
Design Compiler Tool Invocation

Commands

Version U-2022.12, December 2022

Feedback

Contents

1. Design Compiler Tool Invocation Commands . 3

acs_setup .3

aman . 3

cache_ls .4

cache_rm . 5

create_types . 6

dc_shell . 8

de_shell . 20

design_vision . 31

lc_shell .33

synenc . 41

synopsys_users . 43

2

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

1
Design Compiler Tool Invocation Commands

This document describes the tool invocation commands supported by the Design Compiler
tool.

acs_setup
This command is obsolete from 2000.05 release.

For more information about setting up directory structure and the project setup files,
please refer to ACS user's guide.

aman
Displays Synopsys extended error messages.

Syntax

aman [error_message_code]

string error_message_code

Description

Displays the Synopsys extended error message for the given error_message_code.

Examples
unix> aman HDLA-1

Command Reference N. Messages messages

NAME
 HDLA-1 (error) Design '%s' does not contain HDL Advisor
 information.

DESCRIPTION
 Either of the following cases may apply :

Design Compiler Tool Invocation Commands
U-2022.12

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
cache_ls

Feedback

WHAT NEXT
 Fix your syntax errors and use ha_shell to read/analyze
 your HDL source files and regenerate the GTECH design.

unix>

cache_ls
Lists elements in a Synopsys cache.

Syntax

cache_ls cache_dir reg_expr

string cache_dir
string reg_expr

Arguments
cache_dir

Specifies a UNIX pathname to the cache directory to be searched. The
pathname should end with the directory component "synopsys_cache".

reg_expr

Specifies a regular expression to be used to match the pathname of each cache
element that is to be listed. The regular expression is the type accepted by the
UNIX egrep command.

Description

From the directory cache_dir, this command lists the cache elements whose pathname (as
opposed to the filename) matches the expression reg_expr. The command is translated
into the following UNIX command:

find cache_dir -type f -exec ck_path.sh {} reg_expr \; -print

As an aside, an easy way to get all the cache elements is the UNIX command "ls -R".

Examples

In this example, all of the cache elements with "add" in their pathname are listed:

% cache_ls ~/synopsys_cache add

Design Compiler Tool Invocation Commands
U-2022.12

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
cache_rm

Feedback

This example lists cache elements that use lsi_10k or generic technology libraries:

% cache_ls ~/synopsys_cache "lsi_10k|generic"

See Also

• cache_rm

cache_rm
Removes elements from a Synopsys cache.

Syntax

cache_rm cache_dir reg_expr

string cache_dir
string reg_expr

Arguments
cache_dir

Specifies a UNIX pathname to a cache directory. The pathname should end with
the directory component "synopsys_cache".

reg_expr

Specifies a regular expression to be used to match the pathname of each cache
element that is to be removed. The regular expression is the type accepted by
the UNIX egrep command.

Description

From the directory cache_dir, this command removes the cache elements whose
pathname (as opposed to the filename) matches the expression reg_expr. The command
is translated into the following UNIX command:

find cache_dir -type f -exec ck_path.sh {} reg_expr \; -print -exec rm {}
 \;

As an aside, an easy way to remove the entire cache directory is the UNIX command "rm
-r".

Examples

In this example, all of the cache elements with "add" in their pathname are removed:

% cache_rm ~/synopsys_cache add

Design Compiler Tool Invocation Commands
U-2022.12

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
create_types

Feedback

This example removes all cache elements that use lsi_10k or generic technology libraries:

% cache_rm ~/synopsys_cache "lsi_10k|generic"

See Also

• cache_ls

create_types
Extracts user-defined type information from VHDL package files.

Syntax
create_types [-nc] [-w lib] [-v]
[-o logfile] file_list

string lib
string logfile
list file_list

Arguments
-nc

Indicates that the initial copyright banner message is to be turned off.

-w lib
Specifies the name of a library that is to be mapped to the library logical name
WORK. This option overrides any mapping specified in the user option file
(.synopsys_vss.setup).

-v
Indicates that create_types is to display program version information and then
exit.

-o logfile
Specifies the name of a log file to which messages sent to the standard output
are to be redirected. Use this option if you are running create_types in batch
mode, or if you do not wish messages to be displayed during execution of
create_types.

file_list

Specifies the name(s) of one or more VHDL package files from which type
information is to be extracted. Typically these files have the extension .vhd or
.vhdl.

Design Compiler Tool Invocation Commands
U-2022.12

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
create_types

Feedback

Description

Extracts type information from VHDL package files that contain user-defined VHDL types.
For each package contained in the input VHDL file(s), create_types creates a package.typ
file. Creating the package.typ file isolates the type information and makes it available
to other utilities (for example, dc_shell (analyze or read); vhdlan; and DesignSource.)
create_types places the .typ files in the design library mapped to the logical name WORK.
To override the mapping in the user option file (.synopsys_vss.setup), use the -w lib
option.

NOTE: Before running create_types on your VHDL package, you must have already run
analyze, read, or vhdlan on the package.

The type information contained in a .typ file is used by Synopsys synthesis and simulation
tools when analyzing designs that use the user-defined types defined in the corresponding
package. You must create .typ files to analyze designs or DesignWare components that
use VHDL types not defined in STD.STANDARD. Notice that type information is used
hierarchically. That is, if you analyze a high-level package that references user-defined
types from lower-level packages, .typ files must exist for the lower-level packages.

The type information in .typ files is used also by Synopsys's DesignSource tools to perform
type resolution and checking and to permit interactive type selection. You must create a
.typ file in order for DesignSource to be aware of the user-defined types contained in a
package.

FILES

$SYNOPSYS/admin/setup/.synopsys_vss.setup

The first setup file create_types reads. This file contains the default setup.

$HOME/.synopsys_vss.setup

The second setup file create_types reads. Settings in this file override those in
$SYNOPSYS/admin/setup/.synopsys_vss.setup.

./.synopsys_vss.setup

The last setup file create_types reads. Settings in this file override those in
$HOME/.synopsys_vss.setup.

filename .vhd

The VHDL package file that defines the user-defined types.

package .typ

The analyzed file that contains information about the user-defined types
contained in package. These files are similar to the .syn and .sim files produced
by VHDL Analyzer.

Design Compiler Tool Invocation Commands
U-2022.12

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

EXIT CODES

create_types exits with one of the following codes:

0

On Success (the data may have been analyzed with or without warnings)

2

Errors in the Input Data

3

Fatal Error

4

License Not Found

See Also

• analyze

• read

dc_shell
Invokes the Design Compiler command shell.

Syntax
dc_shell
[-f script_file]
[-x command_string]
[-minimize_peak_mem]
[-no_init]
[-no_home_init]
[-no_local_init]
[-checkout feature_list]
[-64bit]
[-wait wait_time]
[-timeout timeout_value]
[-version]
[-output_log_file console_log]
[-no_log]
[-topographical]
[-container]

Design Compiler Tool Invocation Commands
U-2022.12

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

Data Types
script_file string
command_string string
feature_list list
timeout_value integer

Arguments
-f script_file

Executes script_file (a file of dc_shell commands) before displaying the initial
dc_shell prompt. If the last statement in script_file is quit, no prompt is displayed
and the command shell is exited.

