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Introduction

E  K  V

Chips Have Changed our Daily Life…
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Data Center & Cloud

SERVER

STORAGE

NETWORKING

PC

2 in 1

DESKTOP

ALL IN ONE

Mobility

TABLET

SMARTPHONE

PHABLET

Wearable

GLASSES

PERSONAL ASSISTANT

SPORTS FASHION

IoT

SMART CITIES

SMART AGRICULTURE

SMART FACTORIES

 Source: Ian Yang, Intel Developer Forum - Shenzhen 2014.
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Semiconductor Unit Growth

 Note that the compound annual growth rate or CAGR of a variable 𝑉ሺ𝑡ሻ is defined as follows

𝐶𝐴𝐺𝑅 𝑡଴, 𝑡௡ ൌ
𝑉ሺ𝑡௡ሻ
𝑉ሺ𝑡଴ሻ

ଵ
௧೙ି௧బ

െ 1

 where 𝑉ሺ𝑡଴ሻ is the start value, 𝑉ሺ𝑡௡ሻ the final value and 𝑡௡ െ 𝑡଴ the duration in years
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7.2% CAGR
(787B units in 2015)

4.7% CAGR
(73T$ in 2015)

1.2% CAGR
(7.2B in 2015)

World Population

In 2015, each person on the 
planet purchased 109 chips 

 A. Bahai, ESSCIRC 2016, ISSCC 2017.
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Growth of the Semiconductor Business

 The growth rate of revenue of semiconductors parallels those of the gross world 
product (GWP) for the past 20 years

 After the initial fast growth period around the 1990s, worldwide semiconductor 
sales grow at a similar rate as the gross world product
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The global semiconductor 
market is estimated at 
450billion USD in revenue 
for 2020

 M. Liu, ISSCC 2021.
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Growth of the Fabless and Foundry Business

 From 2000 to 2020, the overall semiconductor industry grew at a steady 4% annual 
growth rate, the fabless sector continued strong growth at 8%, with the foundry sector 
at 9%, compared to 2% for the integrated device manufacturers (IDMs)

 Fabless revenue accounts for 35% of total 2020 semiconductor industry revenue, 
excluding memory, versus 17% in 2000
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 M. Liu, ISSCC 2021.



E  K  V

Outline
 Introduction
 CMOS technology scaling
 Power consumption and energy efficiency
 Voltage scaling

© C. Enz | 2024 Technology Roadmap Slide 7



CMOS Technology Scaling
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The number of transistors on a silicon chip doubles every two years

 Source: Intel Corporation.



CMOS Technology Scaling

E  K  V

40 Years of Microprocessor Trend Data
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 Source: K Rupp.
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Cerebras’ 4 Trillion Transistors Waferscale AI Chip
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 S. K. Moore, “Cerebras Unveils Its Next Waferscale AI Chip,” IEEE Spectrum, March 2024. 
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CMOS Technology Scaling
 Leakage power has caught up with 

dynamic (active) power and has put a 
halt to the conventional Dennard’s 
transistor scaling progression

 Switching to alternate architectures
is required to shrink transistors further, 
boosting density and performance
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 https://spectrum.ieee.org/semiconductors/devices/transistor-wars
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CMOS Technology Scaling
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 Source: Applied Materials, Semicon West, 2013
 https://www.extremetech.com/computing/162376-7nm-5nm-3nm-the-new-materials-and-transistors-that-will-take-us-to-the-limits-of-moores-law
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Innovation Enabled Technology Pipeline

 The development of each new technology node has required true technological 
innovations
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 Mark Bohr, Intel Technology and Manufacturing Day, 2017
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90 nm Strained Silicon Transistors

 Strained silicon provided increased drive currents by boosting the mobility, making 
up for lack of gate oxide scaling
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 M. Bohr, Intel Corporation, ISSCC 2009.
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High-k + Metal Gate Transistors

