Fundamentals of Analog & Mixed Signal VLSI Design

Single-ended Differential Amplifier Part 3

Christian Enz

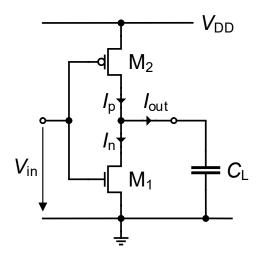
Integrated Circuits Lab (ICLAB), Institute of Electrical and Micro-Engineering (IEM), School of Engineering (STI)

Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland

Outline

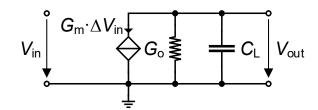
- The CMOS inverter OTA
- Improved slew-rate OTAs
- **Appendices**

The CMOS Inverter as an Amplifier



- The CMOS inverter can be used as a very efficient amplifier thanks to the current sharing between the nMOS and pMOS transistors
- The overall transconductance is the sum of the nMOS and pMOS transconductances
- In WI, the CMOS inverter can operate at very low-voltage thanks to the minimum saturation voltage achieved in WI

The CMOS Inverter – Small-signal and Noise Analysis



• The overall OTA G_m is the sum of the nMOS and pMOS G_m

$$G_m = G_{m1} + G_{m2} \cong 2G_{m1} = 2\frac{I_b}{nU_T}$$

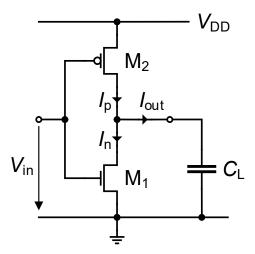
- which in WI is twice that of a single transistor since both transistors share the same bias current
- The DC gain is given by

$$A_{dc} = -\frac{G_m}{G_o} = -\frac{G_{m1} + G_{m2}}{G_{ds1} + G_{ds2}}$$

and the noise is half that of a single transistor for the same bias current

$$R_n = \frac{G_{n1} + G_{n2}}{(G_{m1} + G_{m2})^2} = \frac{2 \gamma_{n1} \cdot G_{m1}}{4 G_{m1}^2} = \frac{\gamma_{n1}}{2G_{m1}} = \frac{R_{n1}}{2}$$

Large-signal Transfer Characteristic in WI



Assuming that $n_1 = n_2 = n$ the output current $I_{out} = I_p - I_n$ is given by

$$i_{out} \triangleq \frac{I_{out}}{I_b} = -2 \sinh\left(\frac{V_{in} - V_b}{nU_T}\right)$$

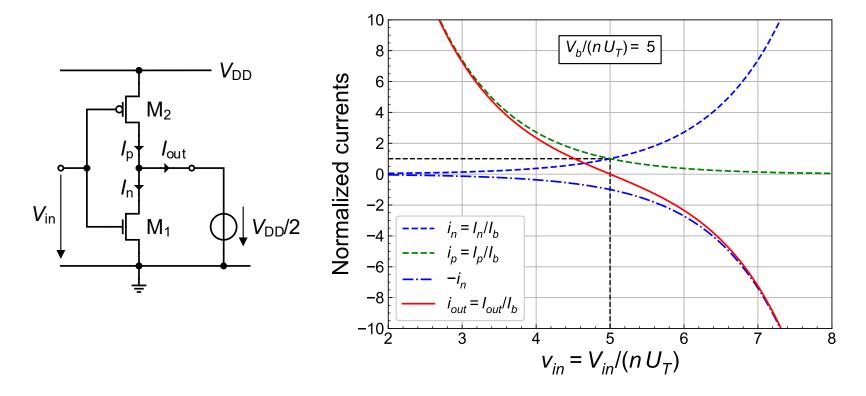
 V_b and I_b correspond to the quiescent gate and bias current for $I_{out} = 0$

$$I_b = I_{D01} \cdot e^{\frac{V_b}{nU_T}} = I_{D02} \cdot e^{\frac{V_{DD} - V_b}{nU_T}}$$

$$e^{\frac{-V_{T0n}}{nU_T}} \text{ and } I_{D02} \cdot e^{\frac{-V_{T0n}}{nU_T}}$$

