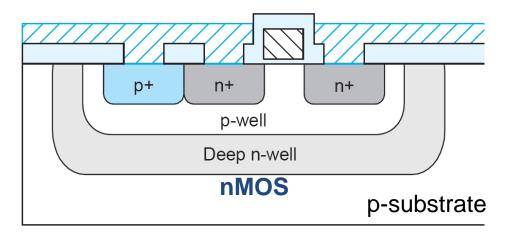
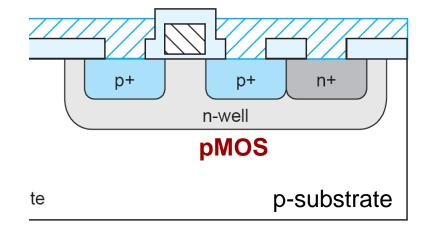
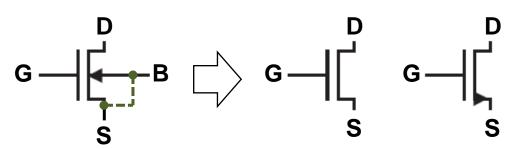
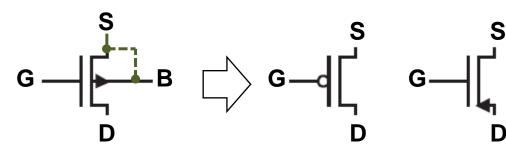
EE-429 Fundamentals of VLSI Design

Quick Review of the MOS Transistor for Digital Designers

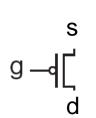

Andreas Burg, Alexandre Levisse


Acknowledgement: Prof. Adam Teman (BIU)

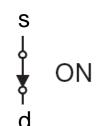

Fundamental Element: nMOS & pMOS Transistors


 Complementary Metal Oxide Semiconductor (CMOS) circuits are build from complementary transistors: nMOS and pMOS transistors

- CMOS transistors have 4-terminals: source (S), Drain (D), Gate (G), Bulk (B)
 - We will often connect Bulk (B) to Source (S) and omit the Bulk (B) terminal

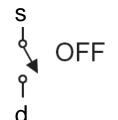


The Switch Model


- Boolean electric model for functional considerations
 - Logic '0' = GND

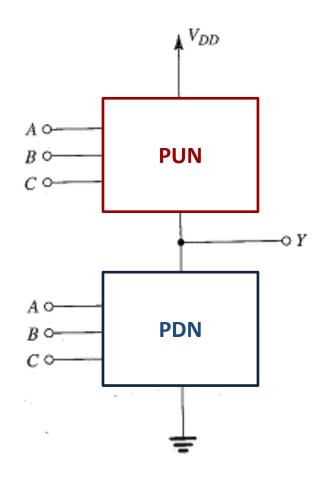
- Boolean terminals S → s, D → d, G → g
- Gate terminal (g) controls current flow between source (s) and drain (d)





g = 0

$$g = 1$$


Basic CMOS logic Principal

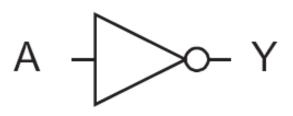
With the switch model, we can construct the basic CMOS gates

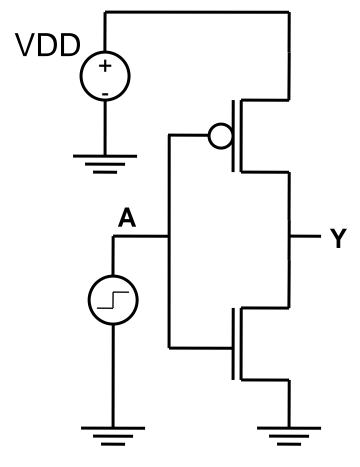
Basic idea:

- Start from the truth table (input/output relationship)
 - Pull-Up network (PUN):
 Connect OUT to VDD for input combinations that lead to a '1'
 - Pull-Down network (PDN):
 Connect OUT to GND for input combinations that lead to a '0'

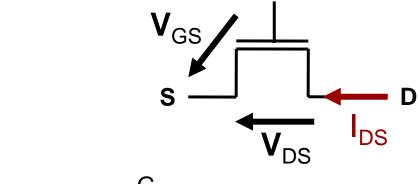
A/B/C	000	001	010	011	100	101	110	111
Y	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

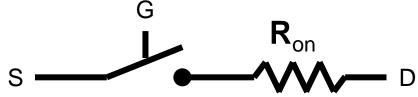
A Simple Inverter

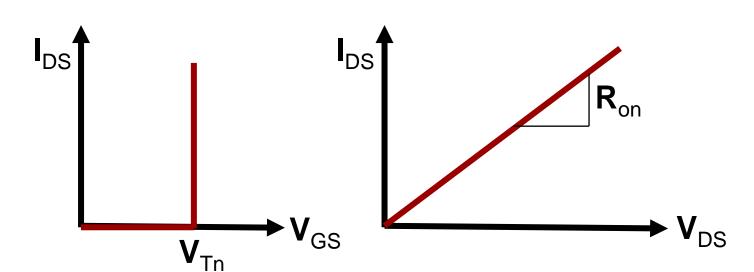

The most simple combinational CMOS logic gate is the INVERTER (INV)


А	Υ
0	1
1	0

PUN: pMOS


PDN: nMOS

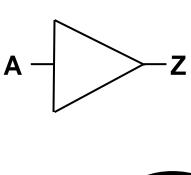




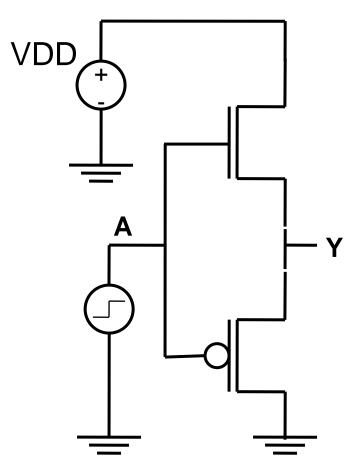
A Simple Linear Model

- Controlled switch with an internal resistance between source and drain
- Characterized by two transfer functions
 - I_{DS} vs V_{GS} characteristics
 - I_{DS} vs V_{DS} characteristics
- Small signal model: only accurate over a small V_{DS} range
- Still often used even for a large swing of V_{DS} with a properly fitted R_{on}

So why not this one?

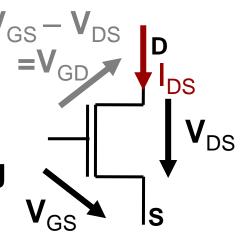

Can we also build a BUFFER (BUF) in a similar way?

А	Z
0	0
1	1

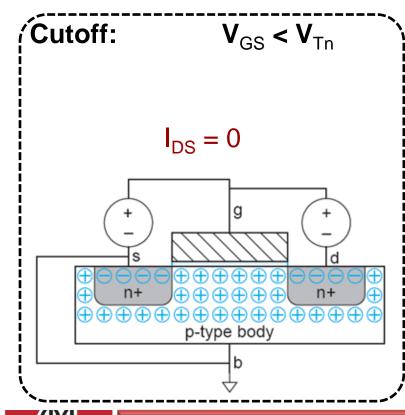

INV truth table

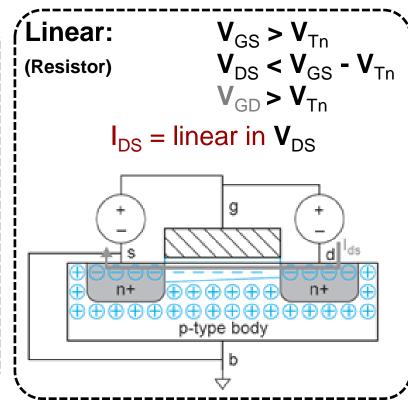
PUN: nMOS

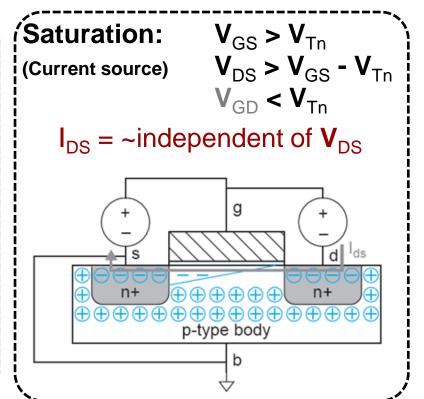
PDN: pMOS



nMOS Operation

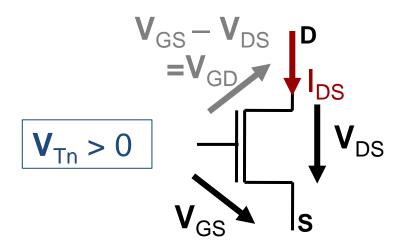

 MOS transistor has three operating regions depending on V_{GS} and V_{DS}

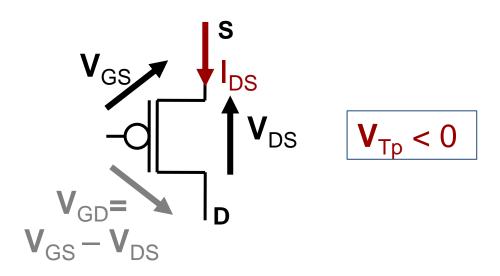



V_{Tn} > 0 : Threshold voltage of the nMOS transistor

SOURCE: most negative

terminal

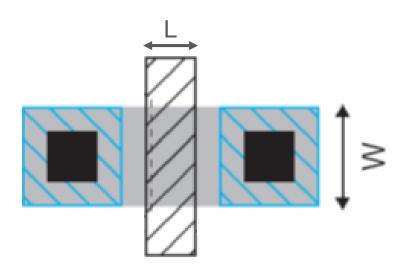




pMOS vs. nMOS Operation

pMOS and nMOS operation are symmetric

- Source and drain swapped (nMOS: most negative terminal ←→ pMOS: most positive terminal)
- All inequality conditions swapped

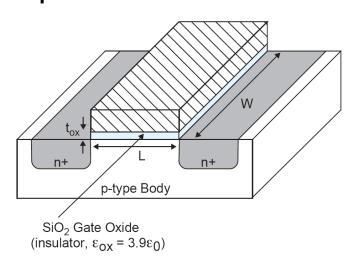

$V_{GS} < V_{Tn}$	Cutoff	$V_{GS} > V_{Tp}$
$V_{GS} > V_{Tn}$ $V_{DS} < V_{GS} - V_{Tn}$ $V_{GD} > V_{Tn}$	Linear	$\mathbf{V}_{GS} < \mathbf{V}_{Tp}$ $\mathbf{V}_{DS} > \mathbf{V}_{GS} - \mathbf{V}_{Tp}$ $\mathbf{V}_{GD} < \mathbf{V}_{Tp}$
$V_{GS} > V_{Tn}$ $V_{DS} > V_{GS} - V_{Tn}$ $V_{GD} < V_{Tn}$	Saturation	$V_{GS} < V_{Tp}$ $V_{DS} < V_{GS} - V_{Tp}$ $V_{GD} > V_{Tp}$

