EE-429 Fundamentals of VLSI Design

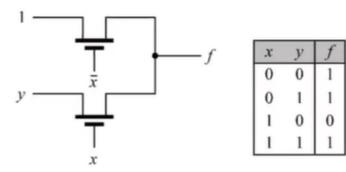
Alternative Logic Styles

Andreas Burg

Different Logic Styles

Static CMOS is the most popular logic style due to its

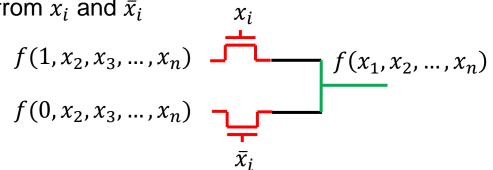
- Robustness against noise (good noise margins)
- Robust against variations in transistor parameters (un-ratioed logic)
- Almost-zero static power consumption
- Ability to easily cascade multiple logic stages of any type of gates
- Ease of use and very good suitability for abstracting delay models (good for EDA)


Other styles have been proposed to improve some short-comings of CMOS

- Limited fanin (number of inputs to a single-stage gate)
- Inability to describe certain Boolean functions in a single logic stage
- Notable area overhead due to the need for complementary PMOS and NMOS
- Imbalance between PMOS and NMOS stage (differences in mobility)

Pass-Transistor Logic (PTL)

- CMOS always drives gate-output from the rails
 - Good for output noise margins
 - Less obvious when outputs are trivial functions of the inputs (e.g., MUX) or for some basic non-unate gates such as XORs
- Solution: drive output from one of the inputs using switches made from NMOS or PMOS transistors
- Systematic construction from Boolean equations using Shannon expansion

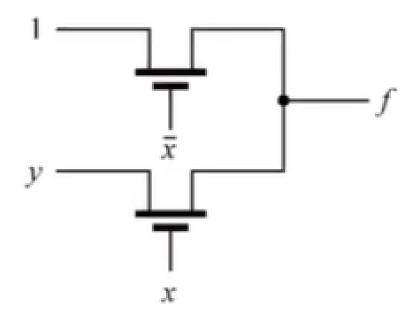

PTL: Construction (N-MOS)

Based on the Shannon Expansion of a Boolean equation

Start from a Boolean equation of the form:

$$Z = f(x_1, x_2, \dots, x_n)$$

- Co-factor expansion: decompose into two equations, one conditioned (AND) on x_1 and one on \bar{x}_1 $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$
- Continue as above, now expanding $f(1/0, x_2, x_3, ..., x_n)$ and so forth ...
- Translate into N-MOS based logic:
 - Interpret the product (·) as a pass-transistor N-MOS that passes the logic value of the RHS term based on x_i or \bar{x}_i (term is passed if x_i or \bar{x}_i are 1, otherwise not)
 - Interpret a sum (·) as "connecting" two product-term results from x_i and \bar{x}_i

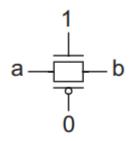

PTL: Construction (N-MOS) Example

EXAMPLE: NAND-2 gate

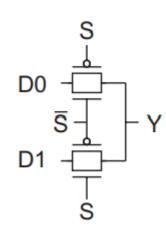
$$f(x,y) = \bar{x} + x \cdot y =$$

$$\bar{x} \cdot (1 + 0 \cdot y) + x \cdot (0 + 1 \cdot y) =$$

$$\bar{x} \cdot (1) + x \cdot (y)$$

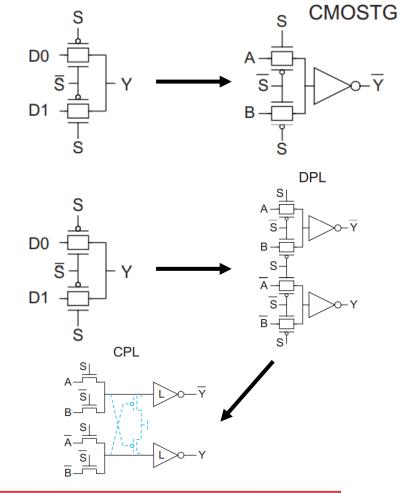

х	y	f
0	0	1
0	1	1
1	0	0
1	1	1

Pass-Transistor Logic

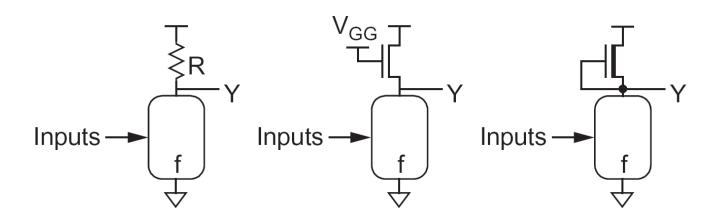

Problem: VT drop as NMOS and PMOS lack the ability to drive a strong '1' and a strong '0' respectively

$$V_{DD}$$
 V_{DD}
 $V_{S} = |V_{tp}|$
 V_{DD}
 $V_{S} = |V_{tp}|$
 V_{DD}
 $V_{S} = |V_{tp}|$

