
1/23

EE429 2024/2024: Full custom labs 1 : Schematic

SEL September 2024

PRACTICAL LABORATORY SESSION No. 1
Schematic Edition

1. OBJECTIVES
The goal of this labs is to learn how full custom design is being done in the industry. This first
practical session is to get familiar with the working environment and software that you will use
throughout the next few weeks. After setting up the Design Framework, you will perform the
schematic design and learn the basics of the Virtuoso software from Cadence.
Note that this document contains important information that will save you a lot of trouble during
the remaining exercise sessions. It is in your best interest to read it carefully, from start to finish,
even though the tasks we ask you to perform may sometimes seem very simple.

2. INTRODUCTION TO THE DESIGN ENVIRONMENT
The software used for these practical exercises is referred to as Cadence Virtuoso Design
Environment. It consists of a number of tools integrated into a common environment:

• The Command Interpreter Window (CIW) is the main window that provides an access
to the variety of tools through menu commands, or through direct entering of commands
in the scripting language called SKILL. All the important information, warnings and error
messages are reported within this window.

• The Library Manager is the tool that manages your design data such as circuit schematics,
layouts, simulation test benches etc.

• Virtuoso is the platform for creating and simulating your designs. It consists of the
Schematic Editor, the Layout Editor, the Analog Design Environment (ADE) which
is the graphical front-end for the circuit simulator, and many other tools.

• Calibre is the suite for full-custom layout verification and parasitics extraction. It allows
the comparison of the layout with the schematic using the LVS (Layout vs. Schematic)
tool, the verification of your layout versus the foundry’s design rules (DRC - Design Rules
Check), and the extraction of a detailed schematic containing parasitics (from the layout)
for accurate post-layout simulation (PEX - Parasitics EXtraction tool).

SECTION OF ELECTRICAL ENGINEERING

EPFL STI – SEL

ELG

Station nº 11

CH-1015 Lausanne

Téléphone :

Fax :

E-mail :

Site web :

+4121 693 1346

alexandre.levisse@epfl.ch

https://sti.epfl.ch/fr/sel/

mailto:alexandre.levisse@epfl.ch
https://sti.epfl.ch/fr/sel/

2/23

3. CONFIGURING AND RUNNING THE SOFTWARE

3.1. CONNECTING TO THE SERVERS
In this labs, design and simulation tasks are being performed from specific server configured for
circuit design tools. These tools require specific configuration which the EPFL EDA team had
setup for you.

 Generally, when working in a company a dedicated team will do this step for you
(though you are expected to understand and know how to use and debug a linux
environment1).

3.1.1. CONNECT TO THE VDI WORKSTATION
From the physical workstation login with your gaspar credentials and connect to STI-EDA-LABS-
RTX. The computer should connect to a linux (ubuntu) environment. If asked, connect with your
gaspar credentials again.

 Gaspar credentials are mandatory to access the EPFL IT infrastructure. Without these,
there is no much the teachers can do. So, make sure you have them with you. Be careful
that the keyboard may not be the one you are used to. The computer room use a swiss
keyboard qwertz.

3.1.2. CONNECT TO THE LABS EDA SERVERS
Open a terminal. Here are several ways to do so :

- Click on the little squares at the bottom left of the screen and click on terminal.

- Right click in the desktop > open in terminal will open a terminal in the desktop folder.

Then simply run the command >cd to reach back your home directory.
- The keyboard shortcut CTRL+ALT+T also opens a terminal

Run the following command : > ssh -X edauserN@selsrv1.epfl.ch or selsrv2 where
N is your edauser number.

1 https://www.guru99.com/linux-commands-cheat-sheet.html

https://www.guru99.com/linux-commands-cheat-sheet.html

3/23

For example, if your edauser account number is 300, you will run the command ssh -X
edauser300@selsrv1.epfl.ch
You will be asked for a password, here is the default password for the edauser accounts
24user_eda! (remember that the keyboard is qwertz – just saying)

The two servers selsrv1 and selsrv2 are identical and you can connect to any of these two machines
without problems. To balance the workload on the servers.

- If your edauser number is odd, use selsrv1
- If your edauser number is even, use selsrv2

You will use your edauser account for other classes, so organize it !