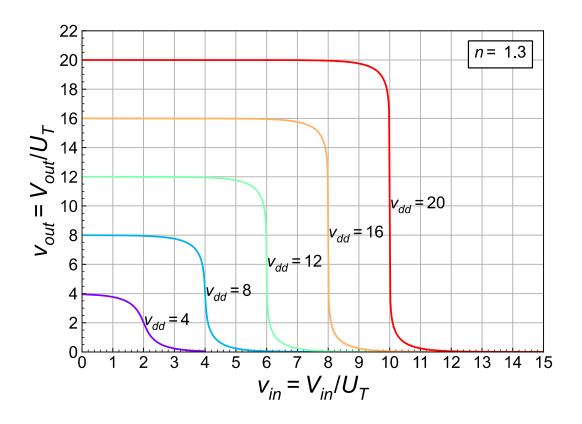
- $\bullet \quad \text{where } I_{D01} = I_{spec1} \cdot e^{\frac{-V_{T0n}}{nU_T}} \text{ and } I_{D02} = I_{spec2} \cdot e^{\frac{-V_{T0p}}{nU_T}}$
- with $I_{spec1} = I_{specn} \cdot \frac{W_1}{I_1}$ and $I_{spec2} = I_{specp} \cdot \frac{W_2}{I_2}$

Class AB Transfer Characteristic



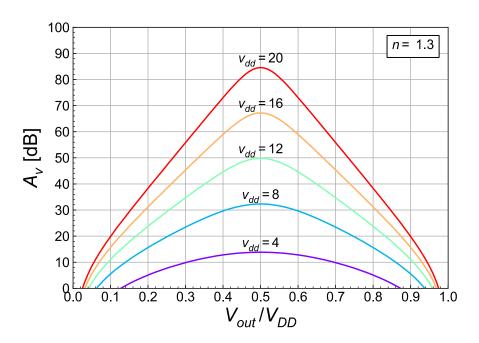
- The current is not limited by a bias current but by the supply voltage
- The class AB transfer characteristic is shown above for the case $V_b = V_{DD}/2$
- The use of inverters was proposed by Krummenacher already in 1981 for designing micropower SC filters

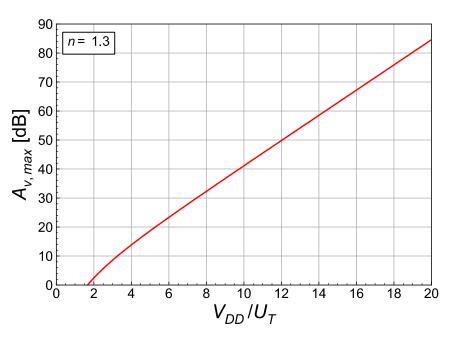
Large-signal Transfer Characteristic in WI



- Assuming $n_1 = n_2 = n$, $I_{D01} = I_{D02}$ and neglecting SCE (DIBL and CLM)
- Can operate at very low supply voltage still providing some voltage gain
- E. Vittoz, "Analog Circuits in Weak Inversion" in Sub-threshold Design for Ultra Low-Power Systems, Springer 2006.
- E. Vittoz, "Weak Inversion for Ultimate Low-Power Logic" in Low-Power Electronics Design, Ed. C. Piguet, CRC Press 2005.

Voltage Gain





- Large DC gain can be obtained at very low-voltage, provided
 - low, controlled threshold voltages are available
 - adequate bias scheme is implemented
- Of course the large voltage gain shown above can be significantly lower because of SCE such as DIBL

E. Vittoz, "Analog Circuits in Weak Inversion" in Sub-threshold Design for Ultra Low-Power Systems, Springer 2006.

E. Vittoz, "Weak Inversion for Ultimate Low-Power Logic" in Low-Power Electronics Design, Ed. C. Piguet, CRC Press 2005.

The CMOS Inverter in Weak Inversion

- The CMOS inverter has many great features particularly when it is biased in WI, including:
 - Maximum transconductance at given current I_h (global G_m is doubled for the same bias current since in WI $G_m \propto I_b$)
 - Maximum DC gain
 - Minimum input-referred white noise at given current I_h
 - Intrinsically class AB
 - Very low-voltage operation
- However it suffers from a major drawback, namely
 - Poor intrinsic PSRR (6 dB)!
- The later can be circumvented by adding a voltage regulator
- In SI and saturation, for long-channel transistors with for $\beta_1/n_1 = \beta_2/n_2$, the OTA operates as a linear transconductor