 Solution: drive output from one of the inputs using switches made from Transmission gates instead of NMOS or PMOS transistors


- Example 2-input MUX
 - Doubles the number of transistors
 - Adds PMOS to an otherwise NMOS-only circuit
 - Need for inverted inputs

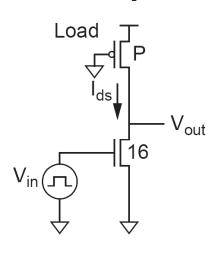
Pass-Transistor Logic

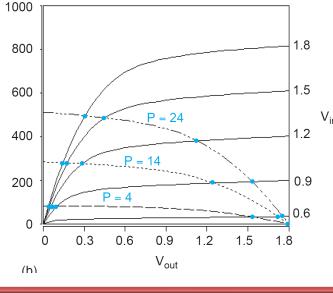

Systematic construction from Boolean equations using Shannon expansion

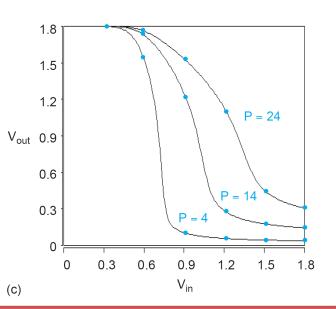
- Many disadvantages: with various solutions
 - Logic output can depend directly on the input: signal level degrades gradually across multiple logic stage Solution CMOSTG: regularly buffer outputs with CMOS inverters
 - Typically requires inputs and also inverted inputs
 Solution (DPL): generate both outputs and inverted outputs
 - Large overhead from transmission gates
 Solution (CPL): accept a VT drop in one branch of the differential (complementary) output

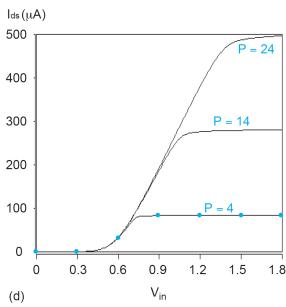
Ratioed Logic Gates

- CMOS gates "waste" 50% of the transistors to cut one of the supplies when the
 other supply rail is connected to the output
- Solution: replace pull-up or pull-down switch with constant "resistance" that is
 - Sufficiently strong to pull the output when it is not pulled actively to the other side
 - Sufficiently weak to marginally impact the output when it is actively pulled to the other side
- Especially attractive to remove the larger PMOS

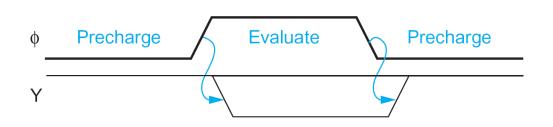


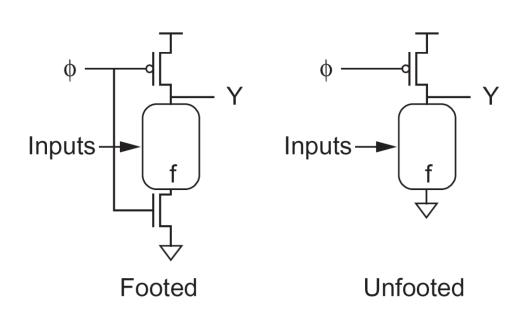

Pseudo NMOS Logic


Replaces PMOS network with an always weakly-on biased PMOS


- Constant power consumption due to short-circuit when output is low
- Fall time determined by sizing of the NMOS network
- Rise time determined by sizing of the always-on PMOS
 - Determines static power consumption
 - Strong PMOS (short rise time) degrades output low-level noise margin

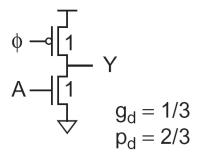
Example: inverter

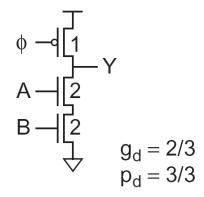




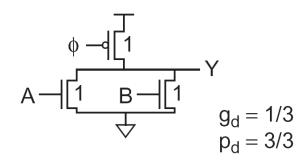
Dynamic Logic

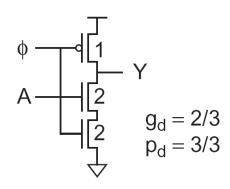
- Drawback of Ratioed Logic: short-circuit current (for one of the outputs)
 - Limits the drive strength of the always-on (pull-up or pull-down) device
- Solution: operation in two phases separates pull-up from pull-down
 - Phase 1 pre-charge (pre-discharge): always pull-up (pull-down)
 (optional footer prevents short-circuit during precharge)
 - Phase 2 evaluate output: conditionally pull-down (pull-up) depending on inputs

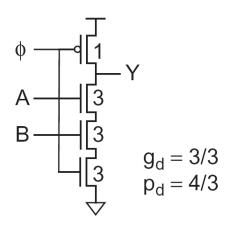


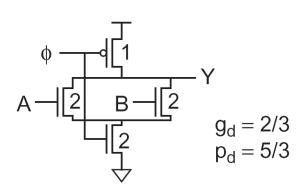

Dynamic Logic Examples

Inverter


Unfooted


NAND2




NOR2

Footed

