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Mixer fundamentals

ICLAB

Mixers – General Considerations
 Component used for frequency translation by multiplication of two signals (RF 

signal with a periodic signal called the LO signal for down conversion mixers)

 Mainly two types of mixers
 Passive mixers
 Active mixers

 Passive mixers do the frequency translation but without any gain (they actually 
introduce some loss), whereas active mixers can achieve some gain
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Mixer fundamentals

ICLAB

Mixers Fundamentals

 Mixer generates frequency components not present at the input, it is therefore not 
a LTI system

 However, with respect to the RF and IF inputs only, the mixing of the sum of two 
RF signals by the same LO is a linear process
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Mixer fundamentals

ICLAB

Mixer Characteristics – Conversion and LO Gains

 Different gains can be defined

 The conversion gain is defined as the ratio of the rms voltage of the IF (output or 
downconverted) signal to the rms voltage of the RF signal (input)
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Mixer fundamentals

ICLAB

Mixer Characteristics – Linearity
 Similar to amplifiers except that IF signal is at a different frequency than RF signal

 Nonlinearities in the RF section of the mixer can cause in-band intermodulation
products

 Two-tone third order intercepts, IIP3 and OIP3, can be defined for input signal and 
desired output signal respectively

 1dB compression point is also used in conjunction with mixer gain to allow fair 
comparison among different mixers topologies

 Typical mixers exhibit an IIP3 of 10dBm or less

© C. Enz | 2022 Low-power radio design for the IoT Slide 5



Mixer fundamentals

ICLAB

Mixer Characteristics – Mixer Noise Figures
 Single side-band (SSB) noise factor is the ratio of SNR at the desired output 

frequency (IF) to the SNR at input frequency (RF) measured in a single side band.
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 Double-sideband (DSB) noise factor is the ratio of SNR at the output (IF) to the 
SNR at the input measured in both signal and image side bands (input signal 
spectrum resides on both sides of LO frequency, a common case in homodyne or 
zero-IF systems)



Mixer fundamentals

ICLAB

Mixer Characteristics – Mixer Noise Figures
 SSB NF is 3 dB higher than DSB NF in the ideal noise-less mixer with a sinusoid 

LO signal

 Typically mixers are noisier than amplifiers due to the noise folding nature of 
mixers

 DSB NF ranges from 10-15 dB
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Mixer fundamentals
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Mixer Characteristics – Port-to-port isolation
 Isolation is defined as the amount of feedthrough of input RF and LO signal to the 

desired output band

 Large LO component at IF may desensitize subsequent stages

 RF component in the IF rises the issue with respect to even-order distortion 
problem in homodyne receiver

 Reverse isolation of IF and LO signal back to the input (RF) port is also of great 
importance especially in minimizing interference to other receivers

 Isolation of around 30-50 dB is considered adequate for most communication 
systems
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Mixer fundamentals
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Mixer Characteristics – Spurious response
 Mixers can generate numerous cross-products of the LO and RF signals and their 

harmonics
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where 𝑛 and 𝑚 can be any positive or negative integers

 Need to ensure none of the spurious components fall in the desired (IF) band

 Analysis is tedious, need CAD tools

 Adequate input filtering as well as the choice (or quality) of LO and IF can limit the 
amount of spurs in the desired band to acceptable levels

spur RF LOm n     
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Non-linearity based mixers
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Nonlinearity-based Mixers – Principle
 Instead of implementing the multiplication operator, frequency translation can also 

be obtained by using a nonlinear device
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 If the mixer can be considered as a memoryless nonlinear system, the output is 
then given by

  2 3
1 2 3( ) ( ) ( ) ( ) ( )out in in in inx t f x t x t x t x t      

 Situation is then similar to a nonlinear amplifier with two-tone input

 In addition to the harmonics, the useful component for the mixing operation 
corresponds actually to one of the 2nd-order IM products

 2( ) cos ( )IF RF LO RF LOx t A A t      

 Other components need to be filtered out by an appropriate bandpass filter



Non-linearity based mixers

ICLAB

Nonlinearity-based Mixers – Principle
 For a fixed LO amplitude, the IF output amplitude is linearly proportional to the RF 

input amplitude

 The nonlinear-based mixer hence implements a linear mixer since the output is 
proportional to the input

 The conversion gain for this nonlinearity is then given by
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2RF LOG A 

