Fundamentals of Analog & Mixed Signal VLSI Design Exercise 2 (25.09.2024)

Christian Enz

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Problem 1 The differential pair

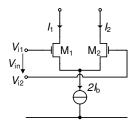


Figure 1: The differential pair.

Fig. 1 shows the schematic of the basic differential pair. The differential input voltage is defined as $V_{id} \triangleq V_{i1} - V_{i2}$, whereas the differential output current is defined as $I_{od} \triangleq I_1 - I_2$.

1.1 Both transistors in weak inversion

1.1.1 Large-signal differential transfer characteristic

Derive the large-signal expression of the differential output current I_{od} as a function of the differential input voltage V_{id} assuming that both transistors are biased in weak inversion and saturation.

1.1.2 Small-signal transconductance

Derive the small-signal transconductance from the large-signal transfer function obtained above and its particular value G_{m0} at $V_{id} = 0$. What is the approximate linear range if the differential pair is modeled by a piece-wise linear characteristic having a slope G_{m0} equal to that of the differential pair at $V_{id} = 0$?

1.2 Both transistors in strong inversion

1.2.1 Large-signal differential transfer characteristic

Derive the large-signal expression of the differential output current I_{od} as a function of the differential input voltage V_{id} assuming that both transistors are biased in strong inversion and saturation.

1.2.2 Small-signal transconductance

Derive the small-signal transconductance from the large-signal transfer function obtained above and its particular value G_{m0} at $V_{id} = 0$. What is the approximate linear range if the differential pair is modeled by a piece-wise linear characteristic having a slope G_{m0} equal to that of the differential pair at $V_{id} = 0$?

1.3 Optional: Both transistors in any modes of operation (saturation)

We can use the EKV charge-based model to derive an expression of the differential input voltage as a function of the differential output current valid in any modes of operation (in saturation). In order to do this, first express the input voltages V_{i1} and V_{i2} normalized to $2nU_T$ as a function of the normalized source charges q_{s1} and q_{s2} . Then find an expression of i_1 and i_2 defined as

$$i_1 \triangleq \frac{I_1}{2I_D} = \frac{i_{d1}}{2IC_a},\tag{1a}$$

$$i_1 \triangleq \frac{l_1}{2l_b} = \frac{i_{d1}}{2lC_q},$$

$$i_2 \triangleq \frac{l_2}{2l_b} = \frac{i_{d2}}{2lC_q},$$
(1a)

with $i_{d1} \triangleq I_1/I_{spec}$, $i_{d2} \triangleq I_2/I_{spec}$ and $IC_q \triangleq I_b/I_{spec}$ and where I_{spec} is the specific current of M_1 and M_2 and IC_q is the inversion coefficient of M_1 and M_2 at the quiescent point, i.e. for $V_{id} = 0$. You can then invert i_1 and i_2 to obtain expressions of q_{s1} and q_{s2} in terms of $i_{od} \triangleq i_1 - i_2$ and parameter IC_q . Sweeping the normalized output current i_{od} for a given IC_q , you get the corresponding differential input voltage v_{id} .

The inverter as a transconductance amplifier

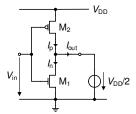


Figure 2: The inverter used as a transconductance amplifier.

As shown in Fig. 2, the inverter can be used as a class AB transconductance amplifier. Derive the large-signal output current $I_{out} = I_p - I_n$ versus the input voltage V_{in} assuming that both transistors are biased in weak inversion and saturation and have the same slope factor $n_n = n_p = n$. Note that the output voltage is maintained constant at $V_{DD}/2$ to calculate the output current Iout. What is limiting the output current?

Effect of velocity saturation on the gate transconductance Problem 3

An nMOS transistor is biased with a current of $I_b = 20 \,\mu A$ at an inversion coefficient IC = 30 to drive a large load capacitance $C_L = 5 pF$. Calculate its gate transconductance G_m and bandwidth assuming its slope factor is n = 1.3and $U_T = 26 \, mV$ in the following cases.

3.1 Long-channel case

Assume the channel is long enough to ignore the effect of velocity saturation.

3.2 Short-channel case

Assume the transistor length is short resulting in a velocity saturation parameter $\lambda_c = 1/3$. How much smaller is the gate transconductance and bandwidth with velocity saturation compared to the long-channel case?