 65 nm technology node
 1.2 nm gate oxide
 35 nm effective gate length

 High-k + metal gate transistors break 
through gate oxide scaling barrier
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 M. Bohr, Intel Corporation, ISSCC 2009.
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Transistor War – FinFET versus UTB-SOI
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 http://spectrum.ieee.org/semiconductors/devices/transistor-wars

Illustration: Emily Cooper

UTB-SOI
Ultrathin Body

Silicon-on-Insulator

FinFETBulk MOSFET
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Transistor Architecture Evolution
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 http://spectrum.ieee.org/semiconductors/devices/transistor-wars
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No End in Sight for Logic Scaling
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 Source: ASML
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Scaling Scenario for Device Architectures (1/2)
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 Source: International Roadmap for Devices and Systems (IDRS), 2022 Edition, Executive Summary.
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Scaling Scenario for Device Architectures (2/2)
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 Source: International Roadmap for Devices and Systems (IDRS), 2022 Edition, Executive Summary.
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imec’s Potential Roadmap Extension
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 Source: International Roadmap for Devices and Systems (IDRS), 2022 Edition, Executive Summary.
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Evolving Node Definitions
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Original technology node definition

Industry “adaptation” of 
technology node definition

IRDS comprehensive 
technology node definition

 Source: International Roadmap for Devices and Systems (IDRS), 2022 Edition, Executive Summary.
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Device Scaling in Coming Years
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 Source: International Roadmap for Devices and Systems (IDRS), 2022 Edition, Executive Summary.
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Dimensional Scaling Continues another Decade
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 Source: International Roadmap for Devices and Systems (IDRS), 2022 Edition, Executive Summary.
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Scaling will Reach Fundamental Limits around 7-8 nm
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 Source: International Roadmap for Devices and Systems (IDRS), 2022 Edition, Executive Summary.
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It’s All About Economics…

 The average price of a single transistor has fallen almost by 1010 in less than 5 
decades!
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 Source: Intel Corporation.
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Cost per Transistor is Rising
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 Source: https://www.fabricatedknowledge.com/p/the-rising-tide-of-semiconductor.
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Smaller Number of Players for Leading Edge Nodes
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 Source: Samsung Foundry data.
 A. Bahai, ISSCC 2017.
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Rising Design Cost and Complexity
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 Source: International Business Strategies.
 A. Bahai, ISSCC 2017.
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Computation Power Evolution
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 R. Kurzweil, The Singularity is Near, Penguin Books, 2006 (http://en.wikipedia.org/wiki/File:PPTMooresLawai.jpg)
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Computation Efficiency – The Koomey Law
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 J. Koomey, et al., IEEE Annals of the History of Computing, vol. 33, no. 3, pp. 46-54, July-Sept. 2011.

Personal computers only

Efficiency 
doubled every 

1.57 years

Efficiency 
doubled every 

1.52 years
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Extending the Koomey Law by 3D Integration
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 Toshiaki Masuhara, “The Future of Low-Power Electronics,” in B. Hoefflinger (ed.), Chips 2020 Vol. 2, Springer, 2020.
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Gene’s Law for DSPs

 Power dissipation per MAC operation has decreased by half every 18 months
 Does not hold for analog processing and data communication
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Gene’s Law: 
~1.3x/year

Moore’s law: 
~1.6x/year

 Source: Gene A. Frantz, TI Developer Conf., 2008.
 G. Frantz, “Digital signal processor trends,” IEEE Micro, vol. 20, no. 6, pp. 52-59, Nov.-Dec. 2000.
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Switching Energy
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 R. Landauer, Nature, vol. 335, no. 6193, pp. 
779-784, Oct. 1988.