F. Krummenacher, E. Vittoz, and M. Degrauwe, Electronics Letters, 1981.

E. Vittoz, "Analog Circuits in Weak Inversion" in Sub-threshold Design for Ultra Low-Power Systems, Springer 2006.

Dynamically Biased Inverter Amplifier (1/2)

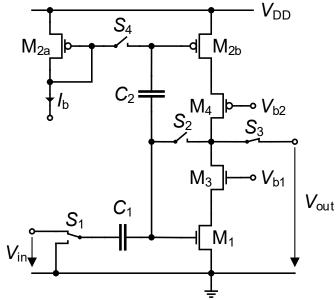
Phase Φ_1 (Autozero) $M_{2a} \triangleright S_4 \longrightarrow M_{2b} \longrightarrow V_{DD}$ $M_{2b} \longrightarrow V_{b2} \longrightarrow S_3 \longrightarrow S_3$

 $M_3 \longmapsto V_{b1}$

 M_1

 V_{out}

Phase Φ_2 (Amplification)

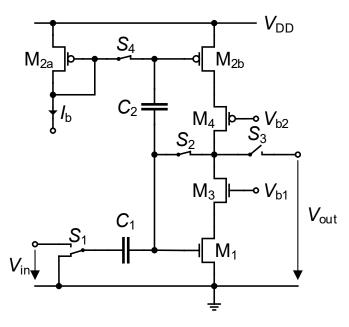


- Two non-overlapping phases operation
- During phase Φ_1 , the amplifier is disconnected from the input and the bias current is imposed in the inverter
- At the end of phase Φ_1 , the bias voltages are sampled on C_1 and C_2 ideally maintaining the bias current I_b in the inverter during the amplification phase Φ_2

 C_1

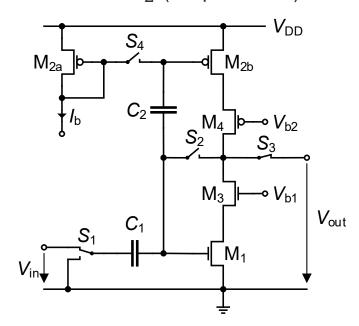
Dynamically Biased Inverter Amplifier (2/2)

Phase Φ_1 (Autozero)



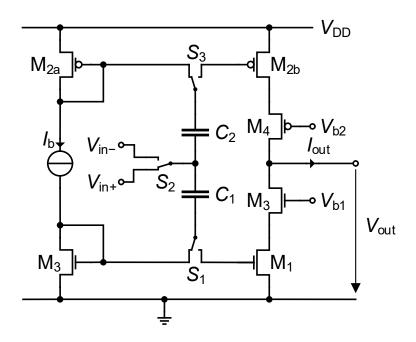
- Pros:
 - Good low-frequency PSRR
 - No offset
 - Reduction of 1/f noise by autozero
 - Flexible input common-mode

Phase Φ_2 (Amplification)



- Cons:
 - Two non-overlapping phases
 - Discontinuous operation
 - Systematic step at output
 - Charge injection

Differential Dynamically Biased Inverter Amplifier

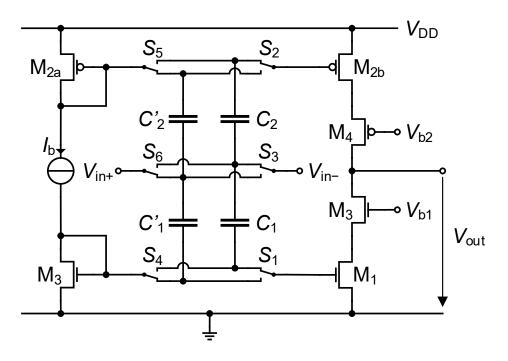


- The above circuit provides a differential input
- In most SC circuits, the positive input is set to a certain commode-mode voltage
- The above circuit samples the bias voltage during phase Φ_1 referenced to the common-mode voltage imposed on the positive input
- The bias voltage sampled on C_1 and C_2 are then applied to M_1 and M_{2b} during the amplification phase Φ_2

S. Masuda, Y. Kitamura, S. Ohya, and M. Kikuchi, "CMOS Sampled Differential, Push Pull Cascode Operational Amplifier," ISCAS 1984.