Transistor Parameter

Design parameters

L: channel length

W: channel width

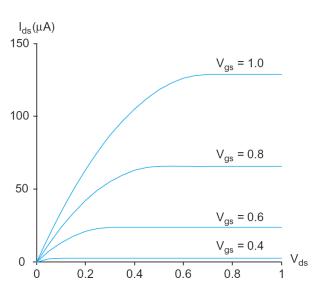

Technology parameters

V_T: Threshold voltage

C_{ox}: Oxide capacitance

 μ_n , μ_p : Carrier mobility

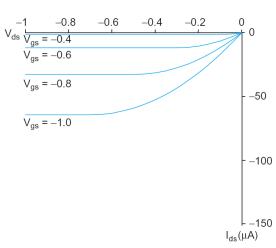
 $k'_{n/p} = \mu_{n/p}^* C_{ox}$: Transconductance

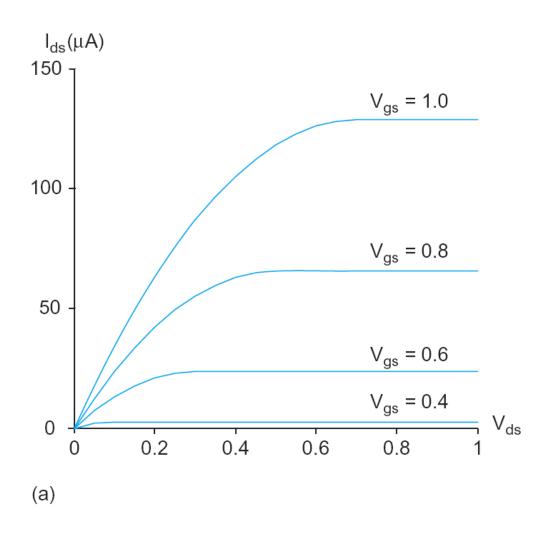


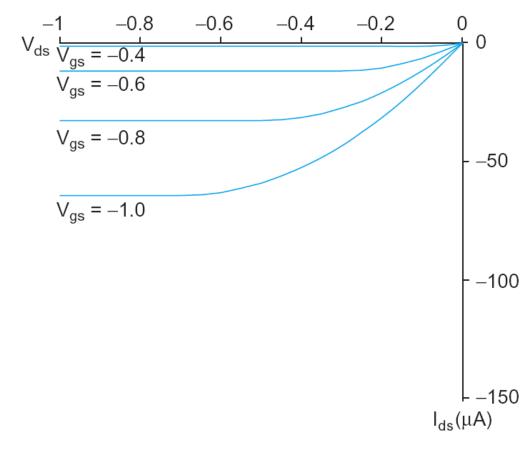
$$\beta_{n/p} = k'_{n/p} \frac{w}{L}$$
: Drive strength

Shockley 1st Order nMOS and pMOS Models

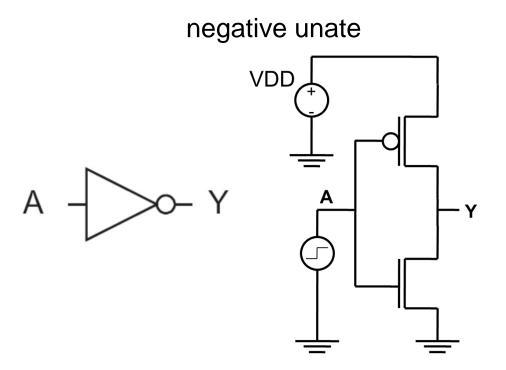
nMOS model:

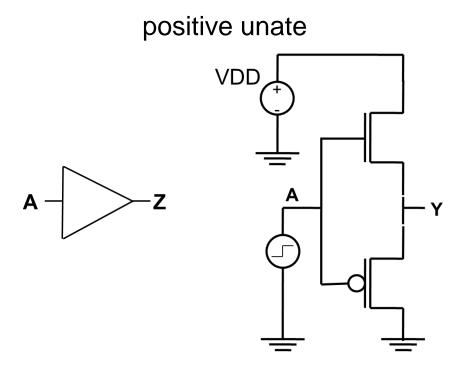

$$I_{DSn} = \begin{cases} 0 & V_{GS} < V_{Tn} & cutoff \\ \beta_n \left(V_{GS} - V_{Tn} - \frac{V_{DS}}{2} \right) V_{DS} & V_{GS} > V_{Tn} & V_{DS} < V_{GS} - V_{Tn} & V_{GD} > V_{Tn} & linear \\ \frac{\beta_n}{2} (V_{GS} - V_{Tn})^2 & V_{GS} > V_{Tn} & V_{DS} > V_{GS} - V_{Tn} & V_{GD} < V_{Tn} & saturation \end{cases}$$


pMOS model:

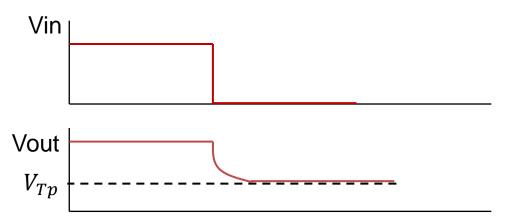

- Currents are reversed (since source and drain are swapped), $I_{DSp} < 0$
- Relation operators for operating region are swapped

$$I_{DSp} = \begin{cases} 0 & V_{GS} > V_{Tp} & cutoff \\ -\beta_p \left(V_{GS} - V_{Tp} - \frac{V_{DS}}{2} \right) V_{DS} & V_{GS} < V_{Tp} & V_{DS} > V_{GS} - V_{Tp} & V_{GD} < V_{Tp} & linear \\ -\frac{\beta_p}{2} \left(V_{GS} - V_{Tp} \right)^2 & V_{GS} < V_{Tp} & V_{DS} < V_{GS} - V_{Tp} & V_{GD} > V_{Tp} & saturation \end{cases}$$


nMOS and pMOS I-V Characteristics

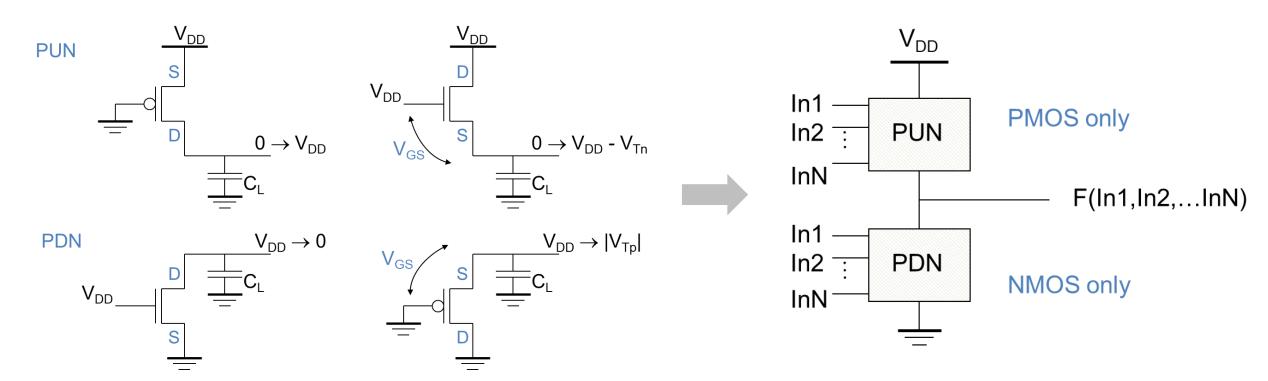


Implications of the MOS Transistor on CMOS Logic


- Realization of PUN and PDN from nMOS and pMOS determines if a function is
 - Positive unate: rising input causes rising output
 - Negative unate: rising input causes falling output
 - Non unate: rising input can cause both falling or rising output

Problem of Positive Unate Functions in CMOS

- Positive unate (or non unate) functions would imply driving the output
 - to '0' with an pMOS or
 - to '1' with an nMOS
- Unfortunately, for a pMOS
 - A Gate-Source voltage <Vt is needed to turn on the PDN and pull output low (non-inverting)
 - PDN network turns off before output reaches GND level



ON if Vout>Vt
OFF else
Vin
>0

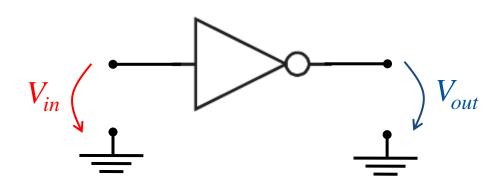
The nMOS shows the opposite behavior

CMOS is Limited to Negative Unate Functions

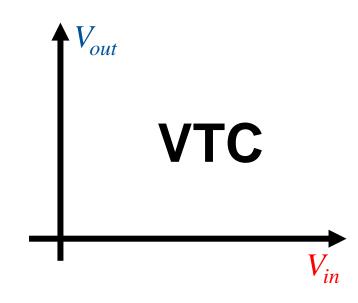
- Driving a '0' with a pMOS or a '1' with an nMOS prevents rail-to-rail outputs
 - pMOS is a good driver for a '1'
 - nMOS is a good driver for a '0'

EE-429 Fundamentals of VLSI Design

Inverter Voltage Transfer and DC Characteristic


Andreas Burg

Voltage Transfer Characteristic

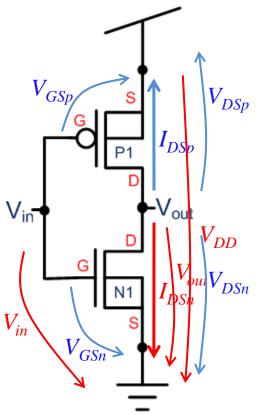

- Input-output relationship of a component (e.g., digital gate)
- DC characteristic (i.e., not immediately useful for dynamic considerations no time aspect)