-x command_string
Executes the dc_shell statement in command_string before displaying the initial
dc_shell prompt. Multiple statements can be entered. Separate the statements
with semicolons and enclose each statement with quotation marks around
the entire set of command statements after the -x option. If the last statement
entered is quit, no prompt is displayed and the command shell is exited.

-minimize_peak_mem
Balances memory peaks with runtime by restricting the use of transparent huge
pages during compile. If your kernel is below 3.15, transparent huge pages
will not be reenabled after compile, which can have a greater runtime impact.
-minimize_peak_mem only works on systems with kernel 3.1 or above.

-no_init
Specifies that dc_shell is not to execute any .synopsys_dc.setup startup files.
This option is only used when you want to include a command log or other
script file in order to reproduce a previous Design Analyzer or dc_shell session.
Include the script file either by using the -f option or by issuing the include
command from within dc_shell.

-no_home_init
Specifies that dc_shell is not to execute any home .synopsys_dc.setup startup
files.

-no_local_init
Specifies that dc_shell is not to execute any local .synopsys_dc.setup startup
files.

-checkout feature_list
Specifies a list of licensed features to check out in addition to the default
features checked out by the program.

Design Compiler Tool Invocation Commands
U-2022.12

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

-wait wait_time
Specifies the maximum wait time (in minutes), that dc_shell waits to check out
the licensed features specified by the -checkout option. You can invoke dc_shell
successfully only when all of the licensed features specified with the -checkout
feature_list option can be checked out during the specified wait time.

-timeout timeout_value
Specifies a value from 5 to 20 that indicates the number of minutes the program
spends trying to recover a lost contact with the license server before terminating.
The default is 10 minutes.

-version
Displays the version number, build date, site id number, local administrator, and
contact information, and then exits.

-64bit
Invokes the 64-bit executable of the Design Compiler command shell.

-output_log_file
Specifies a file to which the tool's console output is to be logged. Using this
option causes the variable sh_output_log_file to be set and output logging is
performed exactly as described in the man page for that variable.

-no_log
Disables command file logging for the session and creates a filenames log file
such as:

<filename>_<pid>_<timestamp>.log.

-topographical
Enables Design Compiler topographical mode.

-container
Enables Design Compiler Container - a way to bundle all application system
dependencies into a single package so that it can run on any host that supports
the container engine regardless of what packages are installed on the host
(needed for cloud computing).

Description

The dc_shell command interprets and executes Design Compiler and DFT Compiler
commands. Design Compiler and DFT Compiler are Synopsys products that optimize
logic. The dc_shell environment consists of user commands and variables that control the
synthesis and optimization capabilities of Design Compiler and DFT Compiler.

Design Compiler Tool Invocation Commands
U-2022.12

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

The dc_shell command executes commands until it is terminated by a quit or exit
command. During interactive mode, you can also terminate the dc_shell session by
pressing Control-d.

To cancel or interrupt the command currently executing in dc_shell, press Control-c. The
time it takes for a command to process an interrupt depends upon the size of the design
and the command. If you press Control-c 3 times before a command responds to the
interrupt, dc_shell exits and the following message is displayed:

Information: Process terminated by interrupt.

There are 3 types of statements in dc_shell: assignment, control, and command.

There are 7 types of expressions: string, numeric, constant, variable, list, command,
operator, and complex.

Statements and expressions are discussed in detail in the following subsections.

Special Characters

The pipe character (|) has no meaning in dc_shell. Use backslash e (\\e) to escape
double quotes when executing a UNIX command. For example, the following command
requires backslash characters before the double quotes to prevent Design Compiler from
ending the command prematurely:

dc_shell> sh \'grep \\'foo\\' my_file\'
Assignment Statements

An assignment statement assigns the value of the expression on the right side of an equal
sign to the variable named on the left side of the equal sign.

The syntax of an assignment statement is as follows:

variable_name = expression

The following are examples of dc_shell assignment statements:

dc_shell> hlo_ignore_priorities = "false"

dc_shell> text_threshold = 6
The following are examples of dc_shell assignment statements for float numbers:

dc_shell> my_float = 100.3
100.300003

dc_shell> my_another_float = 123456700.0
123456704.000000

The dc_shell environment uses 32 bit IEEE format to represent floating point numbers.
This format cannot represent all numbers exactly, so the returned number may not always

Design Compiler Tool Invocation Commands
U-2022.12

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

be the number originally specified. Typically, only the first 6 or 7 digits are precisely
represented. Beyond that, there can be some variance.

Control Statements

The if and while control statements allow conditional execution and looping in dc_shell
language. The syntax of the basic if statement is as follows:

if (condition) {
statement_list
}

Other forms of the if statement allow the use of else and else if.

The syntax of the while statement is as follows:

while (condition) {
statement_list
}

For a discussion of relational and logical operators used in the control statements, see the
Operator Expressions and Complex Expressions sections of this man page.

Command Statements

The dc_shell invokes the specified command with its arguments. The following example
show the syntax of a command statement:

command_name argument_1 argument_2 ... argument_n

Arguments are separated by commas or spaces and can be enclosed in parentheses. The
following are examples of dc_shell command statements:

dc_shell> set_max_delay 0 "OUT_PIN_1"

dc_shell> create_schematic ("-size", "A", "-hierarchy")

dc_shell> compile
String Expressions

A string expression is a sequence of characters enclosed in quotation marks (""). The
following are examples of string expressions:

"my_design_name"

"~/dir_1/dir_1/file_name"

"this is a string"

Design Compiler Tool Invocation Commands
U-2022.12

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

Numeric Constant Expressions

Numeric constant expressions are numeric values. They must begin with a digit and
can contain a decimal point; a leading sign can also be included. Exponential notation is
recognized. The following are examples of numeric constant expressions:

123

-234.5

123.4e56

Variable Expressions

A variable expression recalls the value of a previously-defined variable. Variable names
can contain letters, digits, and most punctuation characters, but cannot start with a digit.
The following are examples of variable expressions:

current_design

name/name

-all

+-*/.:'#~`%$&^@!_[]|?

If a variable used in an expression has not previously been assigned a value in an
assignment statement, then its value is a string containing the variable name. The
following two command statements are equivalent, assuming there is no variable defined
with the -hierarchy option:

dc_shell> create_schematic -hierarchy

dc_shell> create_schematic "-hierarchy"
This feature allows you to omit the quotes around many strings. For example, the following
commands are equivalent, assuming there are no variables called "~user/dir/file",
"equation", or "-f").

dc_shell> read "-f" "equation" "~user/dir/file"

dc_shell> read -f equation ~user/dir/file
List Expressions

A list expression defines a list constant. The list can include pathnames, cell names or pin
names, values, etc. The syntax of a list expression is as follows:

{ expression_1 expression_2 ... expression_n }

Design Compiler Tool Invocation Commands
U-2022.12

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

Expressions are separated by spaces or commas. The following are examples of list
expressions:

{}

{"pin_1" "pin_2" "pin_3"}

{1,2,3,4,5}

Command Expressions

A command expression invokes a dc_shell command and returns its value. The syntax
of a command expression is the same as that of a command statement, except that
parentheses are required in a command expression and are optional in a command
statement. Commas separating arguments are optional for both. The following are
examples of command expressions:

dc_shell> all_inputs()

dc_shell> create_schematic ("-size" "a" "-hierarchy")

dc_shell> set_max_delay(0 "OUT_PIN_1")
Operator Expressions

Operator expressions perform simple arithmetic and string and list concatenation. The
syntax of an operator expression is as follows:

expression operator expression

The operator is "+", "-", "*", or "/", and is separated by at least one preceding and one
following space. Operator expressions involving numbers return the computed value. The
"+" operator can be used with strings and lists to perform concatenation. The following are
examples of operator expressions:

234.23 - 432.1

100 * scale

file_name_variable + ".suffix"

{portA, portB} + "portC"

The relational operators "==", "!=", ">", ">=", "<", and "<=" are used in the control
statements if and while. The greater than (>) operator should only be used in expressions
with parentheses to avoid confusion with the file redirection operator ">".