E K V

Differential Dynamically Biased Inverter Amplifier



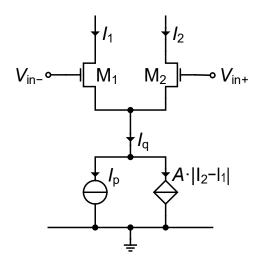
- The above circuit can operate during both phases Φ_1 and Φ_2
- Indeed, the amplifier inputs (gates of M₁ and M_{2h}) are always connected to the negative input, while the gates of M_{2a} and M₃ are always connected to the positive input
- This OTA can therefore directly replace the OTAs in SC filters

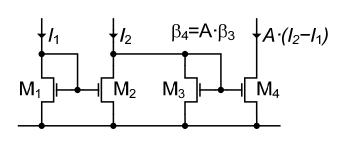
S. Masuda, Y. Kitamura, S. Ohya, and M. Kikuchi, "CMOS Sampled Differential, Push Pull Cascode Operational Amplifier," ISCAS 1984.

Outline

- The CMOS inverter OTA
- **Improved slew-rate OTAs**
- **Appendices**

Differential Feedback Amplifier – Principle





- Settling time of simple OTAs having their input differential pair biased in WI is set by the slew-rate
- Limited slew rate due to small currents can be circumvented by using adaptive biasing
- Principle: increase the differential pair bias current for large differential input signals

$$I_q = I_p + A \cdot |I_2 - I_1|$$
 with $I_q = I_1 + I_2$

M. Degrauwe, et al., JSSC, 1985

Differential Feedback Amplifier – Output Current

• It can be shown that currents I_1 and I_2 depend on $V_{in} \triangleq V_{in+} - V_{in-}$ according to

$$i_1 \triangleq \frac{I_1}{I_p} = \frac{1}{1 + A + (1 - A)e^{v_{in}}} \text{ and } i_2 \triangleq \frac{I_2}{I_p} = \frac{e^{v_{in}}}{1 + A + (1 - A)e^{v_{in}}} \text{ with } v_{in} \triangleq \frac{V_{in}}{nU_T}$$

• Resulting in the output current $I_{out} = I_2 - I_1$ given by

$$i_{out} \triangleq \frac{I_{out}}{I_p} = i_2 - i_1 = \frac{\tanh(\frac{v_{in}}{2})}{1 - A \tanh(\frac{v_{in}}{2})}$$

• In the particular case where there is no feedback (A = 0) we recover the differential pair transfer characteristic

$$i_{out} = \tanh(\frac{v_{in}}{2})$$

- For 0 < A < 1, the output current is limited to $I_p/(1-A)$
- For $A \geq 1$, the output current is no longer limited to the bias current I_p
- The output current tends to infinity for a critical value of the input voltage given by

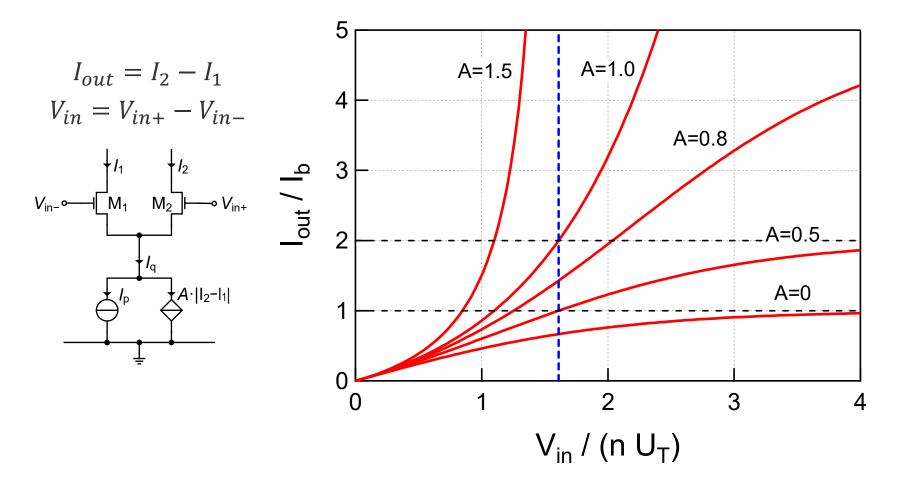
$$V_{in,crit} = nU_T \cdot \ln\left(\frac{A+1}{A-1}\right)$$

• For A=1, one of the two branches remains at $I_p/2$ i.e. $min(I_1,I_2)=\frac{I_p}{2}$ and the output current becomes

