-
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Leakage Power

 Transistors leak currents even when in off-state

« Sources for leakage

= Sub-threshold leakage
« Dominant component in most circuits

= Gate tunneling

« Generally low, even in modern technologies due to
high-k gate dielectrics

» Decreases very rapidly with decreasing V4

= Junction current
« Generally low
« Decreases very rapidly with decreasing V;4
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Leakage Power

 Long channel deices (>130nm)

Vgs=Vr

IDS — Ioe ven

» [ps mostly independent from Drain-Source voltage

» [eakage current depends strongly on Vs — V.

-(I’fl-

lL [L)L‘tTl(_.IINJ l_

Lower threshold voltage increases leakage
Higher threshold voltage decreases leakage

Subthreshold slope: slope of the logarithmic leakage
current for Vs — V7 <0

v . thermal voltage
n :constant

u

VGSaV

01 02 03 04 05 06 07 08 09 1.0

it




Leakage Power over Temperature

« Sub-threshold current depends exponentially on thermal voltage v; = kT /q

Ves—Vitn

Ips = Ipe *Tn/a

 Exponential sub-threshold leakage (I55) increase with temperature

10,000

90 0.1pm, 15mm die, 0.7V 56%
0.10 pm .
- 13H 80 B Leakage 49% %
1.000 13 pm o 1 B Active s1o %" g
; 60 3% 7 ﬁ ﬁ
Isve (nA/pmM) ; 26% gz ﬁ" ff ﬁ
100 % 6% 9% 14%10 ? é g g é
w le 28 %2 2 7 7 7 7

30

10 20

_ 10

Vivek De, Intel

1 ' 0
100 110
30 40 50 60 70 S0 9 100 110 304050 60 70 80 90 1001

Temperature (°C)
Temperature (°C
P ) Example: 0.7V, 100nm
process, 15mm?2 die
(gl |
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Leakage Power (DIBL)

Vg=0
. Vs =0 vd (larg
Impact of technology scaling on sub-threshold =~ LT ) T“““’
leakage (<130nm)
nt+ // n+
= Drain-Induced Barrier Lowering (DIBL): Vps modulates threshold voltage - B
. Leff2
= [p¢ becomes a function of Vg p sub
Ves=VintApsVps Aps : DIBL coefficient
Ips = Ipe ven v, :thermal voltage

n . constant

Impact on inverter leakage: no longer supply independent

GND

—-Vin+ipsVpp +—— Reducing voltage
o [ = g€ ven reduces leakage
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Leakage In Transistor Stacks (Short Channel)

Stacking occurs
* |[n many logic gates (> 1 input)
= When introduced intentionally for leakage reduction

Ileak,Ml = lye

~VM—VintidpsVaa—Vm)

ven

Leakage Reduction

2 NMOS
3 NMOS
4 NMOS
2 PMOS
3 PMOS
4 PMOS

9
17
24

8
12
16

—VintApsVm

— Vi 1,:|—EI'
Leak,m2 = loe t T 3 —

25 fioi-l 90 nm NMOS

Small speed I olli i i bbb ]
- 0 . ' ' : ' . .
penalty: ~25% | =3 ol P :
[: = 1.5 e CTTTTT TOP SRS R o :
— im ' ' ' ] ' '
[ : : : g :

LAY v o 05 b
o SENEEEE
J / ; : : : : . ;
/ / H H i H H H H H H
L~ 0 01 02 03 04 05 068 07 08 09 1
Vi (V)
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