
Digital Design Labs and Project

Dr. Alexandre Levisse

 École polytechnique fédérale de Lausanne

General Information

- Teaching assistants will be available for help and support.
 - Ask for help when you need some, but be mindful as you are a lot.
 - If the session is intense (i.e., TAs being extremely busy), and your question is not urgent, prioritize the forum.
- Use the forum!
 - USE IT
 - Don't wait for the last week(end) to use it!

Labs on EDA EE-490b

Deadlines management

אפאשווחום בפעוא

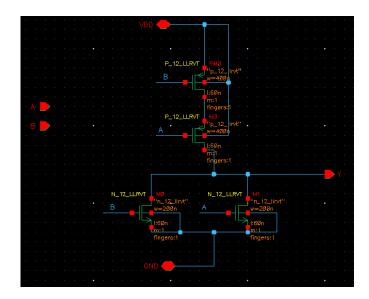
- You will always have to deal with deadlines in your life
- Deadline management is not innate

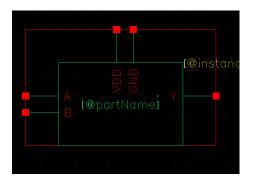
8 tips to meet your deadlines

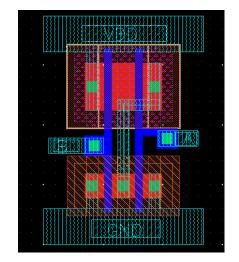
- 1 Communicate a clear deadline
- 2 Break down the project
- 3 Have a start and completion date for each step
- 4 Block off time on your calendar
 - 5 Focus on action (vs. motion)
 - 6 Communicate progress with your team
- 7 —— Add a buffer time
- 8 Don't overcommit

8 Tips to Meet Deadlines Without Over-Stressing Yourself

Here are 8 best practices to set realistic deadlines and meet them... without feeling stressed or overwhelmed.

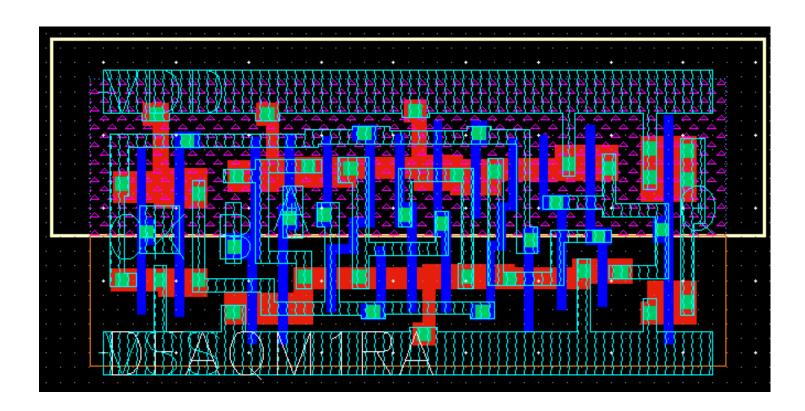

EPFL Outline


- What did you do so far?
- Why digital design ?
- How ?
- What about the lab?



What did you do so far?

- Design a small logic block
- E.g. of a NOR2 Gate



What did you do so far?

- Size transistors
- Assemble logic gates together
- Make a structured and hierarchical design
- Make a floorplan
- Route signals
- Manage power lines
- Manage well biasing
- Your design:
 - Around 700 MOS.
 - Standard cell-based design
 - No variability analysis
 - No temperature analysis
 - No power optimization

Labs on EDA EE-490b

E.g. of an optimized layout

What did you do so far?

- It took you a lot of efforts
- Reason 1 : This was most likely your first design
- Reason 2 : Full-Custom design takes time and effort
- You need a good reason to do a Full-Custom design
- One reason being: "I have no other way to design these"
 - Voltage management
 - Converters (ADCs/DACs)
 - Frequency generators
 - Memories
 - Radio Frequency
 - Specific digital IPs

Labs on EDA EE-490b

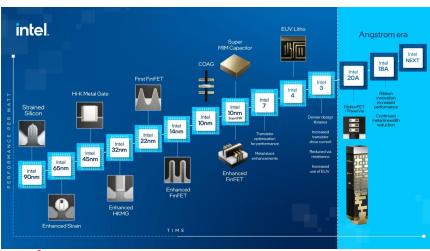
You want to automate everything when you can do so. How to automate standard cell based design?