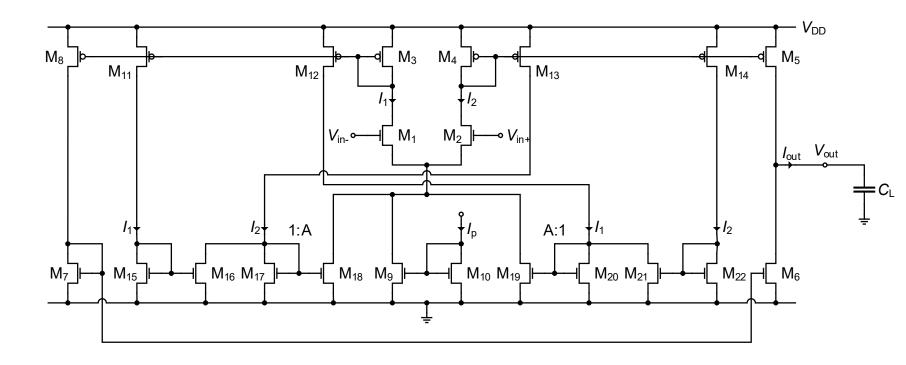
$$i_{out} = \frac{1}{2}(e^{v_{in}} - 1)$$

M. Degrauwe, et al., JSSC, 1985

Differential Feedback Amplifier – Output Current



Differential Feedback Amplifier – Differential OTA



Transistors M_1 to M_{10} implement the symmetrical OTA, whereas transistors M_{11} to M₂₂ implement the two feedback networks

Differential Feedback Amplifier – Experimental Validation

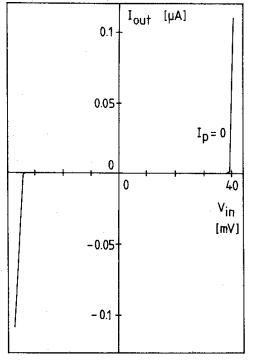


Fig. 8. Measured output current for $I_p = 0$.

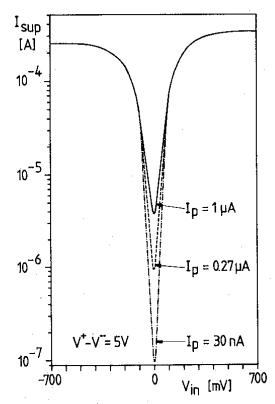
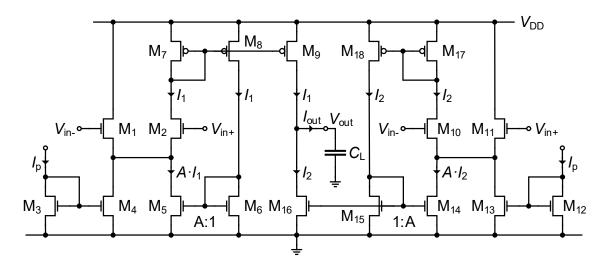


Fig. 9. Supply current as a function of the input signal.

M. Degrauwe, et al., JSSC, 1985

Direct Feedback Amplifier – Principle



• When the differential input voltage $V_{in}=V_{in+}-V_{in-}$ equals zero, the quiescent currents I_1 and I_2 are equal and given by

$$I_{1(2)} = \frac{1}{2} \cdot (I_p + A \cdot I_{1(2)})$$

Which can be solved for I₁ and I₂ resulting in

$$I_1 = I_2 = I_0 = \frac{I_p}{2 - A}$$

• Stability is then insured for a current gain A < 2

M. Degrauwe, *et al.*, JSSC, 1985

Direct Feedback Amplifier – Output Current

• It can be shown that currents I_1 and I_2 depend on V_{in} according to

$$i_1 \triangleq \frac{I_1}{I_p} = \frac{1}{1 - A + e^{-v_{in}}}$$
 and $i_2 \triangleq \frac{I_2}{I_p} = \frac{1}{1 - A + e^{+v_{in}}}$ with $v_{in} \triangleq \frac{V_{in}}{nU_T}$

• Resulting in the output current $I_{out} = I_1 - I_2$ is given by

$$i_{out} \triangleq \frac{I_{out}}{I_p} = i_1 - i_2 = \frac{2\sinh(v_{in})}{1 + (1 - A)^2 + 2(1 - A)\cosh(v_{in})}$$

• In the particular case where there is no feedback (A = 0) we recover the differential pair transfer characteristic