3.1.3. UPDATE YOUR PASSWORD
The edauser accounts come with a default password. We strongly advise that you update it (do it
– please). This way, you make sure that no one delete your works, and that you are the only one
using this account.
[edauserX@selsrv1 ~]$ yppasswd
Changing NIS account information for edauserX on selsrv1.epfl.ch.
Please enter old password:
Changing NIS password for edauserX on selsrv1.epfl.ch.
Please enter new password:
Please retype new password:
The NIS password has been changed on selsrv1.epfl.ch.

3.2. SETTING UP YOUR WORKING ENVIRONMENT
Start by creating a folder called EDALABS in your home directory. And go in it.
> cd

> mkdir EDALABS

> cd EDALABS

You can check your position in the hierarchy with pwd command. Run it and check where you
are.

Each project is held in a separate directory which contains different configuration files and design
data. Since many tools use configuration files that are stored in the current directory, the project
directory actually defines a working environment. The file "edabd2021_fullcust.tar.gz", contains
the full and already configured working directory. Here we will only extract it and you will use
the same directory throughout the laboratory sessions. Please copy the directory as shown
below. Please note that you can also use selsrv2 server.

 Extract the directory for your project.
[1]edauser0@selsrv1-edauser0>

tar -xvf /softs/classroom/tutorials/2024-2025/EE429/EE429_FULLCUSTOM.tar.gz

[2] edauser0@selsrv1-edauser0> cd EE429_FULLCUSTOM 

4/23

3.3. RUNNING VIRTUOSO DESIGN ENVIRONMENT

 Enter in the EE429_FULLCUSTOM folder
edauser0> cd EE429_FULLCUSTOM  (already done in the previous step)

 It is extremely important to always start Virtuoso from the Virtuoso project directory (here
called EE429_FULLCUSTOM). The project directory contains many configuration files;
therefore, the tool will not work as expected when run from a different place. Even worse, it
may override other configuration files, especially when run from your home directory – this
is a common mistake. This also applies for other tools that you will be using later, each one
will have the corresponding working directory from where it needs to be launched.

 Run the software by typing:
> virtuoso & 

 If a window appears asking for the available licences, always simply click Yes and proceed.

At this point, the software should start and the CIW window should appear (Figure 1).

 A text window may pop up displaying information about the design kit and the current version of
Virtuoso. You can simply turn this window off. To prevent the window from opening every time
you start the software, you can select File→ Close and Do Not Show Again from the window
menu.

 To exit the design environment you can either:

• choose File→ Exit… from the CIW menu,

• close the CIW window, or

• typing exit in the command prompt at the bottom of the CIW window.

Figure 1 - The CIW (Command Interpreter Window)

5/23

3.4. THE LIBRARY MANAGER AND DESIGN HIERARCHY
The Library Manager is a graphical interface used to organize the design data in the Virtuoso
Design Environment. You can open it by choosing Tools→ Library Manager… from the CIW
menu. Tick the “show Categories” box. The following window should appear:

Figure 2 - The Library Manager Window

In the Virtuoso Design Environment, all the design data is stored in a collection of libraries.
Libraries can be divided in different categories (subgroups), grouping the sets of related cells, each
cell being an individual unit. Cells can have multiple views that can be different ways of
representing the circuit or the simulation setup, waveform data, models, etc. For example, the
same circuit can be represented as a symbol, a circuit schematic, or a mask layout, the testbench
data can be saved in text files, etc. Figure 3 shows the organisation of cells and views in a library
as a tree. The term cellview refers to a particular view of a particular cell, i.e. actual design data.

MyLib
- Desing Library -

INVERTER_TB
- CELL -

Schematic
- VIEW -

Estimated
- VIEW -

ADEXL
- VIEW -

INVERTER
- CELL -

Schematic
- VIEW -

Symbol
- VIEW -

Layout
- VIEW -

NMOS
- CELL -

Symbol
- VIEW -

Spectre
- VIEW -

HSpice
- VIEW -

Figure 3 - Sample Library Structure

6/23

By default, a number of libraries will be available to you: some are the tool’s default, and some
are provided by the foundry design kit. The most important libraries in our case are briefly
described in the following list:

 basic contains mostly graphical elements for circuit schematics.
 analogLib contains many elements useful for simulation such as voltage and

current sources, ideal resistors, capacitors and inductors, switches, etc… These
cells are mostly used to create simulation testbenches.

 umc65ll (Primitives Library) contains all the primitive devices (MOSFETS,
resistors, capacitors, inductors …) from the UMC foundry design kit. You will use
these devices in this (full-custom) part, and third (Analog Design) part of EDA-TP
to create your own designs.

