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Problem 1 The differential pair
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Figure 1: The differential pair.

Fig. 1 shows the schematic of the basic differential pair. The differential input voltage is defined as Vid ≜ Vi1 − Vi2,
whereas the differential output current is defined as Iod ≜ I1 − I2.

1.1 Both transistors in weak inversion

1.1.1 Large-signal differential transfer characteristic

Derive the large-signal expression of the differential output current Iod as a function of the differential input voltage
Vid assuming that both transistors are biased in weak inversion and saturation.

1.1.2 Small-signal transconductance

Derive the small-signal transconductance from the large-signal transfer function obtained above and its particular
value Gm0 at Vid = 0. What is the approximate linear range if the differential pair is modeled by a piece-wise linear
characteristic having a slope Gm0 equal to that of the differential pair at Vid = 0?

1.2 Both transistors in strong inversion

1.2.1 Large-signal differential transfer characteristic

Derive the large-signal expression of the differential output current Iod as a function of the differential input voltage
Vid assuming that both transistors are biased in strong inversion and saturation.

1.2.2 Small-signal transconductance

Derive the small-signal transconductance from the large-signal transfer function obtained above and its particular
value Gm0 at Vid = 0. What is the approximate linear range if the differential pair is modeled by a piece-wise linear
characteristic having a slope Gm0 equal to that of the differential pair at Vid = 0?
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1.3 Optional: Both transistors in any modes of operation (saturation)

We can use the EKV charge-based model to derive an expression of the differential input voltage as a function of the
differential output current valid in any modes of operation (in saturation). In order to do this, first express the input
voltages Vi1 and Vi2 normalized to 2nUT as a function of the normalized source charges qs1 and qs2. Then find an
expression of i1 and i2 defined as

i1 ≜
I1

2Ib
=

id1

2ICq
, (1a)

i2 ≜
I2

2Ib
=

id2

2ICq
, (1b)

with id1 ≜ I1/Ispec , id2 ≜ I2/Ispec and ICq ≜ Ib/Ispec and where Ispec is the specific current of M1 and M2 and ICq is
the inversion coefficient of M1 and M2 at the quiescent point, i.e. for Vid = 0. You can then invert i1 and i2 to obtain
expressions of qs1 and qs2 in terms of iod ≜ i1 − i2 and parameter ICq . Sweeping the normalized output current iod

for a given ICq , you get the corresponding differential input voltage vid .

Problem 2 The inverter as a transconductance amplifier

VDD

M2

M1
Vin

IoutIp

In

VDD/2

Figure 2: The inverter used as a transconductance amplifier.

As shown in Fig. 2, the inverter can be used as a class AB transconductance amplifier. Derive the large-signal output
current Iout = Ip − In versus the input voltage Vin assuming that both transistors are biased in weak inversion and
saturation and have the same slope factor nn = np = n. Note that the output voltage is maintained constant at VDD/2
to calculate the output current Iout . What is limiting the output current?

Problem 3 Effect of velocity saturation on the gate transconductance

An nMOS transistor is biased with a current of Ib = 20µA at an inversion coefficient IC = 30 to drive a large load
capacitance CL = 5 pF . Calculate its gate transconductance Gm and bandwidth assuming its slope factor is n = 1.3
and UT = 26 mV in the following cases.

3.1 Long-channel case

Assume the channel is long enough to ignore the effect of velocity saturation.

3.2 Short-channel case

Assume the transistor length is short resulting in a velocity saturation parameter λc = 1/3. How much smaller is the
gate transconductance and bandwidth with velocity saturation compared to the long-channel case?