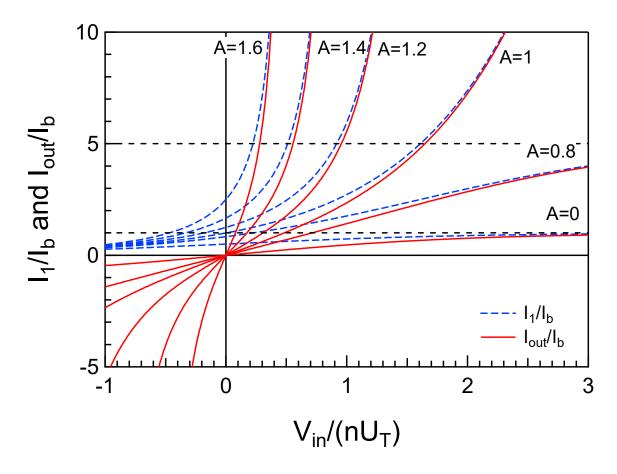
$$i_{out} = \tanh\left(\frac{v_{in}}{2}\right)$$

- For A < 1, the output current is limited to $I_p/(1-A)$
- For A=1, the currents become exponential and the output current is no more limited and becomes

$$i_{out} = 2 \sinh(v_{in})$$

• For A>1, the current tends to infinity for $v_{in}=\cosh^{-1}\left(\frac{A^2-2A+2}{2(A-1)}\right)$

Direct Feedback Amplifier – Output Current

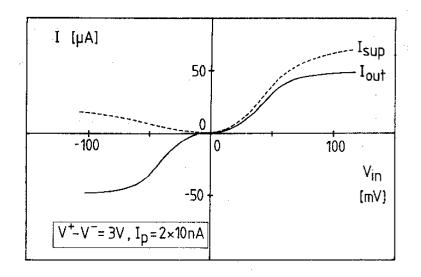


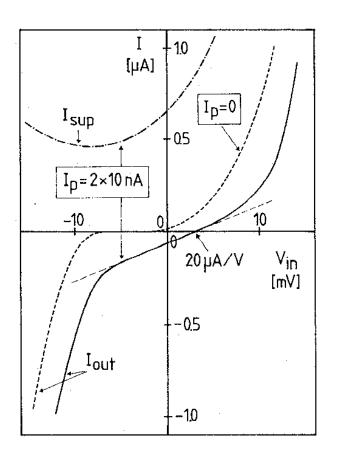
 As shown in the next slide, the output current will be limited by the maximum current that can be provided by the supply

E K V

Direct Feedback Amplifier – Experimental Validation

$$A = 1.4$$

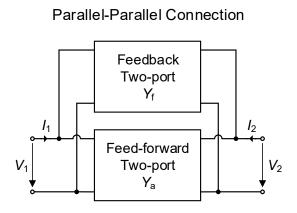


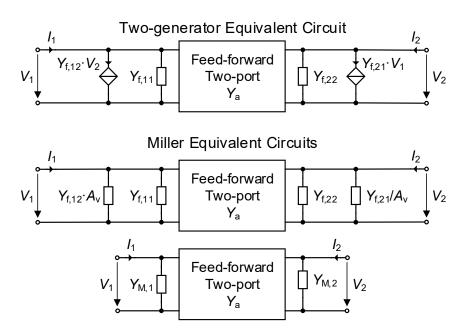


Outline

- The CMOS inverter OTA
- Improved slew-rate OTAs
- **Appendices**

The Miller Theorem and Circuit Equivalence





- The feedback network can be embedded into the feed-forward network using the two-generator equivalent circuit
- The VCCSs can be replaced by the substitution theorem leading to the Miller equivalent circuits with the Miller admittances given by

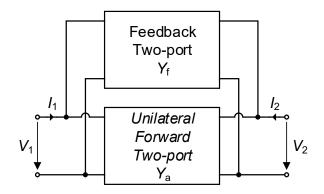
$$Y_{M,1} = Y_{f,11} + Y_{f,12} \cdot A_v \text{ and } Y_{M,2} = Y_{f,22} + \frac{Y_{f,21}}{A_v}$$

where $A_v \triangleq V_2/V_1$ is the closed-loop voltage gain

© C. Enz | 2024

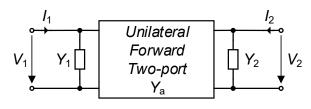
The Miller Theorem and Circuit Equivalence