 UMC65LL_UMK65LSCLLMVBBR__B03PB (Standard Cell Library)
contains the layout views from the UMC foundry design kit. You do not need to
use these cells, but you can take them as examples to see how standard cell are
usually designed.

In the next steps, we will create a new library for your designs, and experiment some features of
the library manager.

Creating a New Library

 Using the library manager, create a
new library by choosing File→ New→
Library… from the menu. You are
prompted to enter a name for your
library: enter EDATP. Below is a
space to specify the directory where
the data will be physically stored on
the disk. You don’t have to change
anything there.

7/23

 You will be prompted to attach a technology file to the new library (this window
sometimes appears below other windows - find it). The technology file contains
technology-specific information, mostly related to layout, and is provided by the foundry
design kit. Select Attach to an existing technology library and then choose the technology
library umc65ll.

Handling Libraries

 Once you create your
library, it is automatically defined in
the file called cds.lib located in your
Virtuoso project directory. This file
contains paths towards all the
libraries that will be available once
you start Virtuoso Design
Environment from this specific
directory. You can check the content
of this file by using any text editor
(in this e.g. gedit). Simply type:
> gedit cds.lib & 

 Note that you can also
check the content of files with tools
like cat (for small files), less and
more (you can check how to use

them online – to exit a less or more instance, type the q button on your keyboard)  cat cds.lib

 You will be able to see that your library has been added to the list of the existing default libraries.
Please do not try to modify this file manually. After you observe that your new library is defined
under the section "Your libraries", close it.

 Try to find your EDATP directory that corresponds to the specific path. This is where your library
data will be physically placed. Note here that the logical name of your library, defined in the
cds.lib file after the define statement, MUST be
the same as the destination directory of the library
(marked by the red square).

 Very Important! The directories listed in the

cds.lib file including user defined libraries,
contain data and info about all the cells and their
cell views that are (or will be) defined within the specific libraries. You should never modify the
content of a directory hosting a design library by yourself. Moreover, you should never define

8/23

such a directory as a target of other tools such as simulators or DRC/LVS/PEX tools. Otherwise,
unexpected errors and/or problems may occur.

 Instead of modifying cds.lib file manually, there is a “safer” way to perform this action if needed.
In the Library Manager window, select Edit→ Library Path. Library Path Editor window will
pop-up. This editor provides an overview of the libraries defined in the cds.lib file and makes it
possible to add, modify or remove some of the existing definitions.

 Keep in mind however, that cds.lib file and path editor, define only the paths to libraries.
Therefore, removing the library path does not remove the physical library. If needed, library can
be removed by using library manager. However, unless the library is not useful or unless
specifically required, do not try to change the physical destination of the library.

 In order to save your changes to cds.lib file, you need to select File→ Save in the library path
editor menu. However, in this case we will not change our cds.lib file, so do not perform this
action.

3.5. MANAGING CELLVIEWS

 Now create a cellview in your new library. Select EDATP
in the Library field, and then choose File→ New→
CellView from the menu. A small dialog will appear
(sometimes below other windows - look for it). Enter test
as the cell name, and schematic as the view name and as
the view type. Choose Schematics XL as the desired
application (see figure).

 Notice the Application field. When changing the view
type, the application name changes. This is because
different tools are associated with different view types:
schematic editor, symbol editor, layout editor, etc…
Each view type has a standard name (i.e. schematic for
a circuit schematic), but they can be changed. However,
it is advised to keep the default names to avoid problems.

 Important! When defining a name of the cell or library, typically only letters, numbers and
underscore should be used. Avoid using special characters, such as: - , . * / or \.

 Generally, it is a good practice to never start any cell name with a number.

Good examples: “test_01”,”TestAmpifier4”, etc.

Bad examples: “test-01”, “Op.Amp.2”, etc.

 A cell named test is created, with one view named schematic, and Virtuoso Schematic Editor XL
appears to edit your new cellview.

9/23

 Choose File→ Check and Save (or Shift-X) from the schematic editor menu to have the cellview
data written to the disk. Then close the schematic editor.