Design Compiler Tool Invocation Commands
U-2022.12

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

The logical operators "&&", "||", and "!" (and, or, not) are also used in the if and while
control statements. The "not" operator is different from the other operators in that it is a
unary operator with the following syntax:

! expression

Complex Expressions

Expressions can be built from other expressions, creating complex expressions. When
a complex expression contains more than one operator, dc_shell satisfies multiplication
and division operators before addition and subtraction. Simple expressions enclosed in
parentheses take priority and override this rule. The expression "1 + 2 * 3 + 4" has the
value 11, and "(1 + 2) * (3 + 4)" has the value 21.

The following is an example of an assignment statement containing complex expressions:

dc_shell> my_variable = set_max_delay(23.2 * scaling_factor, \\
 all_outputs())
In this example, "my_variable" is assigned the value returned by the set_max_delay
command expression. The set_max_delay command is invoked with two arguments. The
first argument is an operator expression that returns the value of the variable expression
"scaling_factor" multiplied by the numeric constant expression "23.2". The second
argument is a command expression that is equal to the value returned by the all_outputs
command. The all_outputs command is called with no arguments.

The following is an example of a complex command statement:

dc_shell> read -f edif ~user/dir/ + file_name
In this example, the read command is called with 3 arguments. If you assume that "-f",
"edif" and "~user/dir/" are not defined variables, and that file_name" is assigned the value
my_design, then the first argument to the read command is the string "-f". The second
argument is the string "edif". The third argument is the concatenation of the string "~user/
dir/" with the string my_design. The third argument to the read command is the string
"~user/dir/my_file". The relational and logical operators can be used in combination to form
complex conditions. The following are examples of complex conditional expressions:

(goal >= 7.34 || ! complete)

(a >= 7 || run_mode != "test" && !(error_detected == true))

(cycle < 4 && test == true || design_area > area_goal)

Complex logical expressions are evaluated from left to right, with "&&" being evaluated
before "||". However, those expressions enclosed in parentheses are evaluated first.

Design Compiler Tool Invocation Commands
U-2022.12

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

Command Arguments

Many dc_shell commands have required or optional arguments that allow you to further
define, limit, or expand the scope of their operation.

This man page contains a comprehensive list and description of these arguments. You can
also use the help command to view the man page online. For example, to view the online
man page of the ungroup command, enter the following command:

dc_shell> help ungroup
Many commands also offer a -help option that lists the arguments available for that
command. For example:

dc_shell> ungroup -help
Usage: ungroup
 <cell_list>
 -all
 -prefix
 -flatten
 -simple_names

Arguments that do not begin with a hyphen (-) are positional arguments. Positional
arguments must be entered in a specific order. Non-positional arguments (those beginning
with a hyphen) can be entered in any order and can be intermingled with positional
arguments.

The names of non-positional arguments can be abbreviated to the minimum number of
characters required to distinguish them from the other arguments.

The following commands are equivalent:

dc_shell> ungroup MODULAR -flatten -prefix MOD

dc_shell> ungroup -flatten -prefix MODULAR MOD

dc_shell> ungroup -f MODULAR -p MOD
Many arguments are optional, but if you omit a required argument, an error message and
usage statement is displayed. For example:

dc_shell> group
Error: Argument '-design_name' required
Usage: group
 <cell_list>
 -except <cell_list>
 -design_name
 -cell_name
 -logic
 -pla
 -fsm

Design Compiler Tool Invocation Commands
U-2022.12

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

Multiple Statement Lines and Multiple Line Statements

Normally, only one command is typed on a single line. To put more than one command on
a line, must separate each command with a semicolon. For example:

dc_shell> read -f equation my_file.eqn; set_max_area 0; compile; \\
 create_schematic; plot
There is no limit to the number of characters on a dc_shell command line, but you
can break a long command into multiple lines by terminating all but the last line with a
backslash (\e). This tells dc_shell to expect the command to continue on the next line.

dc_shell> read -f equation\\
 {file_1, file_2, file_3,\\
 file_4, file_5, file_6}
This feature is normally used in files containing dc_shell commands (script files).

Output Redirection

The dc_shell allows you to divert command output messages to a file. To do this, type
"> file_name" after any statement. The following example deletes the old contents of
"my_file" and writes the output of the report_hierarchy command to the file:

dc_shell> report_hierarchy > my_file
You can append the output of a command to a file with ">>". The following example
appends the hierarchy report to the contents of my_file:

dc_shell> report_hierarchy >> my_file
Aliases

The alias command gives you the ability to define new commands in terms of existing
ones. You can reduce the number of keystrokes by defining short aliases for the
commands and options you use most often.

The following example defines a new command called com that is equivalent to running
the compile command with the -no_map option.

dc_shell> alias com compile -no_map
With the com alias defined, the following two commands are equivalent:

dc_shell> compile -no_map -verify

dc_shell> com -verify

Design Compiler Tool Invocation Commands
U-2022.12

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

Alias definitions can be placed in your .synopsys_dc.setup file or in a separate file. The
advantage of keeping aliases in a separate file is that all defined aliases can be written to
a file with a command such as:

dc_shell> alias > ~/.synopsys_aliases
This works only if you put the command include ~/.synopsys_aliases in
your .synopsys_dc.setup file. The aliases are defined every time you start a new dc_shell
session.

An alias is expanded only if it is the first token in a command, so aliases cannot be used
as arguments to other commands.

History

A record is kept of all dc_shell commands issued during any given dc_shell session. The
history command displays a list of these commands.

dc_shell> history
 1 read -f equation my_design.eqn

 2 compile -no_map

 3 create_schematic

 ...

Your previous commands can be re-executed with the following "!" commands:

!!

Expands to the previous command.

!number

Expands to the command whose number in the history list matches number.

!-number

Expands to the command whose number in the history list matches the current
command minus number.

!text

Expands to the most recent command that starts with text. A text command
can contain letters, digits, and underscores, and must begin with a letter or
underscore.

!?text

Expands to the most recent command that contains text. A text command
can contain letters, digits, and underscores, and must begin with a letter or
underscore.

Design Compiler Tool Invocation Commands
U-2022.12

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
dc_shell

Feedback

As with aliases, a "!" command must be the first token in a statement, but not
necessarily the only one.

dc_shell> read -f equation my_design.eqn

dc_shell> compile

dc_shell> !! -no_m /* Recompile with the -no_m option */

dc_shell> history

 1 read -f equation my_design.eqn

 2 compile

 3 compile -no_m

 4 history

Given the previous history, the following commands are equivalent:

dc_shell> !-4 -s file /* Same as command 1 */

dc_shell> !1 -s file

dc_shell> !re -s file

dc_shell> !?eqn -s file

dc_shell> !?ead -s file
Additional parameters can be included in a ! command statement. The above examples
include the -single_file option of the read command.