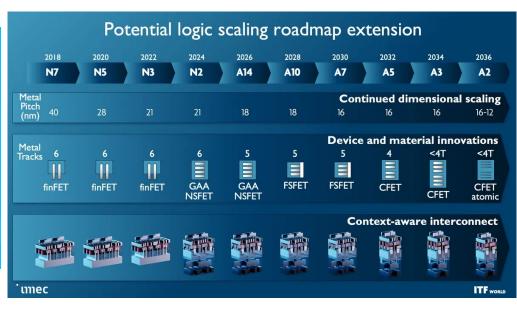
EPFL

Why Digital Design?

Moore's Law: The number of transistors on microchips doubles every two years Our World

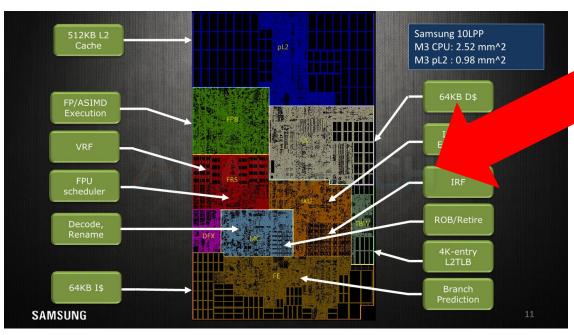
in Data


Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

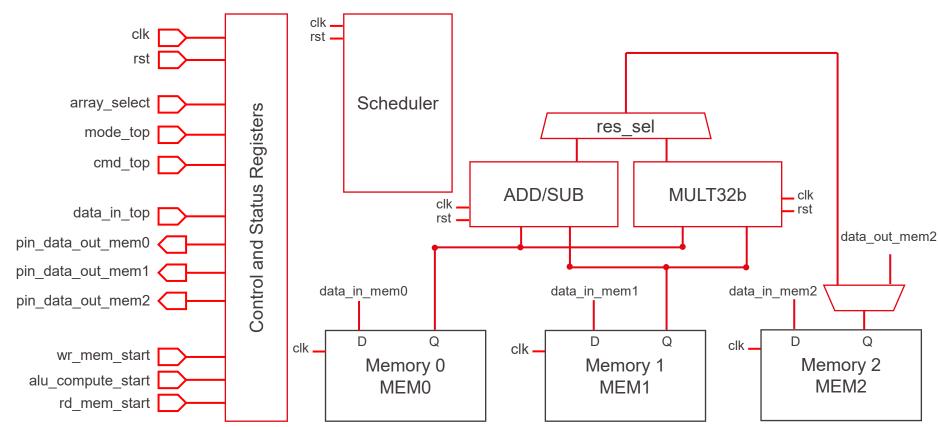


Alexandre Levisse

Why Digital Design?