The VTC provides important information on

- Useful input range and achievable output range
- Voltage gain and sensitivity
- Voltage margins

$$V_{out} = f(V_{in})$$

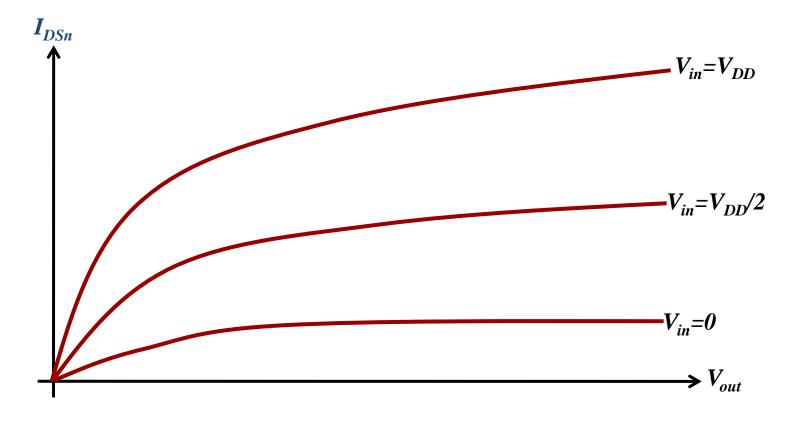
- To construct the VTC of the CMOS inverter, we need to graphically superimpose the I-V curves of the nMOS and pMOS onto a common coordinate set.
- Basic idea: equal pMOS and nMOS current


$$I_{DSp} = -I_{DSn}$$

$$V_{GSn} = V_{in}$$

$$V_{GSp} = V_{in} - V_{DD}$$

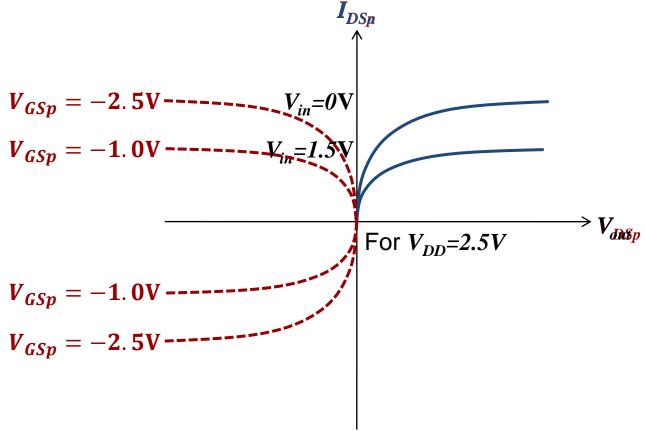
$$V_{DSn} = V_{out}$$


$$V_{DSp} = V_{out} - V_{DD}$$

- Graphical approach: transfer I-V curves of nMOS and pMOS into the same coordinate system
 - Start with the I-V characteristics of the nMOS transistor, parameterized on V_{in}

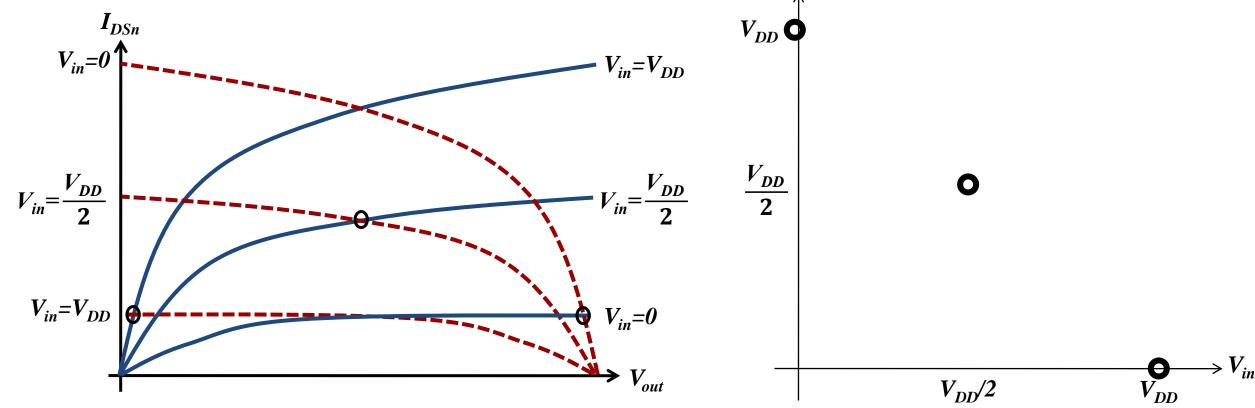
$$V_{out} = V_{DSn}$$

$$V_{in} = V_{GSn}$$

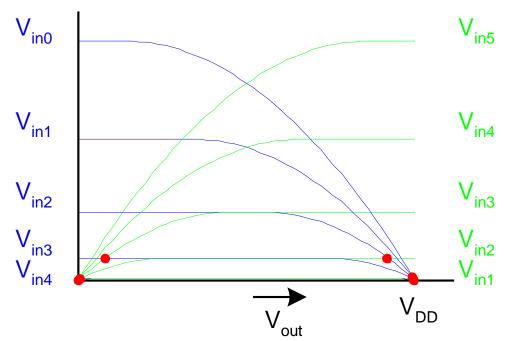


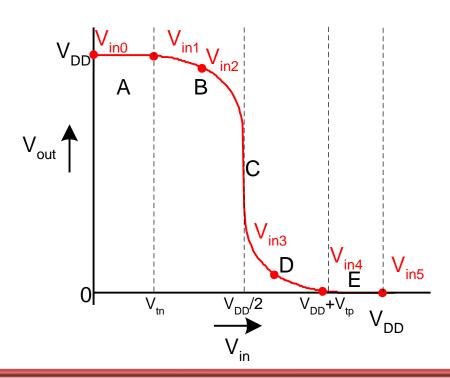
- Graphical approach: transfer I-V curves of nMOS and pMOS into the same coordinate system
 - More complex for pMOS since V_{in} , V_{out} , and I_{DSn} are only indirectly related to the pMOS I-V

$$I_{DSn} = -I_{DSp}$$


$$V_{out} = V_{DD} + V_{SDp}$$

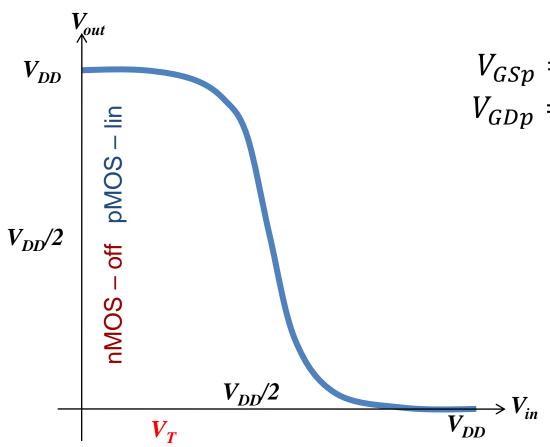
$$V_{in} = V_{DD} + V_{GSp}$$

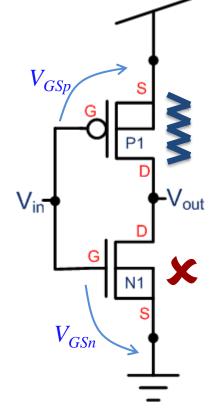



 The intersection of corresponding load lines, where the currents of the nMOS and pMOS are equal, shows the DC operating points.

Putting all the intersection points on a graph with the corresponding output voltage will give us
the CMOS inverter's VTC

- The intersection of corresponding load lines, where the currents of the nMOS and pMOS are equal, shows the DC operating points.
 - Putting all the intersection points on a graph with the corresponding output voltage will give us the CMOS inverter's VTC
- Different points on the VTC fall into different n/pMOS operating regions



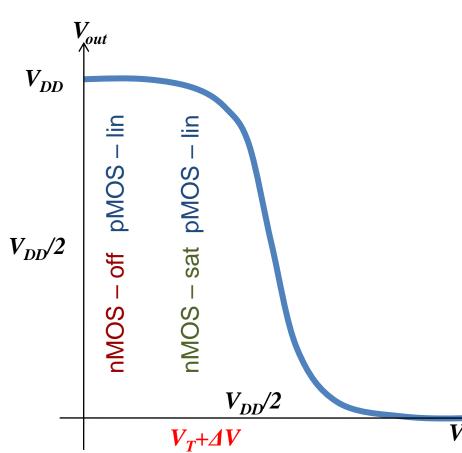

Analytical analysis requires different equations for each operating region

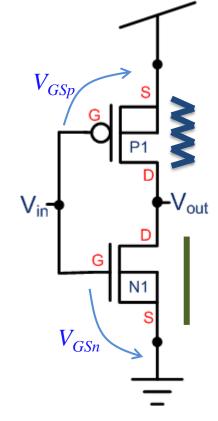
due to the non-linear model

$$V_{in} < V_{Tn}$$

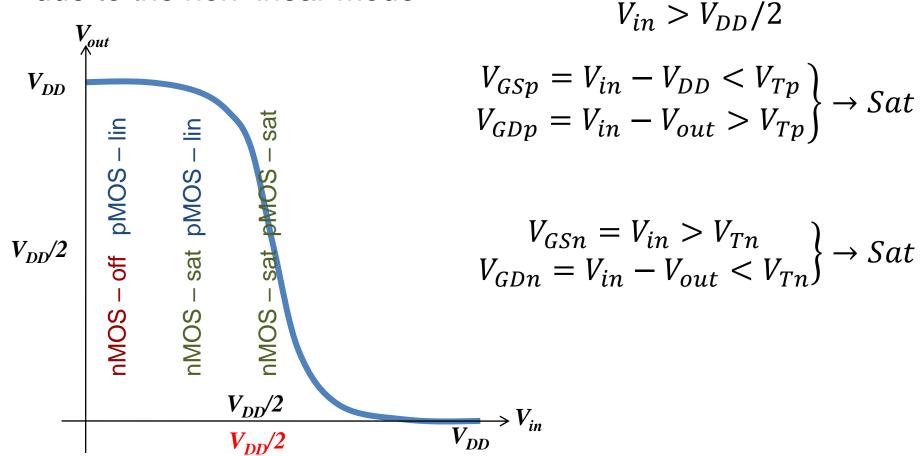
$$V_{GSp} = V_{in} - V_{DD} < V_{Tp}$$

$$V_{GDp} = V_{in} - V_{out} < V_{Tp}$$
 $\rbrace \rightarrow Linear$


$$V_{GSn} = V_{in} < V_T \rightarrow Cutoff$$

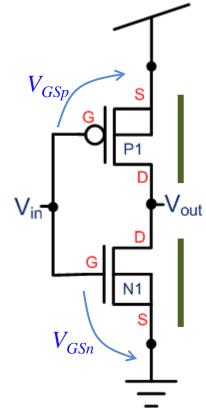

Analytical analysis requires different equations for each operating region

due to the non-linear model

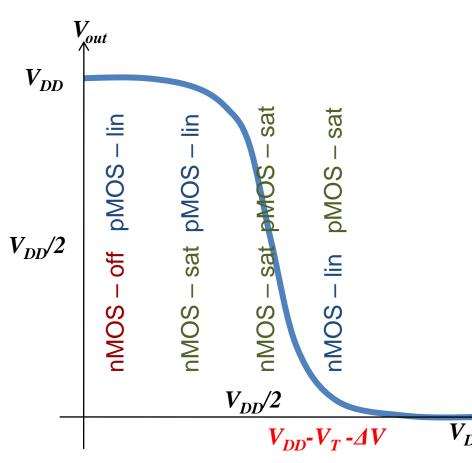

$$V_{in} > V_{Tn}$$

$$V_{GSp} = V_{in} - V_{DD} < V_{Tp}$$

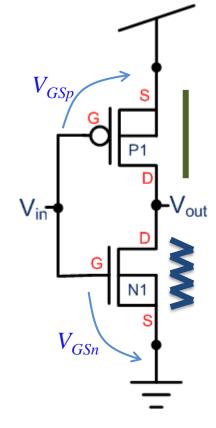
$$V_{GDp} = V_{in} - V_{out} < V_{Tp}$$
 $\} \rightarrow Linear$


$$\frac{V_{GSn} = V_{in} > V_{Tn}}{V_{GDn} = V_{in} - V_{out} < V_{Tn}} \} \rightarrow Sat$$

