Fundamentals of Analog & Mixed Signal VLSI Design Exercise 6 (30.10.2024)

Christian Enz

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 Gain stage with diode-connected MOSFET

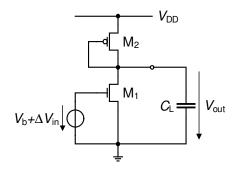


Figure 1: Schematic of the gain stage with diode-connected MOSFET.

Fig. 2 shows the schematic of a simple gain-stage with a diode-connected MOSFET load.

- Draw the small-signal schematic including all the noise sources.
- Derive the small-signal transfer function $A_v(s) \triangleq \Delta V_{out}/\Delta V_{in}$. Give the DC gain A_{dc} and cut-off frequency f_c .
- How should M_1 and M_2 be biased to maximize the DC voltage gain?
- · What is the maximum achievable voltage gain?
- Calculate the input-referred noise resistance R_{nin} and split it in terms of the input-referred thermal noise resistance R_{nf} and flicker noise resistance R_{nf} .
- Calculate the input-referred thermal noise excess factor $\gamma_{neg} \triangleq G_{m1} \cdot R_{nt}$.
- How should M₁ and M₂ be biased to minimize the input-referred thermal noise excess factor?
- Design the amplifier for a DC gain A_{dc} = 10 a cut-off frequency f_c = 1 MHz. Use the following parameters

$$V_{T0n} = 0.455 V$$
 $n_{0n} = 1.27$ $I_{spec \square n} = 715 nA$
 $V_{T0p} = 0.445 V$ $n_{0p} = 1.31$ $I_{spec \square p} = 173 nA$

with $U_T = 25.875 \, mV$.

Problem 2 Gain stage with feedback resistor

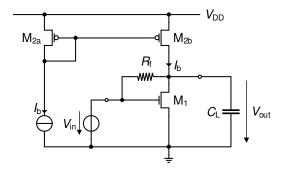


Figure 2: Schematic of the gain stage with feedback resistor.

Fig. 2 shows the schematic of a simple gain-stage with a feedback resistor.

- · Draw the small-signal schematic including all the noise sources.
- Derive the small-signal transfer function $A_v(s) \triangleq \Delta V_{out}/\Delta V_{in}$. Give the DC gain A_{dc} and cut-off frequency f_c assuming that $G_{m1} \cdot R_f \gg 1$.
- Calculate the input-referred noise resistance R_{nin} and split it in terms of the input-referred thermal noise resistance R_{nt} and flicker noise resistance R_{nf} .
- Calculate the input-referred thermal noise excess factor $\gamma_{neq} \triangleq G_{m1} \cdot R_{nt}$.
- How should M_1 , M_{2a} and M_{2b} be biased to minimize the input-referred thermal noise excess factor?
- Design the amplifier for a DC gain A_{dc} = 10 a cut-off frequency f_c = 1 MHz. Use the following parameters

$$V_{T0n} = 0.455 \ V$$
 $n_{0n} = 1.27 \ I_{spec \square n} = 715 \ nA$
 $V_{T0p} = 0.445 \ V$ $n_{0p} = 1.31 \ I_{spec \square p} = 173 \ nA$

with $U_T = 25.875 \, mV$.