More than one ! command can appear in a line as long as each is the first token in a
statement.

dc_shell> !?q; !c; !4
The previous command is the same as the following:

dc_shell> read -f equation my_design.eqn

dc_shell> compile -no_m

dc_shell> history

Design Compiler Tool Invocation Commands
U-2022.12

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

See Also

• alias

• history

• if

• while

• sh_output_log_file

de_shell
Invokes the DC Explorer command shell.

Syntax
de_shell
[-f script_file]
[-x command_string]
[-no_init]
[-no_home_init]
[-no_local_init]
[-checkout feature_list]
[-64bit]
[-wait wait_time]
[-timeout timeout_value]
[-version]
[-no_log]
[-container]

Data Types
script_file string
command_string string
feature_list list
timeout_value integer

Arguments
-f script_file

Executes script_file (a file of de_shell commands) before displaying the initial
de_shell prompt. If the last statement in script_file is quit, no prompt is displayed
and the command shell is exited.

-x command_string
Executes the de_shell statement in command_string before displaying the initial
de_shell prompt. Multiple statements can be entered. Separate the statements
with semicolons and enclose each statement with quotation marks around

Design Compiler Tool Invocation Commands
U-2022.12

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

the entire set of command statements after the -x option. If the last statement
entered is quit, no prompt is displayed and the command shell is exited.

-no_init
Specifies that de_shell is not to execute any .synopsys_dc.setup startup files.
This option is only used when you want to include a command log or other
script file in order to reproduce a previous Design Analyzer or de_shell session.
Include the script file either by using the -f option or by issuing the include
command from within de_shell.

-no_home_init
Specifies that de_shell is not to execute any home .synopsys_dc.setup startup
files.

-no_local_init
Specifies that de_shell is not to execute any local .synopsys_dc.setup startup
files.

-checkout feature_list
Specifies a list of licensed features to check out in addition to the default
features checked out by the program.

-wait wait_time
Specifies the maximum wait time (in minutes), that de_shell waits to check out
the licensed features specified by the -checkout option. You can invoke de_shell
successfully only when all of the licensed features specified with the -checkout
feature_list option can be checked out during the specified wait time.

-timeout timeout_value
Specifies a value from 5 to 20 that indicates the number of minutes the program
spends trying to recover a lost contact with the license server before terminating.
The default is 10 minutes.

-version
Displays the version number, build date, site id number, local administrator, and
contact information, and then exits.

-64bit
Invokes the 64-bit executable of the DC Explorer command shell.

Design Compiler Tool Invocation Commands
U-2022.12

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

-no_log
Disables command file logging for the session and creates a filenames log file
such as:

-container
Enables Container - a way to bundle all application system dependencies into
a single package so that it can run on any host that supports the container
engine regardless of what packages are installed on the host (needed for cloud
computing).

<filename>_<pid>_<timestamp>.log.

Description

The de_shell command interprets and executes DC Explorer commands. DC Explorer
is a Synopsys product that optimize logic. The de_shell environment consists of user
commands and variables that control the synthesis and optimization capabilities of DC
Explorer.

The de_shell command executes commands until it is terminated by a quit or exit
command. During interactive mode, you can also terminate the de_shell session by
pressing Control-d.

To cancel or interrupt the command currently executing in de_shell, press Control-c. The
time it takes for a command to process an interrupt depends upon the size of the design
and the command. If you press Control-c 3 times before a command responds to the
interrupt, de_shell exits and the following message is displayed:

Information: Process terminated by interrupt.

There are 3 types of statements in de_shell: assignment, control, and command.

There are 7 types of expressions: string, numeric, constant, variable, list, command,
operator, and complex.

Statements and expressions are discussed in detail in the following subsections.

Special Characters

The pipe character (|) has no meaning in de_shell. Use backslash e (\\e) to escape
double quotes when executing a UNIX command. For example, the following command
requires backslash characters before the double quotes to prevent DC Explorer from
ending the command prematurely:

de_shell> sh \'grep \\'foo\\' my_file\'

Design Compiler Tool Invocation Commands
U-2022.12

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

Assignment Statements

An assignment statement assigns the value of the expression to the variable named in the
set statement.

The syntax of an assignment statement is as follows:

set variable_name expression

The following are examples of de_shell assignment statements:

de_shell> set hlo_ignore_priorities false

de_shell> set text_threshold 6
The following are examples of de_shell assignment statements for float numbers:

de_shell> set my_float 100.3
100.300003

de_shell> set my_another_float 123456700.0
123456704.000000

The de_shell environment uses 32 bit IEEE format to represent floating point numbers.
This format cannot represent all numbers exactly, so the returned number may not always
be the number originally specified. Typically, only the first 6 or 7 digits are precisely
represented. Beyond that, there can be some variance.

Control Statements

The if and while control statements allow conditional execution and looping in de_shell
language. The syntax of the basic if statement is as follows:

if (condition) {
statement_list
}

Other forms of the if statement allow the use of else and else if.

The syntax of the while statement is as follows:

while (condition) {
statement_list
}

For a discussion of relational and logical operators used in the control statements, see the
Operator Expressions and Complex Expressions sections of this man page.

Design Compiler Tool Invocation Commands
U-2022.12

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

Command Statements

The de_shell invokes the specified command with its arguments. The following example
show the syntax of a command statement:

command_name argument_1 argument_2 ... argument_n

Arguments are separated by commas or spaces and can be enclosed in parentheses. The
following are examples of de_shell command statements:

de_shell> set_max_delay 0 "OUT_PIN_1"

de_shell> compile_exploration
String Expressions

A string expression is a sequence of characters enclosed in quotation marks (""). The
following are examples of string expressions:

"my_design_name"

"~/dir_1/dir_1/file_name"

"this is a string"

Numeric Constant Expressions

Numeric constant expressions are numeric values. They must begin with a digit and
can contain a decimal point; a leading sign can also be included. Exponential notation is
recognized. The following are examples of numeric constant expressions:

123

-234.5

123.4e56

Variable Expressions

A variable expression recalls the value of a previously-defined variable. Variable names
can contain letters, digits, and most punctuation characters, but cannot start with a digit.
The following are examples of variable expressions:

current_design

name/name

-all

+-*/.:'#~`%$&^@!_[]|?