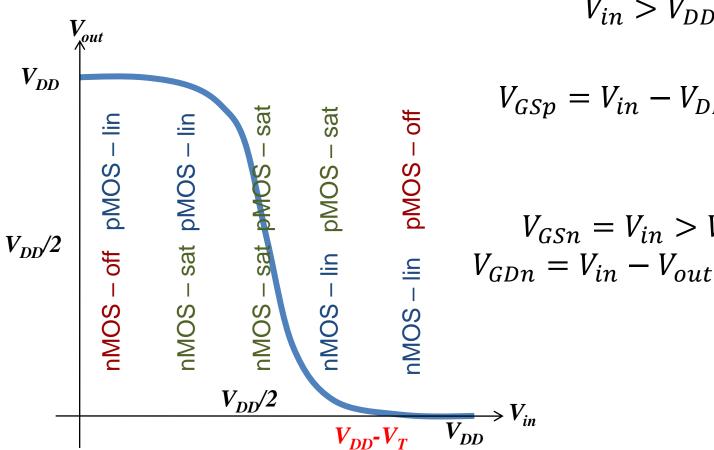
Analytical analysis requires different equations for each operating region


due to the non-linear model

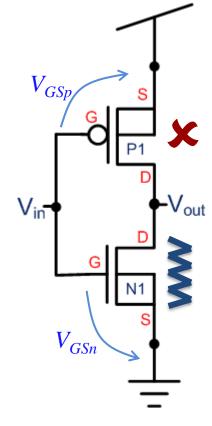
Analytical analysis requires different equations for each operating region


due to the non-linear model

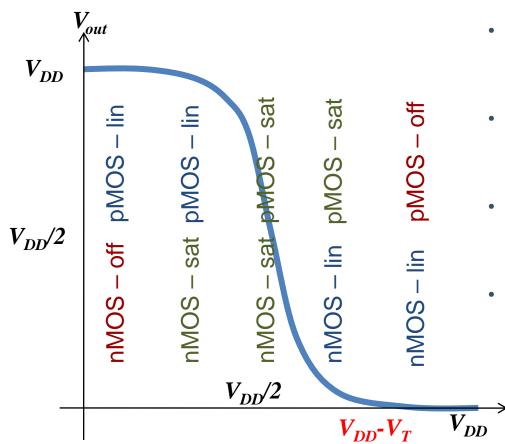
$$V_{in} < V_{DD} - V_{Tp}$$


$$\begin{cases} V_{GSp} = V_{in} - V_{DD} < V_{Tp} \\ V_{GDp} = V_{in} - V_{out} > V_{Tp} \end{cases} \rightarrow Sat$$

$$\begin{cases} V_{GSn} = V_{in} > V_{Tn} \\ V_{GDn} = V_{in} - V_{out} > V_{Tn} \end{cases} \rightarrow Linear$$

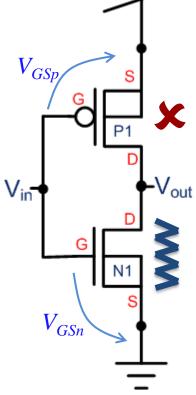

Analytical analysis requires different equations for each operating region

due to the non-linear model



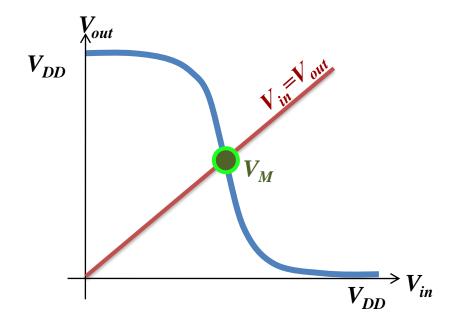
$$V_{in} > V_{DD} - V_{Tp}$$

$$V_{GSp} = V_{in} - V_{DD} > V_{Tp} \rightarrow Cutoff$$


$$\begin{cases} V_{GSn} = V_{in} > V_{Tn} \\ V_{GDn} = V_{in} - V_{out} > V_{Tn} \end{cases} \rightarrow Linear$$

 Analytical analysis requires different equations for each operating region due to the non-linear model

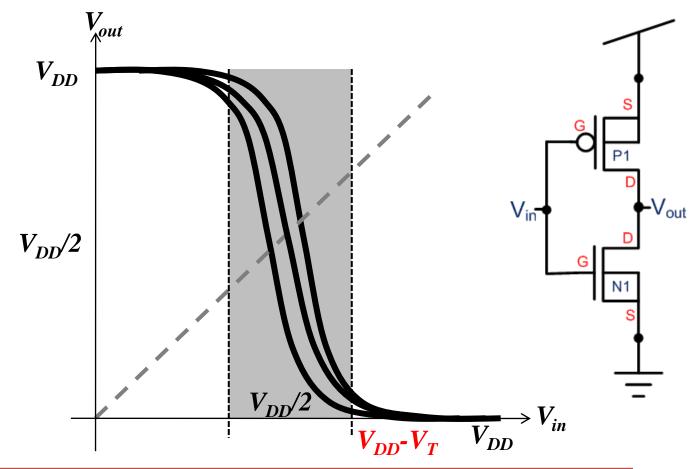
- Towards the rails, one of the transistors is cut off, and the other is resistive.
- Once the cut off transistor starts conducting, it immediately is saturated.
- As we approach the middle input voltages, both transistors are saturated.
- The VTC slope is known as the Gain of the gate.



EE-429 Fundamentals of VLSI Design

Inverter DC Characteristic

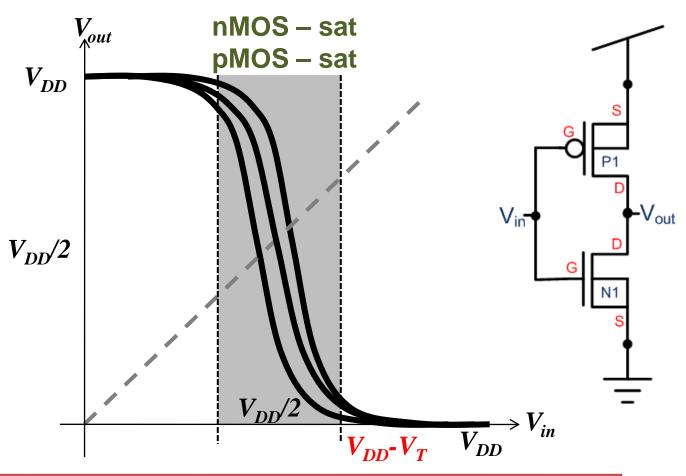
Andreas Burg


- The Switching Threshold, V_M, is the point where V_{in}=V_{out}
 - Inverter has the largest gain at this point
 - Knowing V_M is desired to define threshold for delay measurements
 - Skewing V_M skews the delay for rising or falling
 - Placing V_M at V_{DD}/2 maximized noise margins
- Graphical calculation: intersection of the VTC with V_{in}=V_{out}

To understand the impact of design parameters on V_M we are interested in an analytical solution

- Analytical computation of V_M: equating the currents through pMOS and nMOS
 - Switching threshold V_M lies around the point of largest gain (center of the VTC)

- Analytical computation of V_M: equating the currents through pMOS and nMOS
 - Switching threshold V_M lies around the point of largest gain (center of the VTC)
 - Both pMOS and nMOS in saturation


$$I_{DSn} = \frac{\beta_n}{2} (V_{in} - V_{Tn})^2$$

$$I_{DSp} = -\frac{\beta_p}{2} (V_{in} - V_{DD} - V_{Tp})^2$$

$$I_{DSn} = -I_{DSp}$$

■ Threshold defined as V_{in}=V_M

$$\frac{\beta_n}{2} (V_M - V_{Tn})^2 = \frac{\beta_p}{2} (V_M - V_{DD} - V_{Tp})^2$$

- Analytical computation of V_M
 - Switching threshold lies around the point of largest gain (center of the VTC)
 - Both pMOS and nMOS in saturation

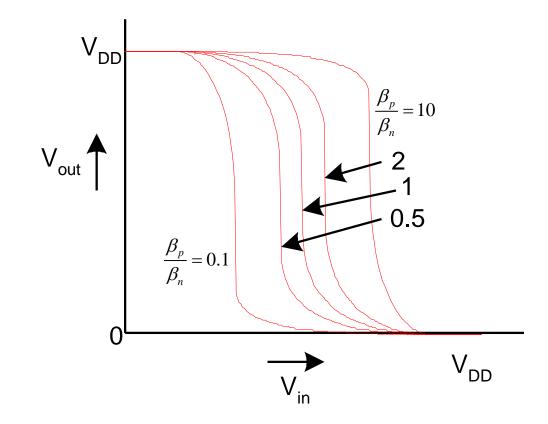
$$I_{DSn} = \frac{\beta_n}{2} (V_{in} - V_{Tn})^2$$

$$I_{DSp} = -\frac{\beta_p}{2} (V_{in} - V_{DD} - V_{Tp})^2$$

$$I_{DSn} = -I_{DSp}$$

■ Threshold defined as V_{in}=V_M

$$\frac{\beta_n}{2} (V_M - V_{Tn})^2 = \frac{\beta_p}{2} (V_M - V_{DD} - V_{Tp})^2$$


Solving for V_M

$$V_M = \frac{V_{Tn} + r(V_{DD} + V_{Tp})}{1 + r}$$

$$r = \sqrt{\frac{\beta_p}{\beta_n}}$$

- r is an important factor in setting the switching threshold
- r is set by the drive strength ratio of nMOS and pMOS

$$r = \sqrt{\frac{\beta_p}{\beta_n}} \qquad \beta_{n/p} = \mu_{n/p} C_{\text{ox}} \frac{W_{n/p}}{L_{n/p}}$$

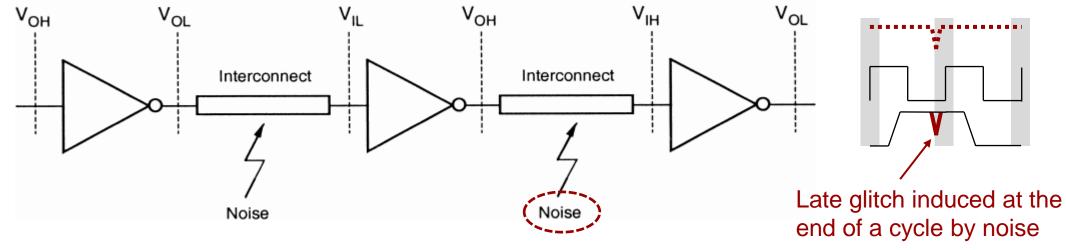
 $\frac{\beta_p}{\beta_n} = \left(\frac{V_M - V_{Tn}}{V_{DD} - V_M + V_{TD}}\right)^2$