Deleting, Copying and Renaming Cellviews

 In the Library Manager, select the EDATP library, right-click on
it and in the context menu, choose Copy. The dialog window will
appear. Change copy "To" field to EDATP2, check "Update
Instances" box, and click OK. You will be prompted with another
window asking you to specify the physical location of the library.
Directory EE429_FULLCUSTOM should be chosen by default, in
which case do not change anything, and click OK (if
EE429_FULLCUSTOM is not a default destination, please set it
manually). A new library EDATP2 will be created.

 You can experiment with different commands: creating copying,
renaming and deleting libraries, cells and/or views.

 Now right-click on the EDATP2 library and choose Delete. A dialog will appear specifying the
libraries to delete (EDATP2 should be on the Delete list). Click OK, and in the following window
click Yes. The library will be deleted.

10/23

4. THE GRAPHICS EDITOR
The different tools for graphical editing (schematic editor, symbol editor, layout editor) use a
similar interface named the graphics editor. We will now experiment with the features of
graphical editing by creating a simple circuit schematic.

 Create a new schematic cellview named MUX_2_1 in your EDATP library. The schematic editor
will appear.

If the workspace is set as basic, you will be able to see Navigator and Property Editor design
assistant sub-windows. Navigator allows you to quickly browse through all the instantiated
devices in your design. Property Editor shows all the parameters of the currently selected device,
allowing you to make some quick changes.
In the next steps, you will learn how to use the Schematic Editor XL by creating a simple CMOS
Multiplexer schematic shown in the figure below.

 You can note that if you right click on a schematic cell view and select “open with”, several
options are available for the application. Specifically Schematic L or XL. Here, we make you
practice with XL, though note that you could use L. For the schematic editor, the difference is
small. Though XL generally gives access to more features accessible from the workspace type.
Keep it to basic for these labs.

Figure 4 - The Schematic Editor Window

Navigator

Property Editor

11/23

4.1. CREATING INSTANCES
The term instance denotes the occurrence of a cell inside another cell. A cell can be instantiated
multiple times in another cell. Instances define a hierarchical relationship between cells, where
the cell containing the instance(s) is higher in the hierarchy than the instantiated cell.

 Choose Create→ Instance from the menu, or use the keyboard shortcut for this command by
simply pressing i on the keyboard.

 Most commands have a keyboard shortcut, or bindkey. They are shown on the right of the
command name on the menus. Learning how to use and to remember the bindkeys may seem
complicated in the beginning, but it can save you a lot of time in later stages of the project.

 Depending on the version of Cadence one of the two windows (on the right, marked as 1 and 2)
will pop-up.

 In case it is the window marked as 1 (on the right), select the umc65ll library.
Then you need to select the N_12_LLRVT cell for instantiation. For that, either
select the Mos category and select N_12_LLRVT cell; or check the Flatten
option so that all the cells from different categories appear under the same list,
then select the N_12_LLRVT cell. Just after selecting the N_12_LLRVT cell,
an option form (window marked as 2, on the right) appears which prompts you
for the library name, cell name and a desired view of the cellview you wish to
instantiate. Since you have already selected the desired library and cell only make
sure that the view is written as symbol.

 In case it is the window marked as 2 (on the
right), choose umc65ll library and type
N_12_LLRVT and symbol for the symbol
view of the NMOS transistor. By clicking on
the Browse button, you can see the window
marked as 1 on the right hence you can select
the desired library and cell by applying the
steps which are explained in the previous
item.

 Return to the schematic editor window without closing the option form and place 6 NMOS
transistors in your schematic as in the Figure 4 or Figure 5. To turn them sideways, you can use
Sideways button on the Add Instance window (see the figure - right). When you are done, either
press Escape or click Cancel on the option form to stop placing transistors.

 Notice how you can add more instance as long as you do not cancel the command. Many
commands work in this manner: activating the commands bring you into a new “mode” that
lasts until you press Escape. Some commands, however, only work once.

 The “Add Wire Stubs at” allows you to automatically create wires on the terminals of your
instances. If you select “registered terminals only” and click on “…” you are directly define
label names for the corresponding wires. Alternatively, you can also press spacebar from the
schematic view to create wires on a selected instance.