Design Compiler Tool Invocation Commands
U-2022.12

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

If a variable used in an expression has not previously been assigned a value in an
assignment statement, then its value is a string containing the variable name. The
following two command statements are equivalent, assuming there is no variable defined
with the -hierarchy option:

de_shell> write -hierarchy

de_shell> write "-hierarchy"
This feature allows you to omit the quotes around many strings. For example, the following
commands are equivalent, assuming there are no variables called "~user/dir/file",
"equation", or "-f").

de_shell> read "-f" "equation" "~user/dir/file"

de_shell> read -f equation ~user/dir/file
List Expressions

A list expression defines a list constant. The list can include pathnames, cell names or pin
names, values, etc. The syntax of a list expression is as follows:

{ expression_1 expression_2 ... expression_n }

Expressions are separated by spaces or commas. The following are examples of list
expressions:

{}

{"pin_1" "pin_2" "pin_3"}

{1,2,3,4,5}

Command Expressions

A command expression invokes a de_shell command and returns its value. The syntax
of a command expression is the same as that of a command statement, except that
parentheses are required in a command expression and are optional in a command
statement. Commas separating arguments are optional for both. The following are
examples of command expressions:

de_shell> all_inputs()

de_shell> set_max_delay(0 "OUT_PIN_1")
Operator Expressions

Operator expressions perform simple arithmetic and string and list concatenation. The
syntax of an operator expression is as follows:

expression operator expression

Design Compiler Tool Invocation Commands
U-2022.12

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

The operator is "+", "-", "*", or "/", and is separated by at least one preceding and one
following space. Operator expressions involving numbers return the computed value. The
"+" operator can be used with strings and lists to perform concatenation. The following are
examples of operator expressions:

234.23 - 432.1

100 * scale

file_name_variable + ".suffix"

{portA, portB} + "portC"

The relational operators "==", "!=", ">", ">=", "<", and "<=" are used in the control
statements if and while. The greater than (>) operator should only be used in expressions
with parentheses to avoid confusion with the file redirection operator ">".

The logical operators "&&", "||", and "!" (and, or, not) are also used in the if and while
control statements. The "not" operator is different from the other operators in that it is a
unary operator with the following syntax:

! expression

Complex Expressions

Expressions can be built from other expressions, creating complex expressions. When
a complex expression contains more than one operator, de_shell satisfies multiplication
and division operators before addition and subtraction. Simple expressions enclosed in
parentheses take priority and override this rule. The expression "1 + 2 * 3 + 4" has the
value 11, and "(1 + 2) * (3 + 4)" has the value 21.

The following is an example of an assignment statement containing complex expressions:

de_shell> set my_variable [set_max_delay(23.2 * scaling_factor, \\
 all_outputs())]
In this example, "my_variable" is assigned the value returned by the set_max_delay
command expression. The set_max_delay command is invoked with two arguments. The
first argument is an operator expression that returns the value of the variable expression
"scaling_factor" multiplied by the numeric constant expression "23.2". The second
argument is a command expression that is equal to the value returned by the all_outputs
command. The all_outputs command is called with no arguments.

The following is an example of a complex command statement:

de_shell> read -f edif ~user/dir/ + file_name
In this example, the read command is called with 3 arguments. If you assume that "-f",
"edif" and "~user/dir/" are not defined variables, and that file_name" is assigned the value
my_design, then the first argument to the read command is the string "-f". The second

Design Compiler Tool Invocation Commands
U-2022.12

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

argument is the string "edif". The third argument is the concatenation of the string "~user/
dir/" with the string my_design. The third argument to the read command is the string
"~user/dir/my_file". The relational and logical operators can be used in combination to form
complex conditions. The following are examples of complex conditional expressions:

(goal >= 7.34 || ! complete)

(a >= 7 || run_mode != "test" && !(error_detected == true))

(cycle < 4 && test == true || design_area > area_goal)

Complex logical expressions are evaluated from left to right, with "&&" being evaluated
before "||". However, those expressions enclosed in parentheses are evaluated first.

Command Arguments

Many de_shell commands have required or optional arguments that allow you to further
define, limit, or expand the scope of their operation.

This man page contains a comprehensive list and description of these arguments. You can
also use the help command to view the man page online. For example, to view the online
man page of the ungroup command, enter the following command:

de_shell> help ungroup
Many commands also offer a -help option that lists the arguments available for that
command. For example:

de_shell> ungroup -help
Usage: ungroup # ungroup hierarchy
 [-all] (ungroup all cells)
 [-prefix <prefix>] (prefix to use in naming cells)
 [-flatten] (expand all levels of hierarchy)
 [-simple_names] (use simple, non-hierarchical names)
 [-small <n>] (ungroup all small hierarchy:
 Value >= 1)
 [-force] (ungroup dont_touched cells as well)
 [-soft] (remove group_name attribute)
 [-start_level <n>] (flatten cells from level:
 Value >= 1)
 [-all_instances] (Ungroup all the instances of the cell)
 [cell_list] (list of cells to be ungrouped)

Arguments that do not begin with a hyphen (-) are positional arguments. Positional
arguments must be entered in a specific order. Non-positional arguments (those beginning
with a hyphen) can be entered in any order and can be intermingled with positional
arguments.

The names of non-positional arguments can be abbreviated to the minimum number of
characters required to distinguish them from the other arguments.

Design Compiler Tool Invocation Commands
U-2022.12

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

The following commands are equivalent:

de_shell> ungroup MODULAR -flatten -prefix MOD

de_shell> ungroup -flatten -prefix MODULAR MOD

de_shell> ungroup -f MODULAR -p MOD
Many arguments are optional, but if you omit a required argument, an error message is
displayed. For example:

de_shell> group
Error: Current design is not defined. (UID-4)
0

Multiple Statement Lines and Multiple Line Statements

Normally, only one command is typed on a single line. To put more than one command on
a line, must separate each command with a semicolon. For example:

de_shell> read -f equation my_file.eqn; set_max_area 0;
 compile_exploration; \\
 report_constraint; report_timing
There is no limit to the number of characters on a de_shell command line, but you
can break a long command into multiple lines by terminating all but the last line with a
backslash (\e). This tells de_shell to expect the command to continue on the next line.

de_shell> read -f equation\\
 {file_1, file_2, file_3,\\
 file_4, file_5, file_6}
This feature is normally used in files containing de_shell commands (script files).

Output Redirection

The de_shell allows you to divert command output messages to a file. To do this, type
"> file_name" after any statement. The following example deletes the old contents of
"my_file" and writes the output of the report_hierarchy command to the file:

de_shell> report_hierarchy > my_file
You can append the output of a command to a file with ">>". The following example
appends the hierarchy report to the contents of my_file:

de_shell> report_hierarchy >> my_file
Aliases

The alias command gives you the ability to define new commands in terms of existing
ones. You can reduce the number of keystrokes by defining short aliases for the
commands and options you use most often.

Design Compiler Tool Invocation Commands
U-2022.12

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

The following example defines a new command called com that is equivalent to running
the compile_exploration command with the -scan option.

de_shell> alias com compile_exploration -scan
With the com alias defined, the following two commands are equivalent:

de_shell> compile_exploration -scan -gate_clock

de_shell> com -gate_clock
Alias definitions can be placed in your .synopsys_dc.setup file or in a separate file. The
advantage of keeping aliases in a separate file is that all defined aliases can be written to
a file with a command such as:

de_shell> alias > ~/.synopsys_aliases
This works only if you put the command include ~/.synopsys_aliases in
your .synopsys_dc.setup file. The aliases are defined every time you start a new de_shell
session.

An alias is expanded only if it is the first token in a command, so aliases cannot be used
as arguments to other commands.

History

A record is kept of all de_shell commands issued during any given de_shell session. The
history command displays a list of these commands.

de_shell> history
 1 read -f verilog my_design.v

 2 compile_exploration -scan

 3 report_constraint

 ...

Your previous commands can be re-executed with the following "!" commands:

!!

Expands to the previous command.