Scaling is not going to stop

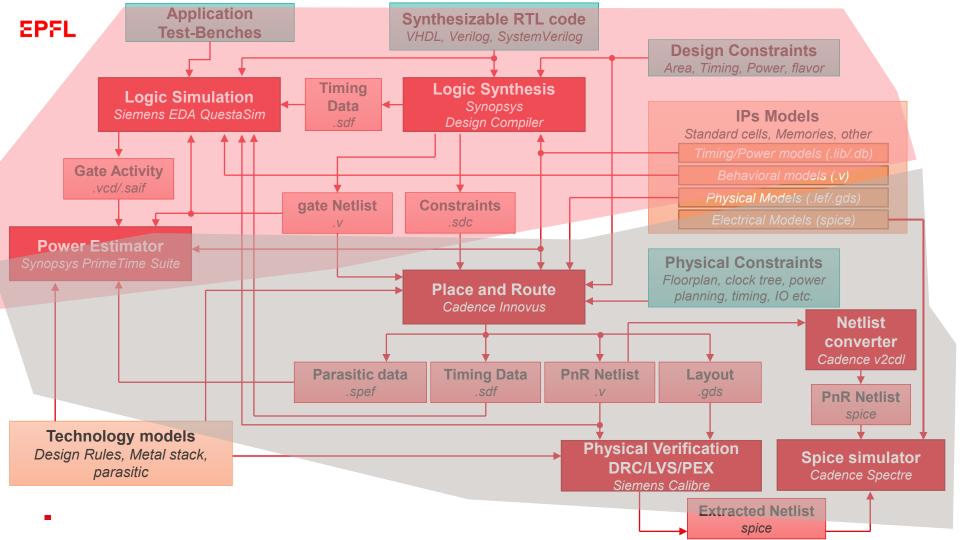
Alexandre Levisse

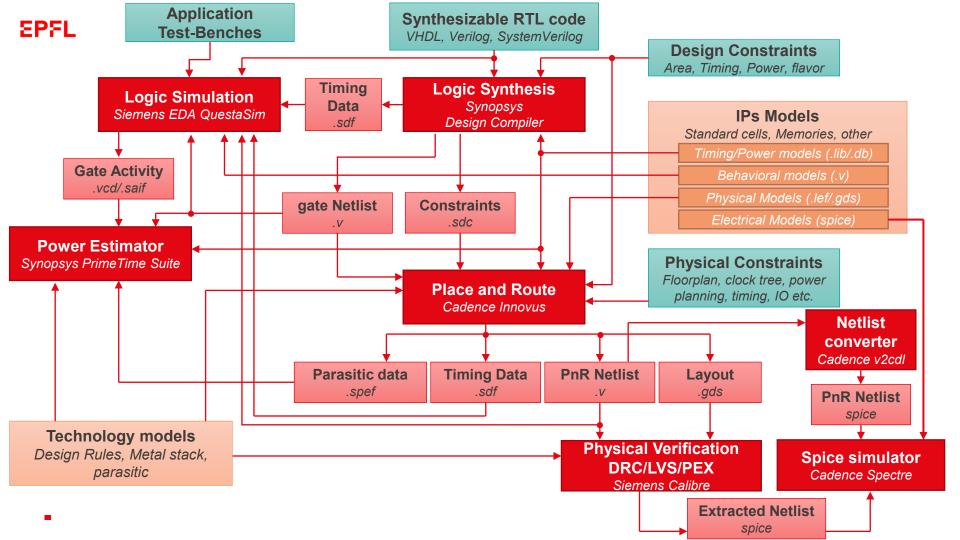

Hierarchical designs

EPFL

Design Example for this lab

How do you do that?


 Start by writing some code describing the circuit you are trying to design


```
library IEEE;
      use IEEE.STD LOGIC 1164.ALL;
      use ieee.numeric std.all;
     use work.alu32 pkg.all;
     entity mult 32b is
         Port ( op1 : in STD LOGIC VECTOR (31 downto 0);
                 op2 : in STD LOGIC VECTOR (31 downto 0);
                 res : out STD LOGIC VECTOR (63 downto 0);
                 done : out STD LOGIC;
                 cmd : in STD LOGIC VECTOR (1 downto 0);
                 clk : in STD LOGIC:
                 rst : in STD LOGIC:
                 start : in STD LOGIC) :
      end mult 32b;
     architecture rtl of mult 32b is
40
      signal reg op1 : std logic vector (31 downto 0);
41
      signal reg op2 : std logic vector (31 downto 0);
42
43
    ⊟begin
44
        INPUT REGS : process (rst, clk)
          begin
47
              if rst = '0' then
48
                  if rising edge(clk) then
49
                      -- do stuff
                      reg op1 <= op1;
                      reg op2 <= op2;
                  end if:
54
                  -- reset signals
                  reg op1 <= x"000000000";
                  reg op2 <= x"00000000";
              end if;
          end process;
          CLOCKED MULTIPLIER : process (rst, clk)
          begin
              if rst = '0' then
64
                  if rising edge(clk) then
                      if start = '1' then
                          case cmd is
                                  res <= std logic vector(unsigned(reg op1) * unsigned(reg op2));
                                  done <= '1':
                                  res <= (others => '0'):
                                  done <= '0':
                          end case:
74
```

How do you do that?