 Repeat the same procedure, and place 6 PMOS transistors. Select the umc65ll library, choose Mos
category and select P_12_LLRVT. Alternatively, simply type P_12_LLRVT in the Add Instance
window instead of N_12_LLRVT.

 It is very important to save your design as often as possible. Otherwise, if something goes
wrong, you may lose all of your unsaved work. You can save your schematic by selecting File→
Save (Schematic) from the main menu. Or click on this icon:

12/23

4.2. EDIT OBJECT PROPERTIES

 In case the tool does not let you modify the instance name (this may happen in some
conditions, cf screenshot). First, check that the file is not read-only. If yes, make it editable.
File>Make Editable. Otherwise, use the left panel as shown in the right-hand side screenshot.

 First, we will edit the properties of the NMOS
transistors. We will do this in a one-by-one manner.

 Left click on an NMOS transistor to select it. Choose
Edit→ Properties→ Objects from the editor main
menu, or simply click on a bindkey: q. Object
properties window will appear, displaying all the
properties and the parameters of the selected cellview
(N_12_LLRVT).

 Object property window can be used to quickly change
the cells or cellviews. You can try rewriting
N_12_LLRVT into P_12_LLRVT and clicking OK.
The cell in the schematic will change to PMOS. Switch
it back to NMOS before you proceed!

 You’ll notice two lines called Length and Total Width in
the Object Properties window. Length corresponds to the transistor length. In the 65nm technology, the
minimum Length is 60nm. Always keep it 60nm in this phase of the EDALABS. Total Width is equal to
Fingers * Finger width parameters.

 Click on the Total Width box and change the width of the NMOS transistor to 120nm. Click OK
and repeat the procedure for all the six NMOS transistors in the design.

 Take a look at the updated cell list in the Navigator sub-window. All the NMOS and the PMOS
transistors that you added are listed there. Find which transistors are PMOS and which are NMOS.

13/23

Using Navigator and Property Editor

4.3. CREATING PINS
Pins define the connections (interface) between a cell and its environment. Pins are defined by the
name and the direction (input, output or input-output). The purpose of the direction is to check for
wrong connections (e.g. two outputs shorted together, or floating inputs). Typically, input-output
pins are used for power supplies and bidirectional interfaces.

 Choose Create→ Pin from the menu (bindkey: p). The option
form appears, prompting you to enter the name of the pin as
well as different options (see figure). Enter A, B and S as the
pin names, and choose input as the pin direction. Click Hide
and place the pins on the schematic one by one. The pins will
be placed in the same order as you specified them.

 Once this is done, return to the option form (bindkey: p) and
create the supply pins VDD and GND with the direction set as
inputOutput. Place VDD and GND on your schematic.

 Repeat the procedure to create the output pin Z. Place the
output pin on the schematic.

4.4. CREATING WIRES AND LABELLING NETS
Wires define the connections between the different instances in a cell. Wires can connect to the
pins, instances, or to other wires. All the connected wires are electrically at the same potential and
together define a net. Nets can be labeled to make the schematic and simulation results more
readable – if they are not labeled, the name will be assigned automatically.

 We can also perform the same action on multiple instances all-in-one-step.

 Hold a CTRL key and click on (select) all the PMOS transistors in your
Navigator window. Notice that they will be selected in the schematic as well.

 Observe that the Property Editor will now show all the mutual parameters for
the selected cells, so there is no need to enter the object properties window.

 Make sure that the falling menu in the top right of the Property Editor is set to
All. Left click on the Total Width number field and change the width of all the
PMOS transistors to 240nm. Note that the width of all the PMOS transistors will
be set to 240nm.

 You can also select multiple cells by holding SHIFT key and clicking on the desired
devices directly on the schematic. The Navigator window and the Property Editor
will be updated accordingly. Also notice that in this case you can unselect a selected
device by holding CTRL and clicking on the device. Moreover, CTRL+A works.

14/23

 Choose Create→Wire (narrow) from the menu (bindkey: w), and add wires to your schematic to
connect the different elements as shown on the Figure 5 (next page).

 Use the Zoom (View→Zoom In… or]) and Fit (Window→Zoom to Fit… or f) commands
to adjust the zoom. (Please note that zoom in and zoom out can also be done by turning the
wheel of the mouse.) You can even use these commands while in the middle of creating a wire
without interrupting.