 T. N. Theis and H. P. Wong, Computing in Science & 
Engineering, vol. 19, no. 2, pp. 41-50, May/June 2017.
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Computing Efficiency versus Computing Density
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 P. Ruch, et al., IBM J. Res. & Dev., Vol. 55, No. 5, Paper 15, Sept.-Oct. 2011.
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The show must go on…

 Historical trend (<2020) and projection of energy efficient performance gains 
showing an expected ~2 improvement every 2 years
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 M. Liu, ISSCC 2021.
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Lower Limit of Power Consumption (1/2)

 Assumptions: 100% efficient transconductor (i.e. 𝐼௢௨௧ ൌ 𝐼஽஽)
 Low-voltage usually comes at the cost of a higher power consumption
 What are the fundamental lower limits to power consumption?
 Average value of 𝐼௢௨௧ is given by 𝐼௢௨௧ ൌ 𝑓 · 𝐶 · 𝑉௣௣
 The average power consumption 𝑃 is then given by

𝑃 ൌ 𝑉஽஽ · 𝑓 · 𝐶 · 𝑉௣௣ ൌ
𝑉஽஽
𝑉௣௣

· 𝑓 · 𝐶 · 𝑉௣௣ଶ
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Vpp VDD

T=1/f

Vout

 E. Vittoz and Y. Tsividis, Frequency-dynamic Range-power in Trade-offs in Trade-Offs in Analog Circuit Design, Springer 2002

Output noise
current model with
𝑆ே௜ ൌ 4𝑘𝑇 · 𝛾 · 𝐺௠



Power consumption and energy efficiency

E  K  V

Lower Limit of Power Consumption (2/2)

 The noise current power spectral density (PSD) is given by
𝑆ே௜ ൌ 4𝑘𝑇 · 𝛾 · 𝐺௠

 The total mean square noise voltage across capacitor 𝐶 is given by

𝑉ேଶ ൌ
𝛾 · 𝑘𝑇
𝐶

 Where 𝛾 is the noise excess factor which will be assumed to be unity
 The signal-to-noise ratio SNR is then given by

𝑆𝑁𝑅 ൌ
𝑉௣௣ଶ 8⁄
𝑘𝑇 𝐶⁄  ⟹ 𝑉௣௣ଶ ൌ

8𝑘𝑇
𝐶 · 𝑆𝑁𝑅

 The power consumption can then be written as

𝑃 ൌ 8
𝑉஽஽
𝑉௣௣

· 𝑘𝑇 · 𝑓 · 𝑆𝑁𝑅
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 E. Vittoz and Y. Tsividis, Frequency-dynamic Range-power in Trade-offs in Trade-Offs in Analog Circuit Design, Springer 2002
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Limit of Power Consumption – Factor of Merit
 Power consumption is minimized by maximizing the peak-to-peak signal with rail-

to-rail operation 𝑉௣௣ ൌ 𝑉஽஽
𝑃௠௜௡ ൌ 8𝑘𝑇 · 𝑓 · 𝑆𝑁𝑅

 𝑃 is proportional to frequency which actually corresponds to the bandwidth 𝑩 for 
low-pass filters

 A factor of merit (actually demerit, the smaller the better) can be defined as 

𝐾 ≜
𝑃

𝑘𝑇 · 𝐵 · 𝑆𝑁𝑅 ൌ 8
𝑉஽஽
𝑉௣௣

 𝐾 is minimum for 𝑉௣௣ ൌ 𝑉஽஽ (rail-to-rail linear operation)
𝐾௠௜௡ ൌ 𝐾ቚ

௏೛೛ୀ௏ವವ
ൌ 8
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 E. Vittoz and Y. Tsividis, Frequency-dynamic Range-power in Trade-offs in Trade-Offs in Analog Circuit Design, Springer 2002
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Minimum Power Consumption versus SNR

 The minimum power consumption 𝑃௠௜௡ is proportional to frequency (bandwidth)
𝑃௠௜௡ ൌ 8𝑘𝑇 · 𝑓 · 𝑆𝑁𝑅