 Note that a square-law nonlinear mixer has the advantage of producing only 
frequency components at DC, 2nd harmonics 2𝜔ோி, 2𝜔௅ை and 𝜔ோி ൅ 𝜔௅ை,
𝜔ோி െ 𝜔௅ை, hence the filter can be very simple since the components to be 
filtered are at very different frequencies than the desired one



Non-linearity based mixers
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Square-law MOSFET Mixers

 The square-law mixer can be implemented by using a single MOS transistor 
biased in strong inversion

 For long-channel devices, the conversion gain (actually transconductance if we 
look at the drain current) is independent of the bias (assuming in SI and constant 
mobility)

 Poor isolation between LO and RF (a bit better for the right one)
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Multiplier-based mixers
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Multiplier-based Mixers

 Nonlinearity-based mixers produce many unwanted frequency components and 
usually have a poor LO-to-RF isolation

 Multiplier-based mixers don’t have these drawbacks

 They are usually based on the differential pair, where the RF signal is added to the 
bias current provided by the queue current source and the LO signal is applied to 
the differential input
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Multiplier-based mixers
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The Single Balanced Mixer (SBM)
 The RF signal is added to the bias 

current 𝐼௕ and switched to either 
output by the differential pair

 The differential output current is equal 
to the queue current modulated by a 
periodic function 𝑚ሺ𝑡ሻ

 If the differential pair is hard-switched, 
then 𝑚ሺ𝑡ሻ corresponds to a square 
wave with no dc component

 The output spectrum contains only odd 
harmonics of the LO and the 
components resulting from mixing with 
the RF signal
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 T. Melly et al., JSSC, Jan. 2001.



Multiplier-based mixers
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The Single Balanced Mixer – LO Feedthrough
 The differential output current is given by
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 The first term corresponds to the LO feedthrough to the harmonics of the LO by 
the modulation signal 𝑚ሺ𝑡ሻ

 If the differential pair is hard-switched, the modulation signal can be assumed to be 
a simple square wave

 The fundamental component is the strongest and is given by

 4( ) sin 2-out LO b LOI t I f t


  

 Since it is proportional to the bias current, if the later is too large, this component 
might desensitize the next stage

 A detailed analysis valid for any LO amplitude and from weak to strong inversion is 
given next



Multiplier-based mixers

ICLAB

The Single Balanced Mixer – Conversion Gain
 The output spectrum is given by
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1) see Appendix 1 for the detailed derivation
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Multiplier-based mixers
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Multiplier-based Mixers – The Double Balanced Mixer
 The LO feedthrough of the single 

balanced mixer can be avoided by 
using the double balanced mixer

 All the LO feedthrough components 
are canceled in the differential output 
current
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 The LO feedthrough components are 
indeed canceled out
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Detailed analysis of the single balanced mixer (SBM)

ICLAB

Detailed Analysis of the SBM – Definitions

 Normalizing the currents to twice the specific current of a single transistor
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 T. Melly et al., JSSC, Jan. 2001.



Detailed analysis of the single balanced mixer (SBM)
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Definitions
 The normalized differential output current can then be written in general form
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whereas in SI, the nonlinear function 𝑓ሺ𝑢, 𝑖ሻ depends on both 𝑢 and 𝑖 and is 
given by

 T. Melly et al., JSSC, Jan. 2001.



Detailed analysis of the single balanced mixer (SBM)
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Output Signal
 The mixer output current is simply the product of the RF signal times a periodic 

modulation signal 𝑚ሺ𝑡ሻ of period 𝑇௅ை
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 The Fourier coefficient 𝑀௡ are defined as

 Note that it is not always possible to have a closed-form expression of 𝑀௡



Detailed analysis of the single balanced mixer (SBM)
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Gains Definition

 Different conversion gains 𝐺ோி,௞ can be defined as the current gains from the RF 
signal in the band 𝑘 · 𝜔௅ை ൅ 𝜔ூி and the IF band at 𝜔ூி

 The main conversion gain of interest for the mixer is the gain for 𝑘 ൌ 1, 𝐺ோி,ଵ
 Similarly, different LO gains 𝐺௅ை,௞ can be defined from the LO input in the band 
𝑘 · 𝜔௅ை and the IF band at 𝜔ூி

 The LO gain of most interest is the gain for 𝑘 ൌ 0 (DC to 𝜔ூி up-conversion), 
𝐺௅ை,଴ corresponding to the up-conversion gain of the flicker noise to the IF 
band
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Detailed analysis of the single balanced mixer (SBM)