 Then write some stimulus to test that your circuit behaves the way it is supposed to behave

```
wait for 2.5*T:
104
          wait for 20.5 * T:
          global en <= '1';
106
       -- writing 16 words to array 0
108
          wait for 5*T;
109
          array select <= ARRAY SEL0;
          data in top <= X"0000000000000000;
          wait for T:
          wr mem start <= '1';
          wait for 2*T:
114
          wr mem start <= '0';
          data in top <= X"00000000000000F"; -- add
116
          wait for 2*T;
          data in top
                        <= X"000000000000000"; -- mult
          wait for 2*T:
119
          data in top <= X"0000FFFF00000000"; -- add
          wait for 2*T:
          data in top <= X"00000000FFFFFFFF"; -- sub
          wait for 2*T;
          data in top
                       <= X"00000000FFFFFFFF": --noop
124
          wait for 2*T;
          data in top <= X"00000000FFFFFFFF"; --mult
126
          wait for 2*T;
          data in top <= X"0000000000000000F";</pre>
          wait for 2*T:
129
          data in top <= X"00000000000000FF";
          wait for 2*T:
          data in top
                       <= X"000000000000FFFF";
          wait for 2*T;
          data in top
                       <= X"0000000000FFFFFF";
134
          wait for 2*T;
          data in top <= X"000000000FFFFFFF";
136
          wait for 2*T;
          data in top <= X"00000000FFFFFFFF;
          wait for 2*T;
139
          data in top <= X"00000000FFFFFFFF;</pre>
140
          wait for 2*T;
141
          data in top
                      <= X"00000000FFFFFFFF";
142
             wait for 2*T:
143
                      <= X"00000000FFFFFFFF;
          data in top
144
             wait for 2*T:
145
          data in top <= X"00000000000000000";
146
          wait for 30*T:
1 47
```


8

Report 2 : Back End

December 30th 8PM

Scricatic			9 9
Session No	Date	Content	Assignments
1	21 Nov	Introduction, Logic Simulation,	Aley
2	28 Nov	Logic Synthesis,	
3	29 Nov	Power Analysis, Design Space Exploration	
4	6 Dec		Report 1 : Front End December 9 th 8PM

3 5 12 Dec 6 13 Dec 19 Dec

20 Dec

Memory Compilers
Place and Route
Power Analysis
Post PnR verification
Design Space Exploration

EPFL

Problems?

• Step 1 :

- Make sure you did follow the tutorial correctly
- Read the errors and warnings, and try to understand them
- Try to understand the question you ask

You

• Step 2 :

- Clearly identify the problem
- Contextualize it
- Call a TA

.

Things to be careful about

lexalidie Levis

- Design Space Explorations can be long
- Put a target on being done with the first document by the end of session 3 or 4
- DO NOT GET LATE!

- Follow Carefully the tutorial and everything should go well
- There are tons of information in these documents. Consider these as baseline reference documents for when you need to design something in the future.
- This presentation covers most of the points from section II *still read it anyway at home!* It gives a good overview of the labs and context.

GRADING!

lexandre Levis

- Answer the questions along the document and deliver a pdf document which, for each question along the document answers.
- The grading will be based on the answers to the questions.
 - Design space exploration parts reward with more points
- Some questions are "easy" to answer. Following the document and making the job will allow you to answer them.
- Some more advanced questions are scattered along the document.

- Careful! Some sections are longer!
 - Front end : Section 8 is long
 - · Back end : Section 8 is long

GRADING!

Nexandre Levis

- All the Deadlines are HARD, there will be no additional delay
 - A late project = 0
- All the report submission moodle pages will be opened from the beginning of the project
- Front end : December 9th 8pm
- Back end : December 30th 8pm

 École polytechnique fédérale de Lausanne