 It corresponds to an absolute minimum for processing a signal with an analog 
circuit
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 C. Enz and E. Vittoz, CMOS Low-Power Analog Circuit Design in Emerging technologies: Designing Low Power Digital Systems, Wiley 1996

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

M
in

im
um

 p
ow

er
 p

er
 p

ol
e 

[J
]

120100806040200

SNR [dB]

33 µW/MHz

33 pW/MHz

analog8kT

8 kT = 32 10-21 J
m = 50 N2

Etr [pJ]
1
0.1
0.01
0.001

8 kT

digital



Power consumption and energy efficiency

E  K  V

Practical Power Limitations
 𝐾௠௜௡ constitute an absolute minimum not accounting for many non-idealities
 In practical analog circuits there are many non-idealities that can seriously 

degrade (increase) the factor 𝐾 far beyond 𝐾௠௜௡
 Current inefficiency (non-ideal class B operation)
 Linearity requirement
 Additional bias circuits
 Limited matching
 Additional noise contributions (from flicker noise and from other devices)
 Parasitic capacitances
 Charge injection
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 E. Vittoz and Y. Tsividis, Frequency-dynamic Range-power in Trade-offs in Trade-Offs in Analog Circuit Design, Springer 2002
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Minimum Power of a Transconductance Amplifier

 𝐾 factor of a generic transconductor
is given by
𝐾 ≜

𝑃
𝑘𝑇 · 𝐵 · 𝑆𝑁𝑅 ൒ 4𝛾௘௤

𝑉஽஽
𝑉௜௡,௥௠௦
ଶ  

𝐼஽஽
𝐺௠

 Can be minimized by maximizing 
𝑉௜௡ 𝑉஽஽⁄ (rail-to-rail operation) and 
𝐺௠ 𝐼஽஽⁄ (bias in weak inversion)

 Simple NMOS transconductor biased 
in SI for better linearity

 𝐾 minimum for 𝑉஽ௌ௦௔௧௡ ൌ 𝑉஽ௌ௦௔௧௣ ൌ
𝑉஽ௌ௦௔௧

𝐾 ൐ 8𝛾𝑛
𝑉஽ௌ௦௔௧
𝑉௜௡,௥௠௦

ଶ

 Can be minimized by reducing 𝑉஽ௌ௦௔௧
and hence the supply voltage 𝑉஽஽
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Min. Power Cons. for NMOS Transconductor
 However, decreasing 𝑉஽ௌ௦௔௧ increases the total harmonic distortion THD due to 

the square-law characteristic according to

𝑇𝐻𝐷 ൌ
𝑉௜௡

4𝑛𝑉஽ௌ௦௔௧
ൌ

2𝑉௜௡,௥௠௦
4𝑛𝑉஽ௌ௦௔௧

 ⟹  
𝑉஽ௌ௦௔௧
𝑉௜௡,௥௠௦

ଶ

ൌ
1

8𝑛ଶ𝑇𝐻𝐷ଶ

 𝐾 can then be expressed directly in terms of the THD as

𝐾 ൐
𝛾

𝑇𝐻𝐷ଶ ൌ
2

3𝑇𝐻𝐷ଶ
 Having 𝑇𝐻𝐷 ൏  1% results in 𝐾 ൐  6700 instead of 8 (factor 840 higher!)
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 E. Vittoz and Y. Tsividis, Frequency-dynamic Range-power in Trade-offs in Trade-Offs in Analog Circuit Design, Springer 2002
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Analog and Digital Power Consumption
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 E. A. Vittoz, "Future of analog in the VLSI environment," ISCAS 1990.
 C. Enz and E. Vittoz, CMOS Low-Power Analog Circuit Design in Emerging technologies: Designing Low Power Digital Systems, Wiley 1996.
 M. Verhelst and A. Bahai, “Where Analog Meets Digital,” IEEE Solid-State Circuits Society Magazine, Summer 2015.
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Evolution of ADCs Speed-resolution Product