 Choose Create→ Wire Name from then menu (bindkey: l). In the option form, type A, B, S and
S_INV, and name the corresponding wires as shown in the Figure 4 (before) or in Figure 5 (next
page). Finally, check if your schematic corresponds completely to the Figure 5 (be careful - check
the transistor bulk connections).

 Important! Try to add wire names (use labels) for all the important wires (nets) in your
design. After simulation, automatic names can be hard to distinguish and trace, especially in
large schematics.

Figure 5 - The Final MUX 2-to-1 Schematic (S=1 => Z=B; S=0 => Z=A)

QUESTION : what is the different between a Pin and a Label ? What does a Label do ? What
does a Pin do ?

 To help you with the understanding, you can enable/disable a function called “Net
Highlighting” in the “view” dropdown menu of the schematic editor.

QUESTION : Look at the two inverters in the figure 5 schematic. Based on your knowledge of
the sizing guidelines, assuming these inverters are balanced, what can you tell about the carrier
mobility ?

15/23

4.5. CHECKING AND SAVING THE SCHEMATIC

4.6. GENERATING THE SYMBOL
A symbol is a graphical abstraction of a cell that provides only the necessary information for using
the cell at a higher hierarchical level – that is, it provides information on how to connect the cell
from the outside. Symbols also provide a visual clue about the function of the underlying circuit.
As such, symbols are only made of pins (connections) and graphical shapes.
Symbols can be created manually by choosing the Composer-Symbol tool when creating a new
cellview, then drawing the shapes and pins. However, it is also possible and much more convenient
to have them generated automatically. A square box with pins is generated that can then be
modified if needed.

 Choose File→ Check and Save (or Shift-X) to save your design. The schematic will be checked
for errors. If there are errors or warnings, a dialog box will inform you about them. The CIW will
display a detailed message for each problem found.

 Go to the CIW window and check the messages. If no problems were found, you should find a
message similar to the following:
Extracting “MUX_2_1 schematic”
Schematic check completed with no errors.
“EDATP MUX_2_1 schematic” saved.

 When something goes wrong, always check the CIW for error or warning messages.

 From the Schematic Editor menu, choose
Create→ Cellview→ From Cellview.

 In the first form coming up, all options
should be set correctly. Press Ok.

 In the second form, you get a chance to
specify the location of the pins on your
symbols. It is common to have input pins
on the left, output pins on the right, and
power/ground pins on the top and bottom
of the symbol. When you are done, press
Ok.

16/23

Figure 6 - An Example of the Modified MUX Symbol

 Shape your symbol however you like,
then Check and Save it.
 You don’t need to change the labels

[@instanceName] and [@partName] in
the generated symbol. When you
instantiate the cell, these labels will
display the instance name and the cell
name respectively. By default, the
instances you place in a schematic will
be named I0, I1, I2, etc. To change the
name of an instance, select the instance
and press q to open its Object Properties
dialog.

17/23

4.7. CREATING A HIERARCHICAL CIRCUIT
In the following steps, you will create the circuit schematic for a 4-to-1 multiplexer by using your
2-to-1 MUX cells.

 Create a new schematic in your EDATP library. Name it
MUX_4_1.

 Draw the schematic as shown in Figure 7. Use the created
MUX_2_1 symbols and instantiate them in the new cell.

 While instantiating (add instance window - see on the
right), you need to provide every instance with a
meaningful name, otherwise it will be given a default
name (such as: I0, I1, I2...).

 Name your instances exactly as in Figure 7: MUX1, MUX2 and MUX3.

Figure 7 - The 4-to-1 multiplexer circuit schematic

 When you are done, Check and Save your schematic. Correct any errors or warnings, until no
more are reported.

 Create a symbol for the 4-to-1 multiplexer.

18/23

4.8. MOVING, STRETCHING AND DELETING OBJECTS

Deleting Objects
 The Delete command (Edit→ Delete or Del) works in the same way as Move or Stretch with respect to the

selection. Objects can be accidentally deleted if they are selected prior to pressing Del.

 Pressing Del before any selection, starts a delete mode. Any object selected while in delete mode will be
deleted. Be careful!

 Note also that depending on the mode (Move, Stretch, Delete...), the mouse cursor changes the shape...
Remember, you can always exit the specified mode by pressing Esc.