- Using the current equations again, we can find the drive strength ratio for a desired V_M :
 - $\mu_{n/p}$ are technology parameters

Switching Threshold Optimization

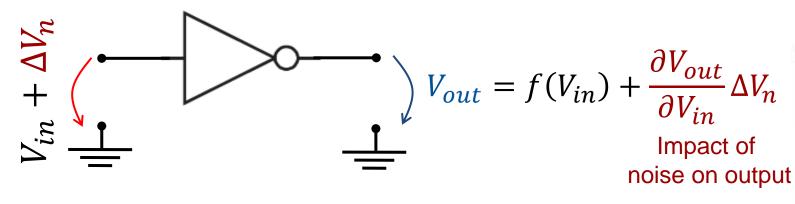
- A symmetric VTC (V_M=V_{DD}/2) is often desired.
 - In practice, we often find that $\mu_n > \mu_p$ and hence
- Adjust the switching threshold with W and L of nMOS and pMOS
 - Consider $V_{Tn} = -V_{Tp} = V_T$

$$\frac{\beta_p}{\beta_n} = \left(\frac{\frac{V_{DD}}{2} - V_T}{V_{DD} - \frac{V_{DD}}{2} - V_T}\right)^2 = 1 \qquad \Longrightarrow \quad \frac{W_p}{L_p} = \frac{\mu_n}{\mu_p} \left(\frac{W_n}{L_n}\right)$$

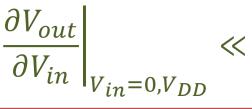

- For digital circuits, we often use minimum length (L_{min}) to maximize drive
 - Adjust only the width of the weaker pMOS to compensate the drive mismatch $\frac{W_p}{W_n} = \frac{\mu_n}{\mu_p} \approx 2...4 \qquad W_p = W_n \frac{\mu_n}{\mu_p}$

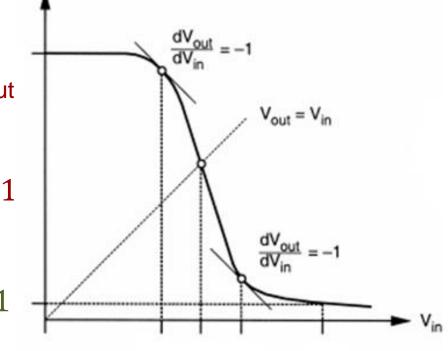
Impact of Noise on Synchronous Digital Circuits

- In practice, digital circuits are affected by noise (e.g., coupling or supply noise)
 - Other non-idealities affecting the output levels of a gate may also be understood as noise



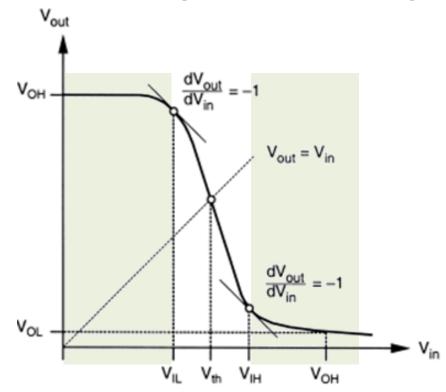
- Noise may increase the delay OR may cause failures in synchronous systems due to transitions from noise late in the clock cycle
- Reducing the impact and propagation of noise improves stability

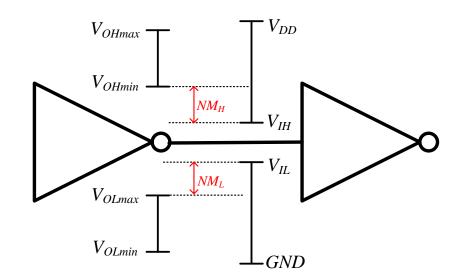

Propagation of Noise


- Inject noise at the input of a gate.
- How does this noise propagate to the output of the gate?

- Large gain in the transition region amplifies the noise
- Saturation to the rails limits gain and attenuates the noise

$$\left. \frac{\partial V_{out}}{\partial V_{in}} \right|_{V_{in} = V_{DD}/2} \gg 1$$




Noise Margins

• Noise insensitive region of a gate: $\frac{\partial V_{out}}{\partial V_{in}} \ll 1$

Noise margin: margin between the min/max high/low output of one gate and the

noise insensitive region of the next gate

$$NM_{H} = V_{OH \min} - V_{IH}$$

$$NM_L = V_{IL} - V_{OL \max}$$

Analytical Derivation of Noise Margins

- Assume balanced inverter: $\beta_n=\beta_p=\beta$ and $V_{Tn}=-V_{Tp}=V_T$ Find the unit-gain points of the VTC

 Consider only V_{IH}
- - Consider only V_{IH}
 - nMOS linear, pMOS saturation

$$I_{DSn}(res) = \Re\left[(V_{in} - V_T)V_{out} - \frac{{V_{out}}^2}{2} \right] = -I_{DSp}(sat) = \frac{\Re}{2}(V_{in} - V_{DD} + V_T)^2$$

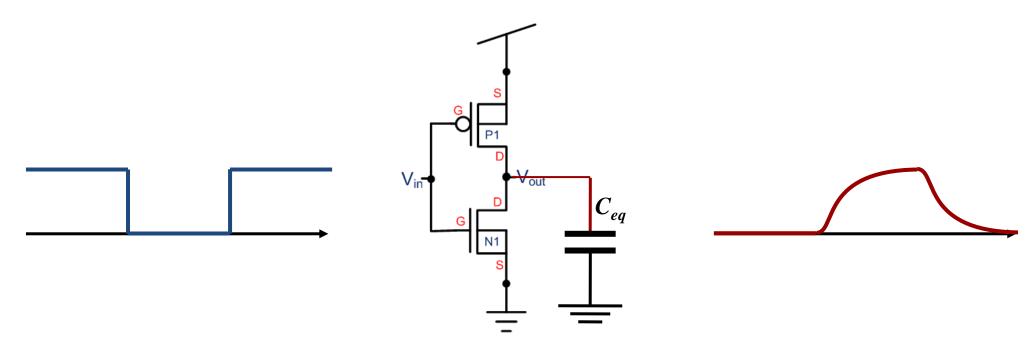
- Note that **\beta** does not impact the NM if the inverter is balanced
- Obtain $\frac{\partial V_{out}}{\partial V_{in}}$ through implicit derivation (without the need to first solve for $V_{out} = \cdots$).

■ Set
$$\frac{\partial V_{out}}{\partial V_{in}} = -1$$
 and solve for V_{in}

$$V_{IH} = \frac{1}{8} (5V_{DD} - 2V_T)$$

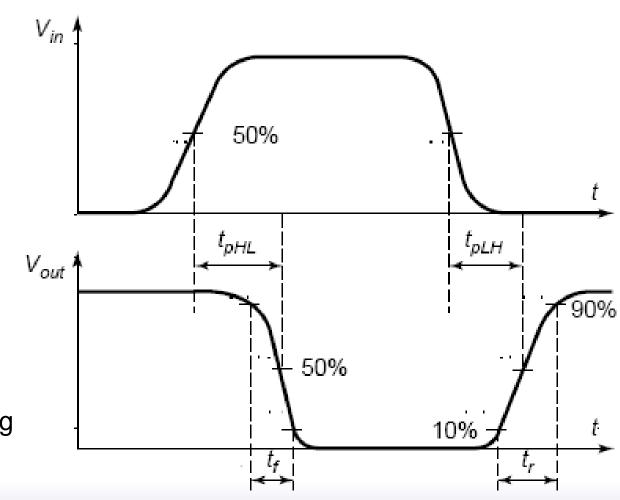
→
$$V_{IH} = \frac{1}{8} (5V_{DD} - 2V_T)$$
→ $V_{IL} = \frac{1}{8} (3V_{DD} + 2V_T)$

$$NM_H = NM_L \approx V_{DD} - V_{IH} = V_{IL} - 0 = \frac{1}{8}(3V_{DD} + 2V_T)$$

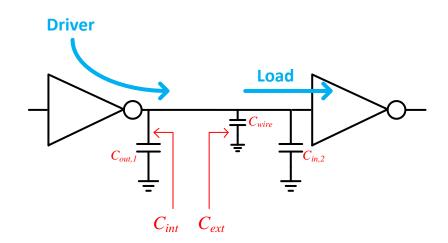

EE-429 Fundamentals of VLSI Design

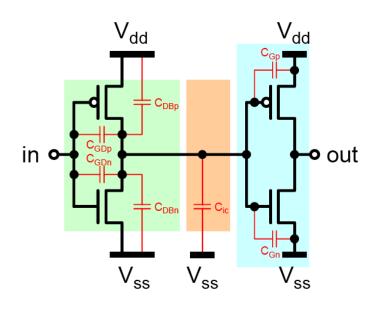
Inverter Dynamic Characteristics

Andreas Burg


Origin of Delay in Digital Circuits

- DC characteristic only indicates the stead-state behaviour
 - Capacitances are removed (replaced by an open circuit)
- For the dynamic behaviour (speed) of a circuit, capacitances play a major role
 - Time to charge/discharge the load (output capacitance) of a circuit determines the speed

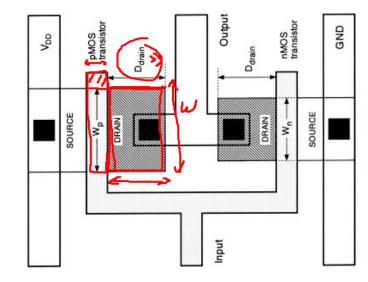

Delay Parameters

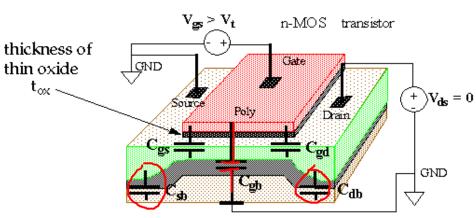

- Delays impact the speed of a digital circuit
- Propagation Delay:
 - Measures the delay from 50% transition point at the input to the 50% transition point at the output
 - Often different for rise-rise, rise-fall, fall-rise, fall-fall
 - Measured between 2 signals
- Rise/Fall Time:
 - Time for a transition from 10%-to-90% or 90%-to-10% of the full swing
 - Measured on one signal only

Parasitic Capacitances

- The capacitive load C_{load} on a gate results from three main origins
 - Intrinsic capacitance C_{INT} from the transistors of the driving gate
 - Wire capacitance from the connected routing wires
 - Input load of the connected (driven) gate(s)