 The speed-resolution product has doubled every four years
 Note that 𝑓௜௡ represents the maximum input frequency of the signal to be 

converted

© C. Enz | 2024 Technology Roadmap Slide 46

 B. Murmann, “The Race for the Extra Decibel,” IEEE Solid-State Circuits Society Magazine, Summer 2015.
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ADCs FoMs Trends

 Schreier FoM defined as

𝐹𝑜𝑀ௌ ൌ 𝑆𝑁𝐷𝑅 𝑑𝐵 ൅ 10 log
𝑓௦ 2⁄
𝑃

 Progression at 1dB/year or doubling 
the energy efficiency every three years

 Conversion rate is doubling every 1.8 
years or 60x improvement every ten 
years
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 B. Murmann, “The Race for the Extra Decibel,” IEEE Solid-State Circuits Society Magazine, Summer 2015.
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Power consumption and energy efficiency
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The ITRS Roadmap (2005)

 We clearly have entered the sub-volt era…
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The ITRS Roadmap (2011)
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 H. S. Ruiz, R. B. Pérez, Linear CMOS RF Power Amplifiers - A Complete Design Workflow, Springer, 2014.
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The ITRS Roadmap (2015)

 …and are heading towards 0.5 V
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Voltage Scaling – Against Analog Performance

 The power consumption for achieving a given bandwidth and SNR is given by
𝑃

𝑃௠௜௡
≅

𝑉஽஽
𝑉஽஽ െ 2𝑉஽ௌ௦௔௧

 which becomes very large as 𝑉஽஽ gets close to 2𝑉஽ௌ௦௔௧
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Low-voltage Pushes Bias Points towards Subthreshold

 The supply voltage is set according to
𝑉஽஽ ൌ 𝑉 ௌ ൅ 2𝑉஽ௌ௦௔௧ ൅ 𝑉௣௣

 where 𝑉 ௌ depends on the inversion coefficient according to
𝑉 ௌ ൌ 𝑉 ൅ 2𝑛𝑈் ln 𝑒 ூ஼ െ 1 with 𝑈் ≜ 𝑘𝑇 𝑞⁄

 Supply voltage below 1V pushes bias point towards moderate/weak inversion
 For achieving 𝑉஽஽ ൌ 0.5𝑉, threshold voltage should be smaller than 0.3 V and 

bias point has to be in weak inversion 𝐼𝐶 ൏ 0.1
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Consequences of Supply Voltage Reduction
 Most fundamental
 Voltage swing given by 𝑉௣௣ ൑ 𝑉஽஽ െ 2𝑉஽ௌ௦௔௧
 If 𝑉஽ௌ௦௔௧ ൌ 𝑉஽஽ 2⁄ (or 𝑉௣௣ ൌ 0) then 𝐾 ≫ 1
 If voltage is split half between bias and signal: 𝑉஽ௌ௦௔௧ ൌ 𝑉஽஽ 4⁄ (or 𝑉௣௣ ൌ 𝑉஽஽ 2⁄ ) 

then increase of 𝐾 remains acceptable (𝐾 𝐾௠௜௡ ൌ 2⁄ )
 𝑉௣௣ and 𝑉஽ௌ௦௔௧ must therefore be reduced proportionally with 𝑽𝑫𝑫, 

consequently, inversion coefficient has to be reduced and operating point is 
progressively moving towards moderate and weak inversion

 Other consequences:
 𝑉஽஽ approaching 𝑉  poor switch conductance (eventually conductance gap)
 If 𝑉 is lowered  open switches start to leak
 𝑉஽஽ below 𝑉 ଴ requires special band-gap voltage reference circuits
 Transistor stacks no more possible  requires special LV circuit techniques
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Strong Inversion will Disappear at Low-Voltage!

 The above plot clearly illustrates that the strong inversion region is reducing 
dramatically because of voltage scaling and ultimately is disappearing
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Impact of Scaling on Analog/RF Key Parameters
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