ICLAB

Conversion Gains
 Since the RF current amplitude can be assumed much smaller than the bias 

current, the output current can be approximated by a Taylor series as
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 The conversion gains for the different harmonics can be computed as the average 
dc output current when the input signal is a cosine 
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 Note that, if the transistors are perfectly matched, the conversion gains for 𝑘 even 
are all null

, 0 for  evenRF kG k

 This means that, since 𝐺ோி,଴ ൌ 0, the flicker noise coming from the stages 
preceding the mixer (such as the LNA) is suppressed (actually only limited by the 
mismatch)

Note: see Appendix for the 
demonstration of this formula



Detailed analysis of the single balanced mixer (SBM)
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Conversion Gain GRF,1

 The conversion gain at the fundamental 𝐺ோி,ଵcannot be calculated analytically 
except for the asymptotic case of small and large LO amplitudes

 For large LO amplitudes, the modulation signal can be considered as a square 
wave and the conversion gain is given by
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Detailed analysis of the single balanced mixer (SBM)
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Conversion Gain GRF,1

 The conversion gain 𝐺ோி,ଵ is not easy to calculate between the asymptotes

 It is plotted below versus the normalized LO amplitude 𝑣௅ை for different inversion 
coefficients 𝐼𝐶
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Detailed analysis of the single balanced mixer (SBM)
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Conversion Gain GRF,3

 The gain for small LO amplitudes is proportional to the kth power of 𝑣௅ை
 The maximum current gain, when the input current is instantaneously switched 

from one output terminal to the other, is simply given by
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Detailed analysis of the single balanced mixer (SBM)
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LO Gain
 The normalized transconductance gain 𝐺௅ை,௞ between the single ended LO 

voltage and the differential output current can be calculated as

© C. Enz | 2022 Low-power radio design for the IoT Slide 29

 , 0 0
0

1 ( , ) cos
2

where
LOT

b
LO k m LO m

LO T

Idf u ICG G k t dt G
T du nU

      

 The LO gain for 𝑘 ൌ 0 is of particular interest to evaluate the flicker noise and 
offset up-conversion to IF

0

,0 0 0 0
0

1 ( , )LOT

LO m m
LO

G

df u ICG G dt G G
T du



    


 𝐺଴ can unfortunately not be calculated analytically, but a good approximation is 
given by

2

0

2 2( ) 1 ( )
1 4 14 ( ) ( )

22 2 2
( )

for
where

for

ms ms LO LO
ms T

D
LO

LO

g IC g IC
G U ICg ICG g IC

I IC

g IC




 

              


  

v v

v
v





Detailed analysis of the single balanced mixer (SBM)
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LO Gain G0

 For large LO amplitude, the LO gain 𝐺௅ை,଴ decreases with 2 𝜋 · 𝑣௅ை⁄ up to a 
point limited by the parasitic capacitance 𝐶௦ at the common source node
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Detailed analysis of the single balanced mixer (SBM)
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Noise Sources and Noise Mixing

 There are several noise sources that should be accounted for
 The noise from the RF input 𝐼௤ሺ𝑡ሻ which is downconverted to the IF
 The noise from the LO input and particularly the flicker noise 𝑉௡,௙௟ሺ𝑡ሻ at the DP gates 

that is up-converted to the IF
 The channel noise of the DP which is modulated by the periodic drain current 𝑚௡ሺ𝑡ሻ ·

𝐼௡,௧௛଴ሺ𝑡ሻ

 Each of these sources have to be treated separately deriving the appropriate gains 
and PSD at the output and referring them to the input
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Detailed analysis of the single balanced mixer (SBM)
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Input Referred DSB Noise PSD

 The noise and particularly the flicker noise coming from the LO input of the DP and 
found at the mixer output can advantageously be referred to the mixer input
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 With the asymptotes obtained previously for large and small 𝑣௅ை, we get



Detailed analysis of the single balanced mixer (SBM)
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Input Referred DSB Noise

 Assuming the same flicker noise PSD at the gate of the mixer transistors, the 
input-referred flicker noise PSD is 4 times (12dB) larger at low LO amplitude and in 
SI than at large LO amplitude