 Open the MUX_4_1 schematic. Choose Edit→ Move from the menu or press Shift+m. Left click
on a MUX_2_1 symbol, and drag it to a different location. Once you decide on a new location
and left click again to execute the move.

 Multiple objects can be selected at the same time. After selecting Edit→ Move, left-click and drag the
mouse to select multiple objects. Left-click again to define a reference point, and you will be able to
move a group of objects.

 Choose Edit→ Undo or press u to cancel the move. (If you want to do the same move again, use
Edit→ Redo or Shift+u, then to cancel again, you can use Edit→ Undo or press u.). Then press
Ctrl+d to clear the selection, or you can simply click on an empty place in the schematic.

 Please note that Edit→ Undo (bindkey: u) and Edit→ Redo (bindkey: Shift+u) does not only work
with move command. They can also be used to undo and redo other commands and can be quite useful
for accidental use of commands.

 Commands that work on objects, such as move, stretch or delete, need a selection to work on. If an
object or a set of objects is selected before applying the command, it will operate on this existing
selection. If not, you are prompted to select the objects before you perform the move. Once you finish
the command, press ESC to exit the specified command mode!

Notice that when there is an existing selection, you can move the object only once before the command
exits, while you can move multiple objects when there is no prior selection. Thus, in one case you can
apply multiple actions, sequentially, to a set of selected objects, and in the other case you can apply
the same action to a number of sequentially selected objects. Remember Ctrl+d to clear the selection.

 Repeat the same manipulations with the Stretch command instead (Edit→ Stretch or m).
 Observe that with the stretch command, wires connected to the instance are rerouted to keep the

connections, while with the move command, the selected objects were moved regardless of the
connections. Stretch also allows to reshape existing wires.

 When moving or stretching an object, an option form will appear (if not, you can use F3.). In the
option form showing up, there are buttons for rotating and mirroring the instance. Try these.

 Many commands have an option form which does not always show up automatically. Use the F3 key to
show or hide this option form.

19/23

4.9. MOVING UP AND DOWN THE HIERARCHY

Now that you have designed a hierarchical schematic (MUX_4_1), you can try the commands for
moving up and down the hierarchy.

4.10. INSTANCE PROPERTIES
For the MUX instances you created, you can use same property editing methods as it was done
for NMOS and PMOS transistors earlier.

 Open the MUX_4_1 schematic.

 Select one of the MUX_2_1 instances.

 Choose Edit→ Hierarchy→ Descend Edit or press Shift+e. You will be prompted to select a
view: choose the schematic view and press OK.

 The current schematic will be changed to MUX_2_1. To return up the hierarchy to MUX_4_1,
choose Edit→ Hierarchy→ Return or press Ctrl+e.

 Select one of the MUX_2_1 instances.

 Enter the object properties window (Edit→
Properties→ Objects, or press: q). Here you can
modify the name of the instance (see figure on the
right).

 Make sure once again your MUX names correspond
to Figure 7.

 Check the Property Editor window. There you can
also see the object properties for the selected instance,
and eventually change the instance name.

20/23

4.11. USING MULTIPLIED INSTANCES AND CREATING BUSES

Cells can be instantiated multiple times using a single symbol, which is very useful for large
designs (imagine having to place 256 multiplexers in your schematic). We will learn how to do
this by designing an 8-bit 4-to-1 multiplexer, from our single-bit version.

Creating Buses and Wire Bundles
Wires can be grouped in buses, where each wire is following the common naming convention.
E.g. if we have a 4-bit bus W<0:3> (or W<3:0>), then the wires that are forming the bus must be
labeled as W<0>, W<1>, W<2> and W<3>. The ‘<>’ brackets are marking the bus expansion.

 Choose Create→ Wire (wide) from the menu (bindkey: Shift+w), and add a bus that connects all
the wires that should be a part of this bus.

 Create a new schematic cellview in EDATP library called MUX_4_1_8bit.

 Choose Create→ Instance from the menu (bindkey: i), and add an MUX_4_1 instance. Specify
the instance name with a desired number of instances. For example: MUX41<7:0>.

 This creates 8 multiplexer instances numbered from 7 down to 0.