©C. Enz Fundamentals of Analog & Mixed Signal VLSI Design 25.09.2024



Exercise 2 (25.09.2024) 3

Solutions to Exercise 2 (25.09.2024)

Problem 1 The differential pair

1.1 Both transistors in weak inversion

1.1.1 Large-signal differential transfer characteristic

In the follwoing analysis it is assumed that M1 and M2 are perfectly matched, leading to

VT 01 = VT02 = VT 0, (2a)

ID01 = ID02 = ID0, (2b)

n1 = n2 = n. (2c)

In the case both transistors are biased in weak inversion and saturation and since the bulks of M1 and M2 are
connected to the ground, the drain currents are then given by

I1 = ID0 · e
Vi1−n VS

nUT , (3a)

I2 = ID0 · e
Vi2−n VS

nUT , (3b)

where VS is the common source voltage of M1 and M2. The differential output current is then given by

Iod ≜ I1 − I2 = ID0 · e
−VS
UT ·

[
e

Vi1
nUT − e

Vi2
nUT

]
. (4)

Now, the sum of I1 and I2 is set by the bottom current source

I1 + I2 = 2Ib, (5)

leading to

2Ib = ID0 · e
−VS
UT ·

[
e

Vi1
nUT + e

Vi2
nUT

]
(6)

from which we get

ID0 · e
−VS
UT =

2Ib

e
Vi1
nUT + e

Vi2
nUT

. (7)

Replacing (7) in (4) results in

Iod = 2Ib ·
e

Vi1
nUT − e

Vi2
nUT

e
Vi1
nUT + e

Vi2
nUT

. (8)

The input voltages can be written in terms of differential and common mode voltages according to

Vi1 = Vic +
Vid

2
, (9a)

Vi2 = Vic −
Vid

2
. (9b)

Replacing in (8) results in

Iod = 2Ib ·
e

Vid
2nUT − e

−Vid
2nUT

e
Vid

2nUT + e
−Vid
2nUT

= 2Ib · tanh
(

Vid

2nUT

)
. (10)

The differential output current Iod normalized to 2Ib can then be written as

iod ≜
Iod

2Ib
= tanh(vid ), (11)

where vid ≜ Vid/(2nUT ).
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1.1.2 Small-signal transconductance

The small-signal transconductance is defined by

Gm ≜
dIod

dVid
= Gm0 ·

[
1 − tanh2

(
Vid

2nUT

)]
(12)

where Gm0 is the transconductance for Vid = 0

Gm0 =
Ib

nUT
. (13)

The small-signal transconductance normalized to Gm0 is then given by

gm ≜
Gm

Gm0
= 1 − tanh2 (vid ) . (14)

The normalized differential output current iod and normalized transconductance gm are plotted versus the normalized
differential input voltage vid in Fig. 1.
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Figure 1: Differential current iod and transconductance gm versus differential input voltage vid for both transistors M1

and M2 biased in weak inversion and saturation.

1.2 Both transistors in strong inversion

1.2.1 Large-signal differential transfer characteristic

We again will assume that the two transistors M1 an M2 are perfectly matched, which means that

VT 01 = VT 02 = VT 0, (15a)

β1 = β2 = β, (15b)

n1 = n2 = n. (15c)

In the case both transistors are biased in strong inversion and saturation and since the bulks of M1 and M2 are
connected to the ground, the drain currents are given by

I1 =
β

2n
· (Vi1 − VT 0 − n VS)2, (16a)

I2 =
β

2n
· (Vi2 − VT 0 − n VS)2, (16b)

where VS is the voltage of the common source node. Solving the above equations together with

Iod = I1 − I2, (17a)

I1 + I2 = 2Ib, (17b)

Vi1 = Vic +
Vid

2
, (17c)

Vi2 = Vic −
Vid

2
, (17d)

Vid = Vi1 − Vi2, (17e)
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leads to

Iod = Vid ·

√
β

2nIb
·

√
1 − β

2nIb
·
(

Vid

2

)2

(18)

valid for

|Vid | < 2

√
2nIb
β

= 2(Vic − VT 0 − VS). (19)

The differential output current Iod can be normalized to the maximum output current 2Ib

iod ≜
Iod

2Ib
= vid ·

√
1 −

(vid

2

)2
, (20)

valid for
|vid | <

√
2, (21)

where

vid ≜
Vid√

2nIb/β
=

Vid

VG − VT0 − n VS
. (22)

1.2.2 Small-signal transconductance

The small-signal transconductance is given by

Gm ≜
dIod

dVid
= Gm0 ·

2 − v2
id√

4 − v2
id

, (23)

where

Gm0 =

√
2βIb

n
(24)

is the transconductance for Vid = 0.