 At small LO amplitudes, the input referred current flicker noise is 6 dB higher in SI 
compared to WI
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Detailed analysis of the single balanced mixer (SBM)
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Thermal Noise
 Since the current in the DP transistor is strongly varying, the thermal noise sources 

of the DP transistors are non-stationary

 They are also modulated by the mixer

 The output noise due to the thermal noise sources in WI is given by
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Summary
 At small LO amplitudes, the input referred current flicker noise is 6 dB higher in 

strong inversion mode than in weak inversion

 Without taking into account linearity issues, the ideal mode of operation for the 
mixing transistors is therefore in weak inversion mode, since the mixing gain is 
maximum, the equivalent input flicker noise is minimum and gain saturation is 
reached for smaller LO amplitude

 However, the effect of the input pole degrades both gain and flicker-noise rejection 
for the small inversion factor, because, if the bias current is kept constant, 
transistors of larger active area are needed

 As a result, in practice and for a sufficiently advanced technology, the ideal mode 
of operation is usually situated in the moderate inversion region (i.e., 𝐼𝐶 ≅ 1)

© C. Enz | 2022 Low-power radio design for the IoT Slide 35



Appendix 1

ICLAB

Appendix 1 – Output Spectrum for SBM
 The differential output current is given by
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Appendix 1 – LO Feedtrough for SBM
 The LO feedthrough comes from the up-conversion of the dc bias current 𝐼௕
 The one at 𝑓௅ை is the strongest and its FT is given for 𝑛 ൌ േ1
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which corresponds to a sinewave in the time domain given by
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Appendix 1 – Output Signal of the SBM
 The FT corresponding to the RF signal downconverted to the IF frequency 𝑓ூி ൌ
𝑓ோி െ 𝑓௅ை is obtained by setting 𝑛 ൌ േ1 in the 2nd term of the output spectrum
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 Replacing IRF(f) in the above expression leads to

 Assuming the RF signal is a cosine given by
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 The output FT at IF is then given by 
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Appendix 2 – Conversion Gain of the SBM
 The mixer output current is simply the product of the RF signal times a periodic 

modulation signal 𝑚ሺ𝑡ሻ of period 𝑇௅ை
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 The shape of the modulation signal 𝑚ሺ𝑡ሻ depends on the LO amplitude 𝐴௅ை
(𝑣௅ை), the bias current 𝐼௕ (𝐼𝐶) and the DP nonlinearity 𝑓ሺ𝑢, 𝑖ሻ

 The spectrum of 𝑖௢௨௧ሺ𝑡ሻ is given by (double-sided FT)
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 The Fourier coefficient 𝑀௡ are defined as

 Note that it is not always possible to calculate these coefficients 𝑀௡ analytically
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Appendix 2 – Conversion Gain of the SBM
 The conversion from the band around 𝑘 · 𝜔௅ை to the band around 𝜔ூி is obtained 

by assuming that the RF signal is a cosine at 𝑘 · 𝜔௅ை ൅ 𝜔ூி
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Appendix 2 – Conversion Gain of the SBM
 Isolating the frequency components that fall into the IF band around 𝑓ூி ൌ 𝑓ோி െ
𝑘 · 𝑓௅ை and െ𝑓ூிൌ 𝑘 · 𝑓௅ை െ 𝑓ோி and dropping the others leads to
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 The signal power at IF is then given by
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Appendix 2 – Conversion Gain of the SBM
 The magnitude of the Fourier coefficient 𝑀௞ can be related to the cosine and sine 

Fourier coefficients 𝑎௡ and 𝑏௡ respectively
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 Since the nonlinear function f(u,i) is odd, the Fourier coefficients 𝑏௡ are all null, 
hence we have
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 The conversion gain can then be written in terms of 𝑎௡ as
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Appendix 2 – Conversion Gain of the SBM in WI
 In WI, the nonlinear function 𝑓ሺ𝑢, 𝑖ሻ is independent of 𝑖 and is simply given by
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Appendix 2 – Conversion Gain of the SBM in WI
 For 𝑣௅ை ≪ 1, 𝑚ሺ𝑡ሻ remains a cosine with amplitude 𝑣௅ை, hence
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 The signal at 𝑓ூி is then given by
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 The conversion gain then becomes proportional to the LO amplitude
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Appendix 2 – Conversion Gain of the SBM in SI
 In SI, the nonlinear function 𝑓ሺ𝑢, 𝑖ሻ is given by
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 The Fourier coefficients cannot be calculated analytically

 On the other hand, the RF current can usually be considered as much smaller than 
the bias current, which allows for the following approximation
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Appendix 2 – Conversion Gain of the SBM in SI
 For large LO amplitudes, the modulation signal is again a square wave and we get
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 For small LO amplitudes, we have
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 Finally, the conversion gain for the DP in SI is given by
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