 Alternatively, you can also add a single instance, select it, and then enter the object properties
window (Edit→ Properties→ Objects, or press: q). Here you can also modify the name and the
number of instances (see figure right).

 Another alternative is to use Property
Editor sub-window. When you select an
instance you can modify the name and the
number of instances within the sub-
window directly.

21/23

 Choose Create→ Wire Name (bindkey: l) from then menu. In the option form, type W<0:3> (you can
also use W<3:0>) for the bus, and W<0>, W<1>, W<2> and W<3> for the wires that are forming that
bus.

 Alternatively, to create the wires, type only W<0:3> in the option form and select Expand bus names.
This way you can place the labels in one go.

Buses do not specifically need to be built with “wide” wires. You could set them up similarly with
small (w key) wires. Always keep in mind that all the labels and pins are connected by name.
Though, you could not physically connect “small” wires.

To check the connectivity of wires, you can use the “net
Highlighting” tool from the View menu. You can enable and disable
it by ticking and unticking it. it is a really useful tool to check if some
wires are properly connected.

 Note that you must check and save your design, in order for
it to work.

In the following screenshot note how both large and small wire
behave the same way. A<0> is indeed part of A<7:0> and A<2:0>.

22/23

Bundling wires is a good way to create buses of wires which do not have the same names.
In a wire label, you could for e.g. use the following syntax: “A<0>, A<3>”. This will create a
2bit bus that has A<0> as MSB and A<3> as LSB. Note how in the following screenshot this
bus is actually connected to A<7:0> through A<0>. Obviously it is connected to A<3> as the
bundle contains A<3>. But it does not connect to A<1>. These ways of creating buses can be
extremely useful when manipulating complex wiring.

Multiple Pins
Pins can be added multiple times using the same principle as for the instances and wires. Brackets
‘<>’, along with appropriate numbering, can be used to define a specific number of pins of the
same type.

 Choose Create→ Pin from the menu (bindkey: p), and
add a pin name with a desired number of pins. Example:
A<7:0>.

 Repeat the same procedure for all the required pins in
the schematic.

QUESTION : The order in the “<>” is important. What happens if you connect a <7:0> bus to a
<0:7> bus ?

23/23

4.12. FINAL SCHEMATIC

If you are done before the end of the session, start with LAB02 !

 Finally, you should be able to create the final 8-bit 4-to-1 MUX schematic as depicted in the
following figure.

 Create the symbol for your 8-bit MUX.

 Use buses when you need to connect several wires together. Refer to the section 4.11.

 Note that in Cadence Virtuoso we can use both ascending order e.g. <0:7> and descending order
notation <7:0> (the latter is more common for digital circuits). The schematic editor recognizes both
notations as correct and both can be used. However, you should be careful and stick to one single
notation for the full design (be consistent). Also, some other tools may have one of the orders set as
default (such as LVS tool in some cases). If so, we also need to be careful about what notation to use.

 Label your wires! The wires that are connected to pins (as in the case of our MUX) will automatically
be named according to the pin. Note also that if your label is not placed directly on a wire, you will be
prompted to click on a wire to which the label should be attached.

	1. Objectives
	2. Introduction to the Design Environment
	3. Configuring and Running the Software
	3.1. Connecting to the servers
	3.1.1. connect to the VDI workstation
	3.1.2. Connect to the labs EDA servers
	3.1.3. Update your password

	3.2. Setting up your Working Environment
	3.3. Running Virtuoso Design Environment
	3.4. The Library Manager and Design Hierarchy
	Creating a New Library
	Handling Libraries

	3.5. Managing Cellviews
	Deleting, Copying and Renaming Cellviews

	4. The Graphics Editor
	4.1. Creating Instances
	4.2. Edit Object Properties
	Using Navigator and Property Editor

	4.3. Creating Pins
	4.4. Creating Wires and Labelling Nets
	4.5. Checking and Saving the Schematic
	4.6. Generating the Symbol
	4.7. Creating a Hierarchical Circuit
	4.8. Moving, Stretching and Deleting Objects
	Deleting Objects

	4.9. Moving Up and Down the Hierarchy
	Now that you have designed a hierarchical schematic (MUX_4_1), you can try the commands for moving up and down the hierarchy.

	4.10. Instance Properties
	4.11. Using Multiplied Instances and Creating Buses
	Multiple Pins

	4.12. Final Schematic