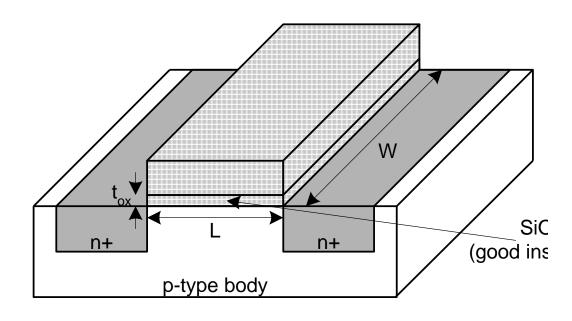
$$C_{load} = C_{out} + C_{wire} + N \cdot C_{in}$$

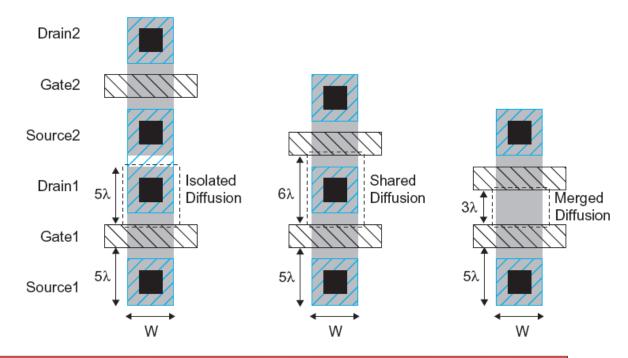

Extrinsic: C_{EXT}


Parasitic Capacitance of Transistors

Intrinsic capacitance and input load are caused by MOS transistors and

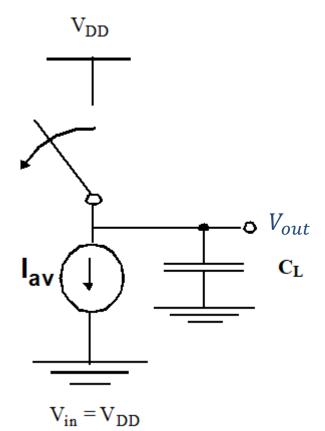
depend on transistor parameters

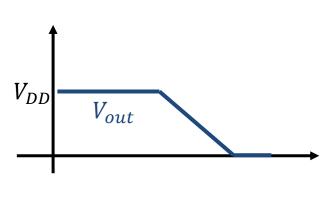

- Unfortunately, MOS capacitors are highly non-linear and depend on terminal voltages (non-constant)
- For better intuition, we use a simple constant capacitance model that only scales with transistor geometries
- Dominant capacitances:
 - Gate/Channel Capacitance: capacitance caused by the insulating oxide layer under the gate ~<u>W</u> · <u>L</u>
 - Junction Capacitance: pn-Junction capacitance between the diffusions and the substrate $\sim W \cdot D_{drain}$
- Larger transistors also bring larger load



Gate and Diffusion Capacitances

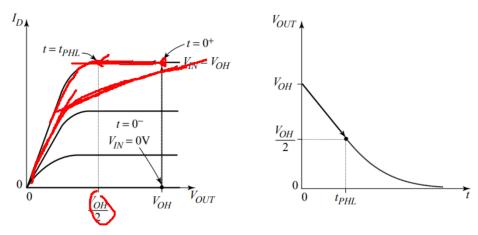
- Affects delay of previous gate
- Approximate channel as connected to source
- $C_{gs} = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL\sim W\cdot L$



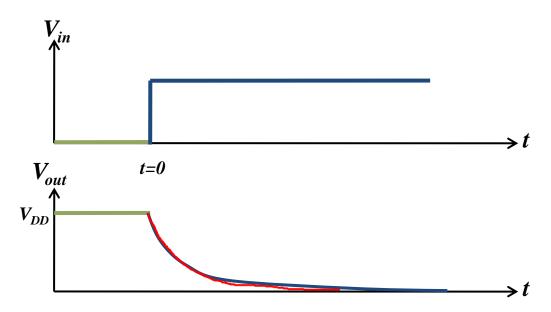

- Affects delay of same gate
- Depends on area $\sim W \cdot D_{drain}$ & perimeter
 - Use small diffusion nodes
 - Comparable to C_q for contacted diff
 - ½ C_q for uncontacted

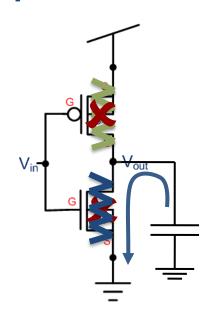
A Simple Delay Model: Current Source Model

- Simplest delay model considers transistor as a current source assuming it operates in saturation during the entire transition
 - Transition measured from V_{DD} to $V_{DD}/2$



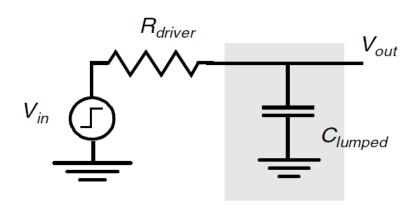
$$I_{DSn} = \frac{\beta}{2} (V_{in} - V_{Tn})^2$$


$$t_{HL} = \frac{C_L \cdot \frac{V_{DD}}{2}}{I_{DS}} = \frac{C_L \cdot V_{DD}}{\beta (V_{DD} - V_{Tn})^2}$$


The RC Delay Model

- Unfortunately, the current source model
 - Produces a rather inaccurate waveform
 - Becomes inaccurate with more sophisticated transistor models (e.g., long channel models)

Better model: replace driving transistor with an equivalent resistor



Delay of an RC Network

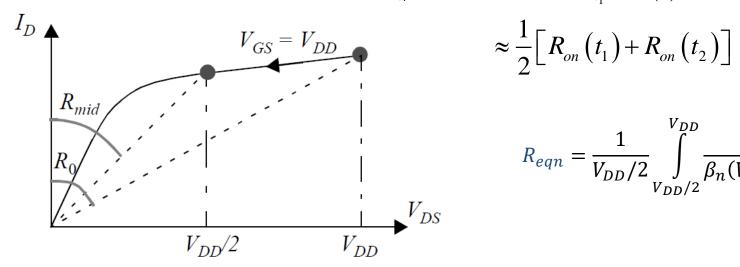
Delay can be derived from well-known equations from RC networks

$$V_{out}(\uparrow) = V_{DD} \left(1 - e^{-\frac{t}{RC}} \right)$$

$$V_{out}(\downarrow) = V_{DD}e^{-\frac{t}{RC}}$$

Time required to reach x%:

$$x = e^{-\frac{t}{RC}} \rightarrow t = -R \cdot C \cdot \ln x$$


50% rise/fall delay:

$$t_{50\%} = R \cdot C \cdot 0.69$$

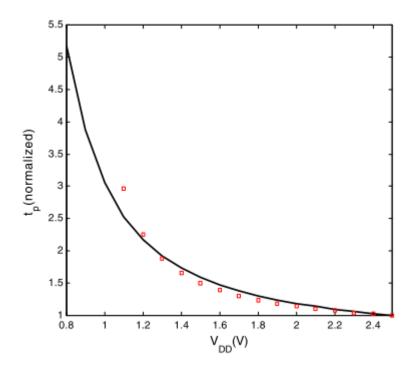
Computing an Equivalent Resistance

- On-resistance of the MOSFETS changes during transition
- Use an equivalent resistance reflecting a good average of the transition region
 - Start from onset of the transition: $V_{out} = V_{DD}$
 - Up to the midpoint: $V_M \approx V_{DD}/2$

$$R_{eq} = average_{t=t_{1}...t_{2}} \left(R_{on}(t) \right) = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} R_{on}(t) dt = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} \frac{V_{DS}(t)}{I_{DS}(t)} dt$$

$$\approx \frac{1}{2} \left[R_{on} \left(t_1 \right) + R_{on} \left(t_2 \right) \right]$$

$$R_{eqn} = \frac{1}{V_{DD}/2} \int_{V_{DD}/2}^{V_{DD}} \frac{2V_{DS}}{\beta_n (V_{DD} - V_T)^2} dV_{DS} \approx \frac{3}{2} \frac{V_{DD}}{\beta_n (V_{DD} - V_T)^2}$$



Propagation Delay with Equivalent Resistance

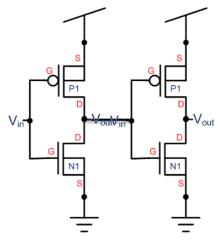
Analyze the parameters that affect the propagation delay:

$$t_{pHL} = 0.69 \cdot \frac{3}{2} \frac{V_{DD}}{\beta_n (V_{DD} - V_T)^2} C_{load} = 1.035 \frac{L}{W} \frac{1}{k_n} \frac{V_{DD}}{(V_{DD} - V_T)^2} C_{load}$$

- Accordingly, we can minimize the delay in the following ways:
 - Minimize C_{load}
 - Increase W/L typically by making W wider
 - Increase V_{DD}

Effect of Device Sizing

- To reduce propagation delay, it is tempting to increase the device width W
- At the same time we usually need $\beta_p > \beta_n$ to compensate for the mobility ratio of holes and electrons for a balanced inverter
 - This generally equates the propagation delay of High-to-Low and Low-to-High transitions.
 - However, this does not imply that this ratio yields the minimum overall propagation delay.
- For this, we will discuss two sizing parameters:
 - Beta Ratio ($\beta = \beta_p/\beta_n$): ratio between pMOS and nMOS drive strength
 - Upsizing Factor (S): ratio of the nMOS to a minimum-size nMOS



pMOS/nMOS Ratio

Consider the average propagation delay for rise and fall

$$t_{\text{pd}} = \frac{t_{\text{pLH}} + t_{\text{pHL}}}{2} = \frac{0.69C_{\text{load}}(R_{eqp} + R_{eqn})}{2}$$

- With $W_p = W_n$, we get an unbalanced inverter since $\mu_p < \mu_n$ which leads to
 - $V_M < V_{DD}/2$
 - $R_{eqp} > R_{eqn}$ and therefore $t_{pdr} > t_{pdf}$
- We usually enlarge the pMOS to get a "balanced" inverter setting $W_p = W_n \gamma$ with $\gamma \approx 2...4$ for $V_M = V_{DD}/2$
- It is worth asking: is the balanced inverter also the fastest?