- The problem is that we usually do not know the closed-loop voltage gain A_v a priori since it is what we are looking for
- So the Miller equivalent circuit only simplifies the calculation of the closed-loop gain and other network parameters such as the input admittance if we can use a reasonable approximation for the voltage gain
- What is usually done is to approximate the closed-loop gain with an approximate expression such as the low-frequency open-loop gain
- The next slides will highlight what are the condition for this approximation to hold
- The Miller approximation is usually done assuming a unilateral feed-forward amplifier



$$Y_{a} = \begin{bmatrix} Y_{a,11} & 0 \\ Y_{a,12} & Y_{a,22} \end{bmatrix} \qquad Y_{f} = \begin{bmatrix} Y_{f,11} & Y_{f,12} \\ Y_{f,21} & Y_{f,22} \end{bmatrix}$$

Miller theorem



$$Y_{M,1} = Y_{f,11} + Y_{f,12} \cdot A_{v}$$
$$Y_{M,2} = Y_{f,22} + \frac{Y_{f,21}}{A_{v}}$$

Since the two two-ports are connected in parallel, we have

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{a,11} + Y_{f,11} & Y_{f,12} \\ Y_{a,21} + Y_{f,21} & Y_{a,22} + Y_{f,22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

The resulting forward voltage gain A_v is then given by

$$A_v \triangleq \frac{V_2}{V_1} \Big|_{I_2=0} = -\frac{Y_{a,21} + Y_{f,21}}{Y_{a,22} + Y_{f,22}}$$

The input admittance Y_{in} is given by

$$\left. Y_{in} \triangleq \frac{I_1}{V_1} \right|_{I_2 = 0} = Y_{a,11} + Y_{f,11} - Y_{f,12} \frac{Y_{a,21} + Y_{f,21}}{Y_{a,22} + Y_{f,22}} = Y_{a,11} + Y_{f,11} + Y_{f,12} A_{v}$$

and output admittance Y_{out} is given by

$$Y_{out} \triangleq \frac{I_2}{V_2} \Big|_{I_1=0} = Y_{a,22} + Y_{f,22} - Y_{f,12} \frac{Y_{a,21} + Y_{f,21}}{Y_{a,11} + Y_{f,11}}$$

 Applying the Miller theorem results in the following relation for the Miller equivalent two-port

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{a,11} + Y_{f,11} + Y_{f,12}A_v & 0 \\ & & & \\ & Y_{a,21} & & Y_{a,22} + Y_{f,22} + \frac{Y_{f,21}}{A_v} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

It can be seen that Miller's theorem does not take into account the bilateral characteristic of the circuit (i.e. the Miller equivalent two-port remains unilateral which is not the case of the original two-port even if Y_a is assumed unilateral)

The forward gain $A_{v,M}$, the input admittance $Y_{in,M}$ and the output admittance $Y_{out,M}$ of the Miller equivalent network can be obtained as

$$A_{v,M} \triangleq \frac{V_2}{V_1} \Big|_{I_2=0} = -\frac{Y_{M,21}}{Y_{M,22}} = -\frac{Y_{a,21} + Y_{f,21}}{Y_{a,22} + Y_{f,22}}$$

$$Y_{in,M} \triangleq \frac{I_1}{V_1} \Big|_{I_2=0} = Y_{a,11} + Y_{f,11} + Y_{f,12}A_v$$

$$Y_{out,M} \triangleq \frac{I_2}{V_2} \Big|_{I_1=0} = Y_{a,22} + Y_{f,22} + \frac{Y_{f,21}}{A_v}$$

- Comparing these results to the one of the original network show that the Miller theorem provides a means of calculating the forward voltage gain and the input admittance in an exact manner
- However, the output admittance is not correctly calculated because the input admittance $Y_{a,11}$ is not taken into account in the output admittance

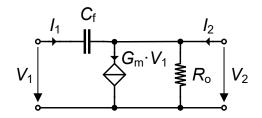
■ To make the application of the Miller theorem simple it is often assumed that the closed-loop voltage gain magnitude $|A_v|$ (i.e. with the feedback network) is about equal to the open-loop voltage gain magnitude $|A_{v0}|$

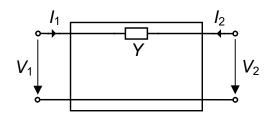
$$|A_v| \cong |A_{v0}| = \left| -\frac{Y_{a,21}}{Y_{a,22}} \right|$$