!number

Expands to the command whose number in the history list matches number.

!-number

Expands to the command whose number in the history list matches the current
command minus number.

Design Compiler Tool Invocation Commands
U-2022.12

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
de_shell

Feedback

!text

Expands to the most recent command that starts with text. A text command
can contain letters, digits, and underscores, and must begin with a letter or
underscore.

!?text

Expands to the most recent command that contains text. A text command
can contain letters, digits, and underscores, and must begin with a letter or
underscore.

As with aliases, a "!" command must be the first token in a statement, but not
necessarily the only one.

de_shell> read -f verilog my_design.v

de_shell> compile_exploration

de_shell> !! -gate_clock /* Recompile with the -gate_clock option
 */

de_shell> history

 1 read -f verilog my_design.v

 2 compile_exploration

 3 compile_exploration -gate_clock

 4 history

Given the previous history, the following commands are equivalent:

de_shell> !-4 -s file /* Same as command 1 */

de_shell> !1 -s file

de_shell> !re -s file

de_shell> !?eqn -s file

de_shell> !?ead -s file
Additional parameters can be included in a ! command statement. The above examples
include the -single_file option of the read command.

More than one ! command can appear in a line as long as each is the first token in a
statement.

de_shell> !?q; !c; !4

Design Compiler Tool Invocation Commands
U-2022.12

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
design_vision

Feedback

The previous command is the same as the following:

de_shell> read -f verilog my_design.v

de_shell> compile_exploration -scan

de_shell> history

See Also

• alias

• history

• if

• while

• sh_output_log_file

design_vision
Runs Design Vision visualization for Synopsys synthesis products.

Syntax

design_vision [-f script_file] [-x command_string]

[-no_init] [-checkout feature_list]

[-timeout timeout_value] [-version]
[-behavioral]
[-syntax_check | -context_check]
[-tcl_mode]
[-container]

string script_file
string command_string
list feature_list
float timeout_value

Arguments
-f script_file

Executes a specified script file (a file of dc_shell commands) before displaying
the initial Design Vision window.

Design Compiler Tool Invocation Commands
U-2022.12

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
design_vision

Feedback

-x command_string
Executes the dc_shell command in the specified command string before
displaying the initial Design Vision window. You can enter multiple commands if
you separate each by a semicolon.

-no_init
Tells dc_shell not to execute any .synopsys_dc.setup startup files. This option
is used only when you have a command log or other script file that you want to
include in order to reproduce a previous Design Analyzer or dc_shell session.

-checkout feature_list
Specifies a list of licensed features to be checked out in addition to default
features checked out by the program.

-timeout timeout_value
Specifies a value from 5 to 20 that indicates the number of minutes the program
will spend trying to recover a lost contact with the license server before
terminating. The default is 10 minutes.

-version
Displays the version number, build date, site id number, local administrator, and
contact information; then exits.

-behavioral
Invokes dc_shell in Behavioral Compiler mode. This argument is required for
synthesizing behavioral designs.

-syntax_check
Invokes dc_shell in syntax_checking mode which causes the command
interpreter to check for syntax errors instead of executing commands.

-context_check
Invokes dc_shell in context_checking mode which causes the command
interpreter to check for context errors instead of executing commands.

-tcl_mode
Invokes dc_shell in Tcl mode which brings up the Tcl user interface shell with the
design_vision-t prompt. All commands in this shell should be in Tcl format. The
default is to invoke dc_shell in eqn mode.

-container
Enables Container - a way to bundle all application system dependencies into
a single package so that it can run on any host that supports the container

Design Compiler Tool Invocation Commands
U-2022.12

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

engine regardless of what packages are installed on the host (needed for cloud
computing).

Description

The design_vision command runs Design Vision visualization for Synopsys synthesis
products.

For information about Design Vision menus and features, see Design Vision online help.

Examples

Use the following command to start Design Vision visualization: % design_vision

or

% design_vision -tcl_mode

The following command starts Design Vision and executes the commands found in the
script file "test_adder." % design_vision -f test_adder

See Also

• dc_shell

lc_shell
Runs the Library Compiler command shell.

Syntax

lc_shell

[-f script_file]
[-x command_string]
[-no_init]
[-version]

Data Types
script_file string
command_string string

Arguments
-f script_file

Executes script_file (a file of lc_shell commands) before displaying the initial
lc_shell prompt. If the last statement in script_file is quit, no prompt is displayed
and the command shell is exited.

Design Compiler Tool Invocation Commands
U-2022.12

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

-x command_string
Executes the lc_shell statement in command_string before displaying the initial
lc_shell prompt. Multiple statements can be entered, each statement separated
by a semicolon. See the Multiple Statement Lines and Multiple Line Statements
subsection of this manual page. If the last statement entered is quit, no prompt
is displayed and the command shell is exited.

-no_init
Tells the lc_shell not to execute any .synopsys_lc.setup startup files. This option
is only used when you have a command log or other script file that you want to
include in order to reproduce a previous Library Compiler graphical interface or
lc_shell session. You can include the script file either by using the -f option or by
issuing the include command from within lc_shell.

-version
Displays the version number, build date, site identification number, local
administrator, and contact information, and then exits.

Description

Interprets and executes library compiler commands. The lc_shell environment consists of
user commands and variables that control the creation and manipulation of libraries

The lc_shell executes commands until it is terminated by a quit or exit command. During
interactive mode, you can also terminate the lc_shell session by typing Control-d.

To cancel (interrupt) the command currently executing in lc_shell, type Control-c. The time
it takes for a command to process an interrupt (stop what it is doing and continue with
the next command) depends upon the size of the library and the type of command. If you
enter Control-c three times before a command responds to the interrupt, lc_shell exits and
the following message is displayed:

Information: Process terminated by interrupt.

There are three basic types of statements in lc_shell:

- assignment
- control
- command

Additionally, there are seven types of expressions:

- string
- numeric
- constant
- variable
- list
- command

Design Compiler Tool Invocation Commands
U-2022.12

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

- operator
- complex

Statements and expressions are discussed in detail in the following subsections.

Special Characters

The pipe character (|) has no meaning in lc_shell. Use the backslash (\) to escape
double quotes when executing a UNIX command. For example, the following command
requires backslash characters before the double quotes to prevent Design Compiler from
ending the command prematurely:

lc_shell> sh \'grep \\'foo\\' my_file\'.

Assignment Statements

An assignment statement assigns the value of the expression on the right side of an equal
sign to the variable named on the left side of the equal sign.

The syntax of an assignment statement is: variable_name = expression

Following are examples of lc_shell assignment statements: lc_shell> command_log =
"file.log" lc_shell> vhdllib_architecture = "FTGS"

Control Statements

The two control statements if and while allow conditional execution and looping in the
lc_shell language. The syntax of the basic if statement is:

if (condition) {
statement_list
}

Other forms of the if statement allow use of else and else if. See the description of the if
statement in the Synopsys Commands section of this manual for details.

The syntax of the while statement is:

while (condition) {
statement_list
}

See the description of the while statement in the Synopsys Commands section of this
manual for more details. See the Operator Expressions and Complex Expressions
subsections of this manual page for a discussion of relational and logical operators used in
the control statements.