Optimizing pMOS/nMOS Ratio for Minimum Delay

Driver

- Consider two identical cascaded CMOS inverters:
 - The load capacitance on the driving gate is:

$$C_{load} = C_{out1} + C_{in2} + C_{wire}$$

The input capacitance of the 2^{nd} gate C_{in2} and the output capacitance of the driving gate C_{out1} contain both pMOS and nMOS parasitics

$$C_{load} = \left(C_{dp1} + C_{dn1}\right) + \left(C_{gp2} + C_{gn2}\right) + C_{wire}$$

Gate and drain capacitances scale linear in the width of the transistors

$$C_{dn1} \sim W_n$$
 $C_{dp1} \sim W_p = \gamma W_n$

$$C_{gn1} \sim W_n \qquad C_{gp1} \sim W_p = \gamma W_n$$

$$C_{load} = (1 + \gamma)(C_{dn1} + C_{an2}) + C_{wire}$$

Optimizing pMOS/nMOS Ratio for Minimum Delay

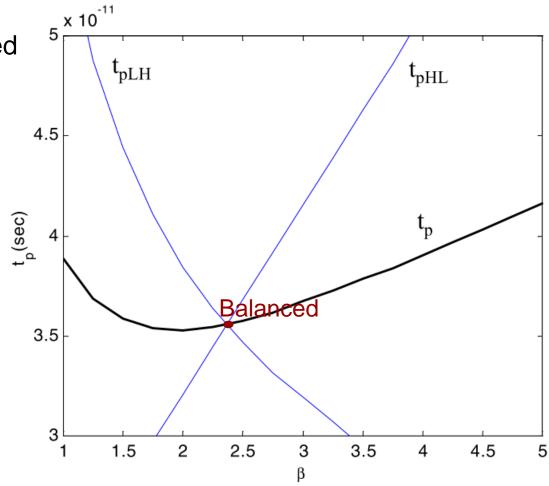
• Formulate the propagation delay, including the impact of γ on the parasitics and on the pMOS $R_{eqp}(W_n\gamma) = R_{eqp}(W_n)/\gamma$

$$t_{pd} = \frac{0.69C_{load}}{2} \left(R_{eqn} + R_{eqp} \right) = \frac{0.69}{2} \left[(1 + \gamma) \left(C_{dn1} + C_{gn2} \right) + C_{wire} \right] \left(R_{eqn} + \frac{R_{eqp}(W_n)}{\gamma} \right)$$

• Find γ to minimize the delay: $\frac{\partial t_{pd}}{\partial \gamma} = 0$

$$\gamma_{opt} = \sqrt{\frac{R_{eqp}(\mathbf{W_n})}{R_{eqn}} \left(1 + \frac{C_{wire}}{C_{dn1} + C_{gn2}}\right)} \Big|_{\substack{(C_{dn1} + C_{gn2}) > C_{wire}}} \rightarrow \sqrt{\frac{R_{eqp}}{R_{eqn}}}$$

• A typical optimum γ_{opt} is usually around 2



Optimizing pMOS/nMOS Ratio for Minimum Delay

Balanced inverter usually does not provide the shortest delay

Delay penalty compared to a delay-optimized inverter is often small.

Impact of Device Sizing on Delay

- Recap: pMOS/nMOS ratio can be optimized to minimize delay
 - The balanced inverter is not always optimal, but often close
- See how upsizing both pMOS and nMOS affects the delay?
- Consider a minimum size balanced (γ_0 for $V_M = V_{DD}/2$) inverter as reference
 - $W_n^0 = W_{min}, W_p^0 = \gamma_0 W_{min}, L_{n/p}^0 = L_{min}$

Common upsizing factor S

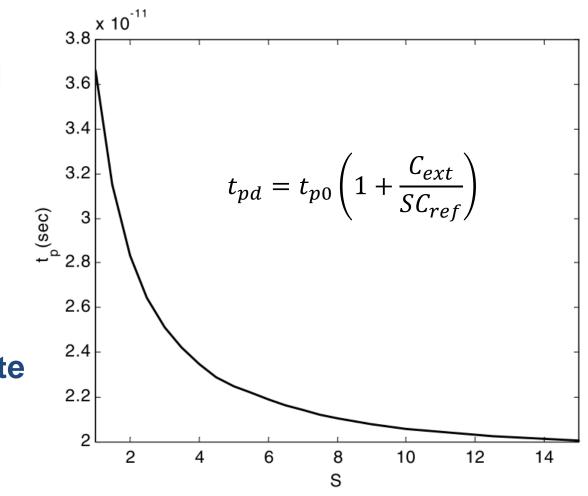
$$W_p = SW_p^0 \qquad W_n = SW_n^0$$

$$C_{int}(S) = S \cdot C_{int}^0$$

$$R_{eq}(S) = R_{eq}^0 / S$$

Impact of Device Sizing on Delay

- Start by writing the delay as a function of the intrinsic capacitance and the external capacitances (fanout and wiring)
 - Intrinsic capacitance: scales with S compared to that of a minimum size inverter
 - External capacitance: constant

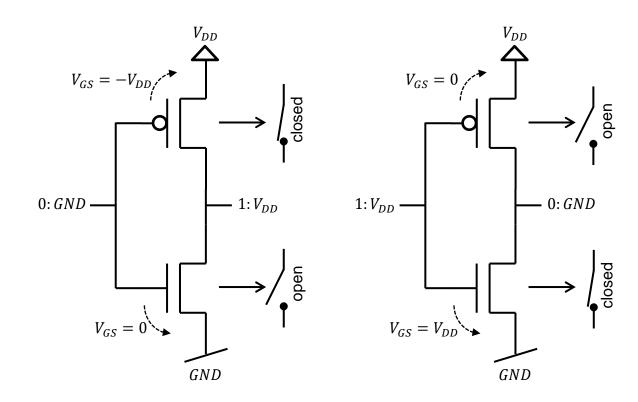

$$\begin{split} C_{load} &= C_{int}(S) + C_{ext} \\ t_{pd} &= 0.69 \cdot R_{eq}(S) \cdot C_{load} = 0.69 \cdot R_{eq}(S) \cdot \left[C_{int}(S) + C_{ext}\right] \\ &= 0.69 \cdot \frac{R_{eq}^0}{S} \left[S \cdot C_{int}^0 + C_{ext}\right] \\ &= \underbrace{0.69 \cdot R_{eq}^0 \cdot C_{int}^0}_{t_{po}} \cdot \left(1 + \frac{C_{ext}}{S \cdot C_{int}^0}\right) = t_{po} \left(1 + \frac{C_{ext}}{S \cdot C_{ref}}\right) \end{split}$$

Impact of Device Sizing on Delay

- The intrinsic delay of an inverter (tp0) is independent of the sizing of the gate and is purely determined by technology.
- When no load is present, an increase in the drive of the gate is totally offset by the increased capacitance.
- Upsizing becomes relevant once the external capacitance starts to dominate

EE-429 Fundamentals of VLSI Design

CMOS Power Consumption

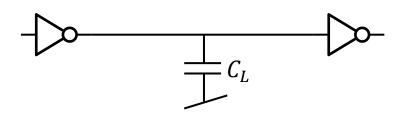

Andreas Burg, Alexandre Levisse

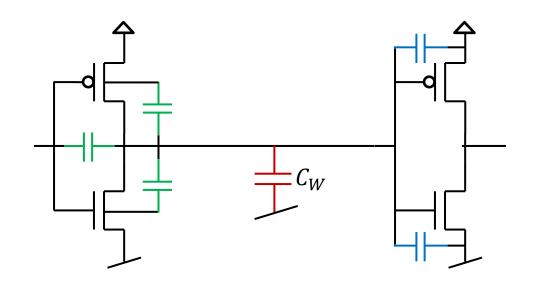
CMOS: Two Types of Power Consumption

- CMOS circuit power/energy consumption comes in two forms:
 - Dynamic energy/power consumption: depends on activity
 - Charging and discharging of capacitors
 - Cross (short-circuit) currents while pMOS and nMOS are on during switching
 - Static power consumption: independent from activity
 - Constant biasing currents (intentional)
 - Various types of leakage currents (parasitic)
 - Contention currents when driving opposite directions (mostly accidents)

Basic Inverter (Unloaded)

- PMOS performs pull-up to V_{DD} , NMOS performs pull-down to GND
 - Complementary gate
 - Static (steady state): output connected to either V_{DD} or GND


• Ideally, no current path from V_{DD} to GND: ideally, no static power consumption

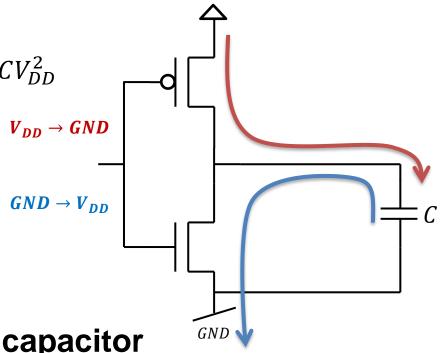


CMOS Gates With Capacitive Load

- Every CMOS gate sees a capacitive load from various sources
 - Intrinsic MOS transistor capacitors (driver)
 - Extrinsig (fanout) MOS transistor capacitances
 - Interconnect capacitance
- Various load capacitances are merged into a single load capacitor C_L

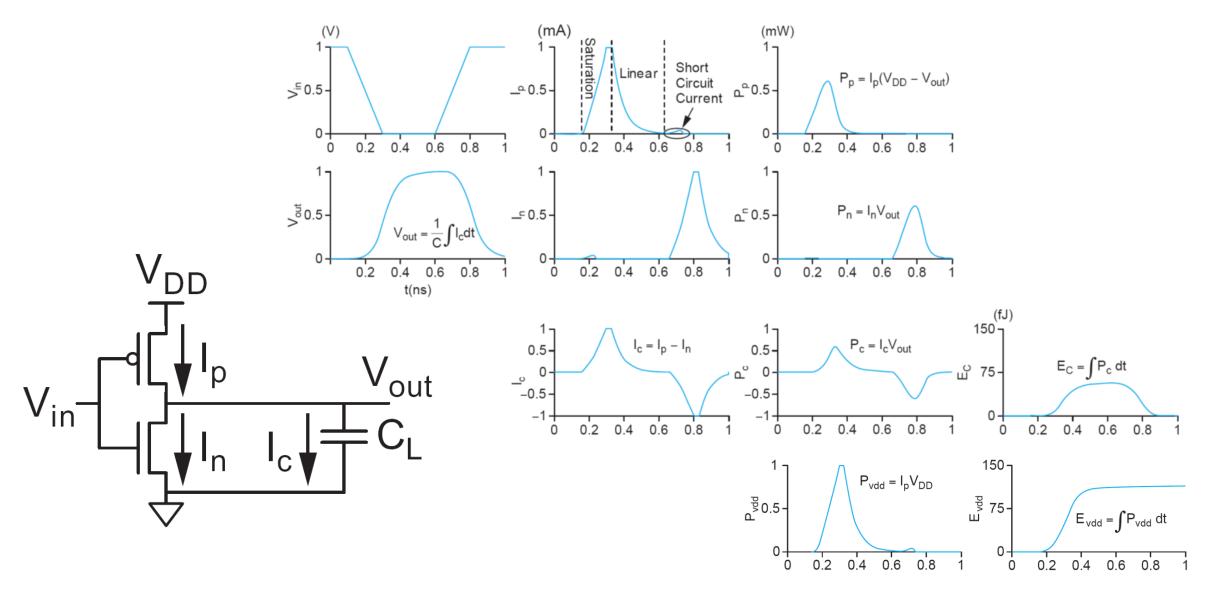
Wider transistors increase the gain factor (drive) but also increase the load (capacitance)