The normalized differential output current iod and normalized transconductance gm are plotted versus the normalized
differential input voltage vid in Fig. 2.
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Figure 2: Differential current iod and transconductance gm versus differential input voltage vid for both transistors M1

and M2 biased in strong inversion and saturation.

1.3 Both transistors in any modes of operation (saturation)

1.3.1 Large-signal differential transfer characteristic

We can use the EKV charge-based model to express the gate voltages of M1 and M2 in terms of qs1 and qs2 according
to

Vi1 − VT 0 − n VS

nUT
= 2qs1 + ln(qs1), (25a)

Vi2 − VT 0 − n VS

nUT
= 2qs2 + ln(qs2). (25b)
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If we want to be consistent with the analysis of the differential pair in weak inversion we need to use the same
normalization. This means that the voltages need to be normalized to 2nUT , leading to

vi1 − vt0n − vs = qs1 + 1
2 ln(qs1), (26a)

vi2 − vt0n − vs = qs2 + 1
2 ln(qs2), (26b)

where

vi1 ≜
Vi1

2nUT
, (27a)

vi2 ≜
Vi2

2nUT
, (27b)

vs ≜
VS

2nUT
. (27c)

The normalized differential input voltage vid is then given by subtracting (26b) to (26a) resulting in

vid ≜
Vid

2nUT
= vi1 − vi2 = qs1 − qs2 + 1

2 ln
(

qs1

qs2

)
(28)

We need to be careful with the normalization of the currents. In order to have the output differential current Iod = I1−I2
normalized to the maximum output current 2Ib, like it was done for the analysis in weak and strong inversion, we need
to define the normalized currents i1, i2 and iod as

i1 ≜
I1

2Ib
, (29a)

i2 ≜
I2

2Ib
, (29b)

iod ≜
Iod

2Ib
=

I1 − I2
2Ib

= i1 − i2. (29c)

The normalized source charges qs1 and qs2 are related to the normalized drain currents id1 and id2 according to

id1 ≜
I1

Ispec
= qs1 · (qs1 + 1), (30a)

id2 ≜
I2

Ispec
= qs2 · (qs2 + 1). (30b)

Notice that i1 and i2 are different than id1 and id2 since the former are normalized to 2Ib, whereas the latter are
normalized to Ispec . They are related according to

i1 =
id1

2ICq
, (31a)

i2 =
id2

2ICq
, (31b)

where

ICq ≜
Ib

Ispec
(32)

corresponds to the inversion coefficient of M1 and M2 at the quiescent operating point, i.e. for Vid = 0.

Solving the above set of equations for qs1 and qs2 results in

qs1 =

√
4ICq (1 + iod ) + 1 − 1

2
, (33a)

qs2 =

√
4ICq (1 − iod ) + 1 − 1

2
. (33b)

We can now sweep the normalized differential output current for a given ICq and then calculate qs1 and qs2 according
to (??) and use them to calculate vid according to (28). The result is plotted in Fig. 3 for different ICq .

We clearly see that increasing the inversion coefficient ICq from weak inversion to strong inversion extends the linear
range from 4nUT to 2(Vic − VT 0 − nVS) at the cost of a reduced transconductance efficiency Gm0/Ib.
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Figure 3: Differential current iod versus differential input voltage vid valid in all regions of operation (assuming M1 and
M2 in saturation).

1.3.2 Small-signal transconductance

In the previous section we have derived an expression of Vid in terms of qs1 and qs2 which depend on Iod . We can
derive the transconductance by differentiating Vid wrt Iod

dVid

dIod
=

1
Gm

(34)

or in normalized form
dvid

diod
· 2nUT

2Ib
=

1
Gm

. (35)

The transconductance can then be written as

Gm · nUT

Ib
=
(

dvid

diod

)−1

=
diod

dvid
= gm. (36)

so that

gm ≜
diod

dvid
=

Gm

Ib/(nUT )
(37)

It can be shown that

gm =
4

ICq
· qs1 · qs2

qs1 + qs2
(38)

with qs1 and qs2 given by (33a) and (33b).