Design Compiler Tool Invocation Commands
U-2022.12

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

Command Statements

The lc_shell invokes the specified command with its arguments. The syntax of a command
statement is:

command_name argument_1 argument_2 ... argument_n

Arguments are separated by commas or spaces and can be enclosed in parentheses.
Following are examples of lc_shell command statements: lc_shell> read_lib my_lib.lib
lc_shell> report_lib my_lib

String Expressions

A string expression is a sequence of characters enclosed within quotation marks ("").
Following are examples of string expressions: "my_lib_name" "~/dir_1/dir_1/file_name"
"this is a string"

Numeric Constant Expressions

Numeric constant expressions are numeric values. They must begin with a digit and
can contain a decimal point; a leading sign can be included. Exponential notation is
also recognized. Following are examples of numeric constant expressions: 123 -234.5
123.4e56

Variable Expressions

A variable expression recalls the value of a previously-defined variable. Variable names
can contain letters, digits, and most punctuation characters, but must not start with a digit.
Following are examples of variable expressions: current_lib name/name -all +-*/.:'#~`%
$&^@!_[]|?

If a variable used in an expression has not previously been assigned a value (in an
assignment statement), then its value is a string containing the variable name. This feature
allows you to omit the quotes around many strings. For example, the following commands
are equivalent (assuming there are no variables called "~user/dir/file", "edif", \por "-f").

lc_shell> read "-f" "edif" "~user/dir/file"
lc_shell> read -f edif ~user/dir/file
List Expressions

A list expression defines a list constant. The list can include pathnames, cell or pin names,
values, etc. The syntax of a list expression is:

{ expression_1 expression_2 ... expression_n }

Expressions are separated by spaces or commas. Following are examples of list
expressions: {} {"pin_1" "pin_2" "pin_3"} {1,2,3,4,5}

Design Compiler Tool Invocation Commands
U-2022.12

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

Operator Expressions

Operator expressions perform simple arithmetic, and string and list concatenation. The
syntax of an operator expression is: expression <operator> expression

where <operator> is: "+", "-", "*", or "/", and is separated by at least one preceding and
following space. Operator expressions involving numbers return the computed value.
The "+" operator can be used with strings and lists to perform concatenation. Following
are examples of operator expressions: 234.23 - 432.1 100 * scale file_name_variable +
".suffix" {portA, portB} + "portC"

The relational operators "==", "!=", ">", ">=", "<", and "<=" are used in the control
statements if and while. The "greater than" operator ">" should only be used in
parenthesized expressions to avoid confusion with the file redirection operator ">".

The logical operators "&&", "||", and "!" (and, or, not) are also used in the control
statements if and while. The "not" operator is different from the other operators in that it is
a unary operator with the syntax: ! expression

Complex Expressions

Expressions can be built from other expressions, creating complex expressions. When
a complex expression contains more than one operator, lc_shell satisfies multiplication
and division operators before addition and subtraction. Simple expressions enclosed in
parentheses are given priority and override this rule. Thus, the expression "1 + 2 * 3 + 4"
has the value 11, and "(1 + 2) * (3 + 4)" has the value 21.

Following is an example of a complex command statement:

lc_shell> read -f edif ~user/dir/ + file_name
In this example, the read command is called with three arguments. If we assume that "-
f", "edif" and "~user/dir/" are not defined variables, and that "file_name" was assigned the
value "my_lib", then the first argument to the read command is the string "-f". The second
argument is the string "edif". The third argument is the concatenation of the string "~user/
dir/" with the string "my_lib". Thus, the third argument to the read command is the string
"~user/dir/my_file". The relational and logical operators can be used in combination to form
complex conditions. Following are examples of complex conditional expressions:

(goal >= 7.34 || ! complete)
(a >= 7 || run_mode != "test" && !(error_detected == true))

Complex logical expressions are evaluated from left to right, with "&&" being evaluated
before "||". However, those expressions enclosed in parentheses are evaluated first.

Command Arguments

Many lc_shell commands have required or optional arguments that allow you to further
define, limit or expand the scope of its operation.

Design Compiler Tool Invocation Commands
U-2022.12

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

This manual contains a comprehensive list and description of these arguments. You can
also use the help command to view the manual page online. For example, to view the
online manual page of the read_libn command, enter: lc_shell> help read_lib

Many commands also offer a -help option that lists the arguments available for that
command, for example:

lc_shell> read_lib -help
Usage: read_lib
 -format (EDIF symbol format; default is Synopsys format)
 -symbol (with EDIF, name of Synopsys library file to create)
 <file_name> (technology or symbol library file)
 -no_warnings (disable warning messages)

Arguments that do not begin with a hyphen (-) are positional arguments. Positional
arguments must be entered in a specific order relative to each other. Non-positional
arguments (those beginning with a hyphen) can be entered in any order and can be
intermingled with positional arguments.

The names of non-positional arguments can be abbreviated to the minimum number of
characters required to distinguish them from the other arguments.

The following commands are equivalent: lc_shell> write_lib -format vhdl -output lib.vhd
my_lib lc_shell> write_lib my_lib -format vhdl -output lib.vhd my_lib lc_shell> write_lib -f
vhdl -o lib.vhd my_lib

Many arguments are optional, but if you omit a required argument, an error message and
usage statement are displayed. For example:

lc_shell> read_lib
Error: Value required for the '<file_name>' argument. (EQN-19)
Usage: read_lib
 -format (EDIF symbol format; default is Synopsys format)
 -symbol (with EDIF, name of Synopsys library file to create)
 <file_name> (technology or symbol library file)
 -no_warnings (disable warning messages)

Multiple Statement Lines and Multiple Line Statements

Normally, only one command is typed on a single line. If you want to put more than one
command on a line, you must separate each command with a semicolon, for example:

lc_shell> read_lib my_lib.lib; report_lib my_lib; write_lib my_lib;
list -libraries; list -variables all
There is no limit to the number of characters on a lc_shell command line, but you can
break a long command into multiple lines by terminating all but the last line with a
backslash (\e). This tells lc_shell to expect the command to continue on the next line:

lc_shell> read -f edif\e

Design Compiler Tool Invocation Commands
U-2022.12

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

{file_1, file_2, file_3,\e

file_4, file_5, file_6}

This feature is normally used in files containing lc_shell commands (script files).

Output Redirection

The lc_shell lets you divert command output messages to a file. To do this, type ">
file_name" after any statement. The following example deletes the old contents of
"my_file" and writes the output of the report_lib command to the file. lc_shell> report_lib
my_lib1 > my_file

You can append the output of a command to a file with ">>". The following example
appends the library report of my_lib2 to the contents of "my_file": lc_shell> report_lib
my_lib2 >> my_file

Aliases

The alias command gives you the ability to define new commands in terms of existing
ones. You can reduce the number of keystrokes by defining short aliases for the
commands and options you use most often.

The following example defines a new command "lc" that is equivalent to running the list
command with the -variables option.

lc_shell> alias com list -variables
With the "lv" alias defined, the following two commands are equivalent:

lc_shell> list -variable vhdlio
lc_shell> lv vhdlio
Alias definitions can be placed in your .synopsys_lc.setup file or in a separate file. The
advantage of keeping aliases in a separate file is that all defined aliases can be written to
a file with a command such as: lc_shell> alias > ~/.synopsys_aliases

If you put the command include ~/.synopsys_aliases in your .synopsys_lc.setup file, the
aliases are defined every time you start a new lc_shell session.