Energy of an Inverter with Capacitive Load


- Switching the output from 0 to 1 charges the capacitor
 - Energy delivered by the power supply

$$E_{VDD} = \int_0^\infty I(t) V_{DD} dt = \int_0^\infty C \frac{dV}{dt} V_{DD} dt = C V_{DD} \int_0^{V_{DD}} dV = C V_{DD}^2$$

■ Once the output transition is complete, the energy stored $V_{DD} \rightarrow GND$ on the capacitor is given by


$$E_C = \frac{1}{2} C V_{DD}^2$$

Energy difference is dissipated to heat in pMOS

- Switching the output from 1 to 0 discharges the capacitor
 - Energy on capacitor is dissipated to heat in nMOS
- NOTE: energy consumption is independent of the waveform

Active Energy Consumption Waveforms

Active Power/Energy Consumption

• Energy consumed during one pair of transitions $E_{\downarrow\uparrow}$:

$$E_{\downarrow\uparrow} = (CV_{dd})V_{dd} = CV_{dd}^2$$

Energy/transition

$$E_t = CV_{dd}^2/2$$

- Average power consumption: energy per time T
 - Depends on the switching frequency f_{sw} of the output

$$P_{SW} = \frac{E_t}{T} = \frac{2f_{SW}TCV_{dd}^2/2}{T} = f_{SW}CV_{dd}^2$$

- Activity factor α : average number of transitions per cycle
 - Relates activity of a node to the clock frequency f_{clk}
 - Energy/transition * average-transition/cycle (α) * clock frequency (f_{clk})

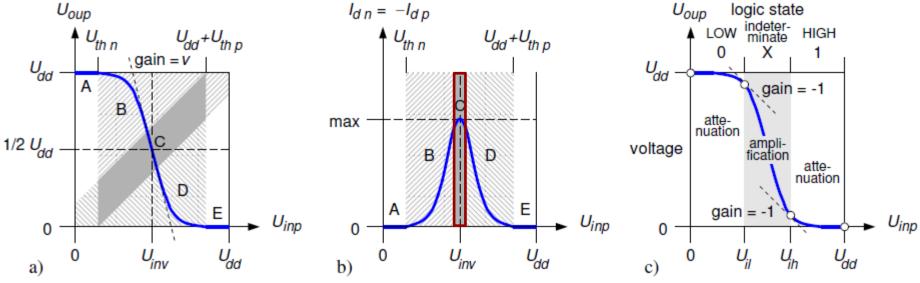
$$P = \frac{\alpha}{2} C V_{dd}^2 f_{clk}$$

Short Circuit Currents

- CMOS gates have a large, but finite gain in the transition region
 - Cross-over currents lead to power consumption during transients

PROBLEMATIC

range	applies when	n-channel ▼	p-channel ▲
Α	$0 \leq U_{inp} \leq U_{th n}$	subthreshold	linear
В	$U_{th n} < U_{inp} < U_{inv}$	saturation	linear
С	$U_{inp} pprox U_{inv}$	saturation	saturation
D	$U_{inv} < U_{inp} < U_{dd} + U_{thp}$	linear	saturation
E	$U_{dd} + U_{thp} \leq U_{inp} \leq U_{dd}$	linear	subthreshold

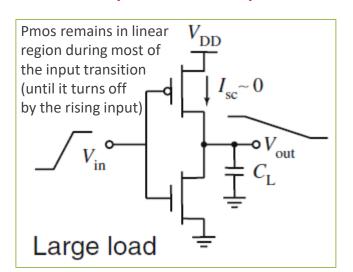

 V_{inp} – V_{oup}

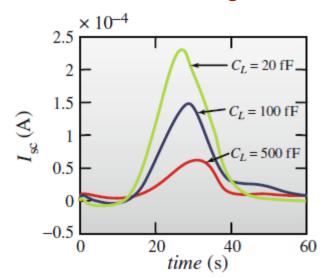
Dominant during transition region:

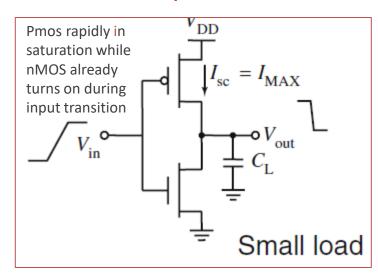
rapid opening of the driver for the new level

 Note: short-circuit power is irrelevant if

$$V_T < \frac{V_{DD}}{2}$$

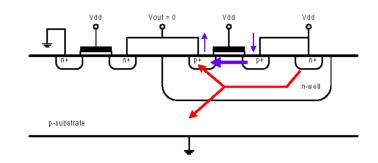

(a) Transfer characteristic (b) Crossover current (c) Logic states

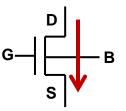


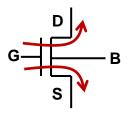


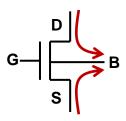
Minimizing Short-Circuit Currents

- Obvious approach: reduce input transition time
 - However, short input transitions require stronger driver => increase transition time (and load) on the driver of the driver
- Control short circuit current by controlling the output slope:
 - Fast input slow output: driving device mostly in linear regime => good for low power
 - Slow input fast output: driving device remains long in saturation => bad for low power



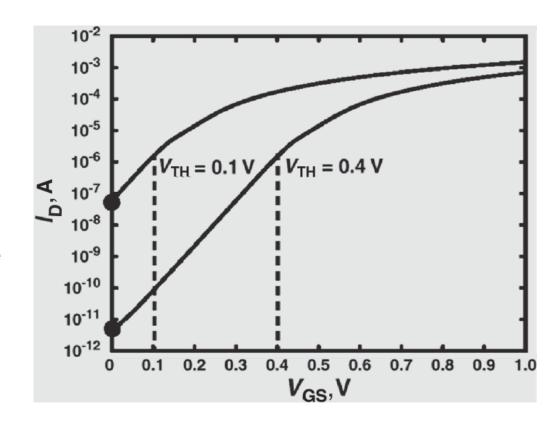

Best compromise: balance input slope and output slope




Leakage Power

- Transistors leak currents even when in off-state
- Sources for leakage
 - Sub-threshold leakage
 - Dominant component in most circuits
 - Gate tunneling
 - Generally low, even in modern technologies due to high-k gate dielectrics
 - Decreases very rapidly with decreasing V_{dd}
 - Junction current
 - Generally low
 - Decreases very rapidly with decreasing V_{dd}

Leakage Power

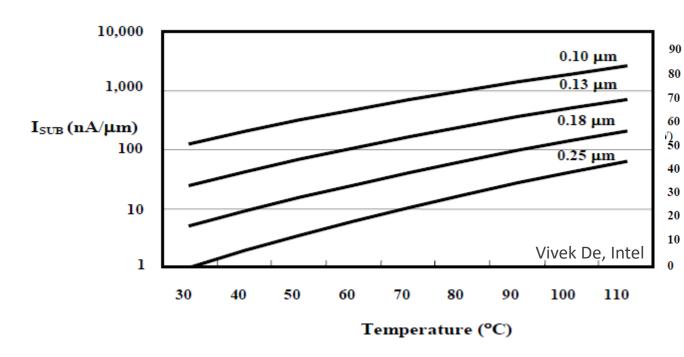

Long channel deices (>130nm)

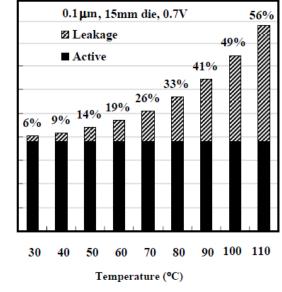
$$I_{DS} = I_0 e^{\frac{V_{GS} - V_T}{v_t n}}$$

 v_t : thermal voltage

n: constant

- I_{DS} mostly independent from Drain-Source voltage
- Leakage current depends strongly on $V_{GS} V_T$
 - Lower threshold voltage increases leakage
 - Higher threshold voltage decreases leakage
 - Subthreshold slope: slope of the logarithmic leakage current for $V_{GS}-V_T<0$



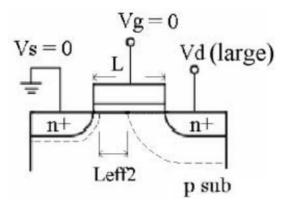

Leakage Power over Temperature

• Sub-threshold current depends exponentially on thermal voltage $v_t = kT/q$

$$I_{DS} = I_0 e^{\frac{V_{GS} - V_{th}}{kTn/q}}$$

• Exponential sub-threshold leakage (I_{DS}) increase with temperature

Example: 0.7V, 100nm process, 15mm2 die



Leakage Power (DIBL)

- Impact of technology scaling on sub-threshold leakage (<130nm)
 - Drain-Induced Barrier Lowering (DIBL): V_{DS} modulates threshold voltage
 - I_{DS} becomes a function of V_{DS}

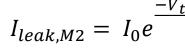
$$I_{DS} = I_0 e^{\frac{V_{GS} - V_{th} + \lambda_{DS} V_{DS}}{v_t n}}$$

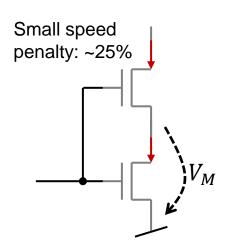
 λ_{DS} : DIBL coefficient v_t : thermal voltage

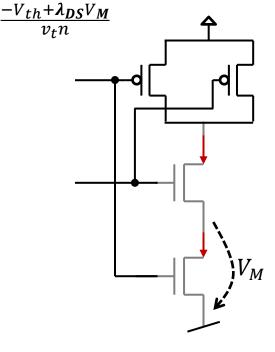
n : constant

Impact on inverter leakage: no longer supply independent

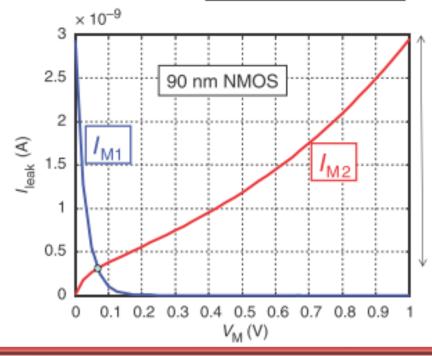
$$I_{leak} = I_0 e^{\frac{-V_{th} + \lambda_{DS} V_{DD}}{v_t n}} \leftarrow \text{Reducing voltage reduces leakage}$$




Leakage in Transistor Stacks (Short Channel)


Stacking occurs

- In many logic gates (> 1 input)
- When introduced intentionally for leakage reduction


$$I_{leak,M1} = I_0 e^{\frac{-V_M - V_{th} + \lambda_{DS}(V_{dd} - V_M)}{v_t n}}$$

Leakage Reduction			
2 NMOS	9		
3 NMOS	17		
4 NMOS	24		
2 PMOS	8		
3 PMOS	12		
4 PMOS	16		