Now, we want to plot gm normalized to its value at vid = 0

gm0 ≜ gm(vid = 0). (39)

For vid = 0, we have iod = 0 and from (33), we get

qs ≜= qs1|vid =0 = qs2|vid =0 =

√
4ICq + 1 − 1

2
. (40)

gm0 can therefore be written as

gm0 =
qs

ICq
=

√
4ICq + 1 − 1

2ICq
. (41)

The transconductance normalized to the value it takes at vid = 0 is therefore given by

Gm

Gm0
=

gm

gm0
=

2
qs

· qs1 · qs2

qs1 + qs2
(42)

with qs, qs1 and qs2 given by (40), (33a) and (33b), respectively.
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Figure 4: Transconductance normalized to its value at vid = 0 versus differential input voltage vid valid in all regions
of operation (assuming M1 and M2 in saturation).

Problem 2 The inverter as a transconductance amplifier

Assuming both transistors are biased in weak inversion and saturation, the drain currents are then given by

In = Ispecn · e
VGn−VT0n

nnUT = ID0n · e
VGn

nnUT , (43a)

Ip = Ispecp · e
VGp−VT0p

npUT = ID0p · e
VGp

npUT , (43b)

where

Ispecn = Ispecn□ · Wn/Ln, (44a)

Ispecp = Ispecp□ · Wp/Lp, (44b)

and

ID0n = Ispecn · e
−VT0n
nnUT , (45a)

ID0p = Ispecp · e
−VT0p
npUT . (45b)

The gate voltages are given by

VGn = Vin − Vinq , (46a)

VGp = VDD − Vin − Vinq . (46b)

where Vinq is defined as the quiescent gate voltage for Vin = 0 such that the output current is zero and hence
Ip = In = Ib which is given by

Ib = ID0n · e
−Vinq
nnUT = ID0p · e

VDD−Vinq
npUT . (47)

We can then express ID0n and ID0p as

ID0n = Ib · e
Vinq

nnUT , (48a)

ID0p = Ib · e
Vinq−VDD

npUT . (48b)

In = Ib · e
Vinq

nnUT · e
Vin−Vinq

nnUT = Ib · e
Vin

nnUT , (49a)

Ip = Ib · e
Vinq−VDD

npUT · e
VDD−Vin−Vinq

npUT = Ib · e
−Vin
npUT , (49b)

The output current can then be written as

Iout = Ip − In = Ib ·
[
e

−Vin
nnUT − e

Vin
nnUT

]
. (50)
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Assuming that nn = np = n, the normalized output current can be written as

iout ≜
Iout

Ib
= − sinh(vin) (51)

where vin ≜ Vin/(nUT ). The normalized output current is plotted in Fig. 5 together with the current of the nMOS
and pMOS transistors. We see that the current is ideally not limited hence the inverter can operate as a class AB
transconductance amplifier. The current will be limited by the supply voltage and the supply series resistances.
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Figure 5: The inverter large signal transfer characteristic in weak inversion.

Problem 3 Effect of velocity saturation on the gate transconductance

3.1 Long-channel case

For the long-channel case the normalized source transconductance only depends on IC and is given by

gms =

√
4IC + 1 − 1

2
= 5. (52)

Knowing the bias current Ib = 1µA and the inversion coefficient we ca deduce the specific current Ispec as

Ispec =
Ib
IC

= 667 nA. (53)

The gate transconductance is then given by

Gm =
Ispec

n · UT
= 98.6

µA
V

. (54)

The corresponding bandwidth is then given by

BW =
Gm

2π CL
= 3.1 MHz. (55)
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3.2 Short-channel case

For the short-channel case, the normalized source transconductance now also depends on the velocity saturation
parameter λc = 1/3 according to

gms =

√
4IC + 1 + (λc IC)2 − 1

2 + λ2
c IC

. (56)

Keeping the same current Ib = 20µA and inversion coefficient IC = 30 with λc = 1/3 results in gms = 2.6, which is
1.92 times smaller than the value obtained for the long-channel case. Assuming the Ispec remains the same, we get

Gm =
Ispec

n · UT
= 51.3

µA
V

, (57)

which is about 1.92 times smaller than what we get for the long-channel case. The corresponding bandwidth is now
reduced to

BW =
Gm

2π CL
= 1.6 MHz. (58)
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