Note that aliases are only expanded if they are the first token in a command. Thus, they
can not be used as arguments to other commands. See the description of the alias
command in the Synopsys Commands section of this manual.

History

A record is kept of all lc_shell commands issued during any given lc_shell session. The
history command displays a list of these commands. lc_shell> history 1 read_lib file.lib 2
report_lib my_lib 3 write_lib my_lib ...

Design Compiler Tool Invocation Commands
U-2022.12

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
lc_shell

Feedback

Your previous commands can be re-executed with the following "!" commands:

!!

Expands to the previous command.

!number

Expands to the command whose number in the history list matches number.

!-number

Expands to the command whose number in the history list matches the current
command minus number.

!text

Expands to the most recent command that starts with text. A text command
can contain letters, digits, and underscores, and must begin with a letter or
underscore.

!?text

Expands to the most recent command that contains text. A text command
can contain letters, digits, and underscores, and must begin with a letter or
underscore.

As with aliases, a "!" command must be the first token in a statement, but not necessarily
the only one.

lc_shell> read_lib file.lib
lc_shell> write_lib my_lib
lc_shell> !! -f vhdl /* Rewrite with the -format vhdl option */
lc_shell> history
 1 read_lib file.lib
 2 write_lib my_lib
 3 write_lib my_lib -f vhdl
 4 history
Given the previous history, the following commands are equivalent:

lc_shell> !-4 -s file /* Same as command 1 */
lc_shell> !1 -s file
lc_shell> !re -s file
lc_shell> !?lib -s file
lc_shell> !?ead -s file
Additional parameters can be included in a ! command statement. The above examples
include the -single_file option (-s file) of the read command.

More than one ! command can appear in a line, as long as each is the first token in a
statement. lc_shell> !?q; !c; !4

Design Compiler Tool Invocation Commands
U-2022.12

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
synenc

Feedback

The previous command is the same as: lc_shell> read_lib file.lib lc_shell> write_lib my_lib
-f vhdl lc_shell> history

See Also

• alias

• history

• if

• while

synenc
Runs the Synopsys Encryptor for HDL or Tcl source code.

Syntax

synenc [-r synopsys_root] [-f format]

[-o file_path | -ansi] [-zip]

file_list

synopsys_root string
format string
file_path string
file_list list

Arguments
-r synopsys_root

Specifies that synopsys_root will be used as the UNIX path name where
Synopsys tools are installed. If the -r option is not specified, then the value of
the SYNOPSYS environment variable is used as the path for the root directory.
The Synopsys root directory is used to verify that the site has a DesignWare
or DesignWare Developer license, which is required to run synenc. An error is
issued if neither the -r option nor the SYNOPSYS environment variable is set.

-f format
Specifies the format of the file to be encrypted. This is optional, because synenc
can recognize the format of the source automatically. Use this option when you
want to override the automatic recognition.

-o file_path
Specifies the path of the output file. synenc saves the encrypted file to current
working directory by default. If you want to save it to a different place, you can

Design Compiler Tool Invocation Commands
U-2022.12

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
synenc

Feedback

use this option to specify that. The path can be either an absolute path or a
relative path, but you must ensure that all directories in the path already exist.
synenc doesn't create any parent directory for the output file.

This option can only be used when there is one input file. It will be ignored when
multiple input files are given.

This option can not be used with "-ansi" option at the same time.

-ansi
Specifies that all output files will be saved in the same directory as the input
files. synenc saves the encrypted file to current working directory by default. You
can use this option to override the default behavior.

This option can not be used with "-o" option at the same time.

-zip
Specifies that the file will be compressed during encryption.

file_list

Specifies a list of files to encrypt. At least one file must be specified.

Description

The Synopsys Encryptor converts the HDL source of DesignWare parts or Tcl source to
a form readable by Synopsys tools. Vendors protect the proprietary nature of the source
files by encrypting them using synenc. Thus, customers who buy DesignWare parts from
Synopsys or from a third-party vendor receive encrypted entities.

The synenc command writes the encrypted output to files named file_name.e in the
current directory by default. You can use different file name or path through "-o" option.

The synenc command requires either a DesignWare Developer license or a DesignWare
license. When the required license is not available, the command quits with an error
message. To wait for licenses to become available if all licenses are in use, set the
SNPSLMD_QUEUE environment variable to true before you start the synenc command.

When you invoke the synenc command, the tool displays the following message:
Information: License queuing is enabled. (SYNENC-12) Use the SNPS_MAX_WAITTIME
variable to specify the maximum wait time in seconds for the license. The default wait time
is 8 hours.

Examples

In the following example, synenc is used to encrypt the Verilog files add.v and add_fast.v,
and store the output in the files add.v.e and add_fast.v.e in the current directory. The
directory /usr/cad/synopsys is used as the root in verifying authorization.

% synenc -r /usr/cad/synopsys add.v add_fast.v

Design Compiler Tool Invocation Commands
U-2022.12

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
synopsys_users

Feedback

In the following example, all VHDL files in the directory /usr/parts/adders are encrypted.
The results are stored in the file file_name.vhdl.e in /usr/parts/adders. The value of the
SYNOPSYS environment variable is used as the root in verifying authorization. The
encrypted files are compressed.

% synenc /usr/parts/adders/*.vhdl -ansi -zip

See Also

• dc_shell

synopsys_users
Lists the current users of the Synopsys licensed features.

Syntax

synopsys_users [feature_list]

list feature_list

Arguments
feature_list

List of licensed features for which to obtain the information. Refer to the
Synopsys System Installation and Configuration Guide for a list of features
supported by the current release. Or, determine from the key file all the features
that are licensed at your site.

Description

Displays information about all of the licenses, related users, and hostnames currently in
use. If a feature is specified, all users of that feature are displayed.

synopsys_users is valid only when Network Licensing is enabled.

For more information about synopsys_users, refer to the System Installation and
Configuration Guide.

Examples

In this example, all of the users of the Synopsys features are displayed:

% synopsys_users

krig@node1 Design-Analyzer, Design-Compiler, LSI-Interface
 DFT-Compiler, VHDL-Compiler
doris@node2 HDL-Compiler, Library-Compiler
test@node3 Design-Compiler, Design-Analyzer, TDL-Interface

Design Compiler Tool Invocation Commands
U-2022.12

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Design Compiler Tool Invocation Commands
synopsys_users

Feedback

3 users listed.

This example shows users of the "Library-Compiler" or "VHDL-Compiler" feature.

% synopsys_users Library-Compiler VHDL-Compiler

krig@node1 Design-Analyzer, Design-Compiler, LSI-Interface
 DFT-Compiler, VHDL-Compiler
doris@node2 HDL-Compiler, Library-Compiler

2 users listed.

See Also

• get_license

• license_users

• list

• remove_license

Design Compiler Tool Invocation Commands
U-2022.12

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Design%20Compiler%20Tool%20Invocation%20Commands&body=Version%20information:%20U-2022.12,%20December%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	1 Design Compiler Tool Invocation Commands
	acs_setup
	aman
	cache_ls
	cache_rm
	create_types
	dc_shell
	de_shell
	design_vision
	lc_shell
	synenc
	synopsys_users