- This is the case when $|Y_{a,21}| \gg |Y_{f,21}|$ and $|Y_{a,22}| \gg |Y_{f,22}|$
- The above conditions just mean that the feedback network does not load the output of the feedforward network
- The input admittance can then be approximated using the open-loop gain without calculating the closed-loop gain

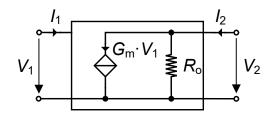
$$Y_{in,M} \cong Y_{a,11} + Y_{f,11} - Y_{f,12} \frac{Y_{a,21}}{Y_{a,22}}$$

Example





$$Y_f = \begin{bmatrix} Y & -Y \\ -Y & Y \end{bmatrix}$$



$$Y_a = \begin{bmatrix} 0 & 0 \\ G_m & G_o \end{bmatrix}$$

The voltage gain is approximated by the dc gain

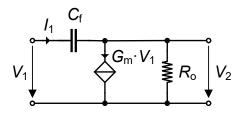
$$A_v \cong -\frac{Y_{a,21}}{Y_{a,22}} = -G_m R_o$$

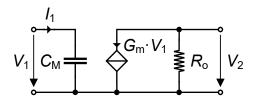
The input admittance can then be approximated by

$$Y_{in} \cong sC_f + sC_fG_mR_o = sC_f \cdot (1 + G_mR_o)$$

The above approximations are valid for $G_m \gg \omega C_f$ and $1/R_o \gg \omega C_f$

The Miller Capacitance





Miller capacitance:

$$C_M = (1 + G_m \cdot R_o) \cdot C_f \cong G_m \cdot R_o \cdot C_f$$

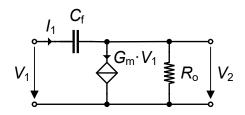
The transfer function of the left circuit is given by

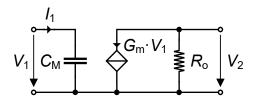
$$A_v(s) \triangleq \frac{V_2}{V_1} = -G_m \cdot R_o \cdot \frac{1 - C_f/G_m \cdot s}{1 + R_o C_f \cdot s}$$

- which includes a RHP zero at G_m/C_f
- Usually the dc voltage gain $G_m \cdot R_o \gg 1$. For $\omega \ll 1/(R_o C_f)$ and hence $\omega \ll 1/(R_o C_f) \ll G_m/C_f$, the voltage gain is approximately equal to the dc voltage gain

$$A_v \cong -G_m \cdot R_o$$

The Miller Capacitance





Miller capacitance:

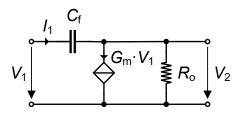
$$C_M = (1 + G_m \cdot R_o) \cdot C_f \cong G_m \cdot R_o \cdot C_f$$

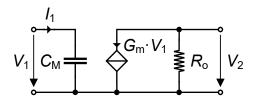
The input admittance is given by

$$Y_{in} \triangleq \frac{I_1}{V_1} = \frac{(1 + G_m \cdot R_o) \cdot C_f \cdot s}{1 + R_o C_f \cdot s} \cong (1 + G_m \cdot R_o) \cdot C_f \cdot s = s \cdot C_M$$

- The input admittance is equal to the feedback capacitance C_f multiplied by $1 + G_m \cdot R_o \cong G_m \cdot R_o = |A_v|$, which the magnitude of the voltage gain
- This equivalent capacitance $C_M \triangleq (1 + G_m \cdot R_o) \cdot C_f \cong G_m \cdot R_o \cdot C_f$ is called the Miller capacitance

The Miller Approximation





Miller capacitance:

$$C_M = (1 + G_m \cdot R_o) \cdot C_f \cong G_m \cdot R_o \cdot C_f$$

- The left circuit can be approximated by the equivalent circuit shown on the right where there is no more coupling between input and output through the feedback capacitance
- The transfer function of the right circuit is simply given by

$$A_{v} = -G_{m} \cdot R_{o}$$

- The right half plane zero and the pole have disappeared but this gain corresponds to the gain of the left circuit for $\omega \ll 1/(R_o C_f)$ and assuming $G_m \cdot R_o \gg 1$
- The input admittance of the right circuit is the identical the one of the left circuit provided that $C_M = (1 + G_m \cdot R_o) \cdot C_f \cong G_m \cdot R_o \cdot C_f$