HF&VHF Circuits and Techniques I

Serie 6 on Chapter 3 Impedance Matching calculations by using the Impedance Smith chart and the Admittance Smith chart

At a frequency equal to 60 MHz, the internal impedance of the sinusoidal voltage source is equal to:

$$Zs = (25 - 15 j) Ohms$$

At a frequency equal to 60 MHz, the impedance of the load is equal to:

$$Z_L = (100 - 25 j)$$
 Ohms

These impedances are normalized to $R_0 = 50$ Ohms to use the Smith charts.

Question 1)

• By starting from the impedance of the load, explain graphically (by using the Smith Charts available on Moddle) why the first component of the impedance matching network has to be a parallel branch.

Question 2)

The number of components is equal to 2.

- Explain how **the low-pass impedance matching circuit** can be determined by using the Admittance Smith Chart and the Impedance Smith Chart.
- Calculate the values of the passive components of the impedance matching network by using the Admittance Smith Chart and the Impedance Smith Chart which are available on Moodle.

Question 3)

The number of components is equal to 2.

- Explain how the high-pass impedance matching circuit can be determined by using the Admittance Smith Chart and the Impedance Smith Chart.
- Calculate the values of the passive components of the impedance matching network by using the Admittance Smith Chart and the Impedance Smith Chart which are available on Moodle.