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A bit of history




Mark | Perceptron

o first implementation of the perceptron algorithm

e the machine was connected to a camera that used 20x20
cadmium sulfide photocells to produce a 400-pixel image

o it recognized letter of the alphabet

fla) =

1 fw-z4+b>0
0 otherwise

update rule:
wi(t + 1) = wi(t) + a(d; — y;(t))z;s

Rosenblatt, 195 —
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NEW NAVY DVICE
LEARNS BY DOING

Psychologist Shows Embryo

of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and bes con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 ‘“704" com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write. It is expected to be
‘finished in about a Year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do hyman be-

ings, Perceptron will make mis-
takeg at first, but will grow
wiser as it gains experience, he
said, ‘

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers,

Without Human Controls

. The Navy said the perceptron,

would be the- first non-living!
mechanism ‘‘capable of receiv-|
ing, recognizing and identifying.
its surroundings without any
human tra.ininF or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape.

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another

language, it was predicted,
Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-

|

scious of their existence.

Rosenblatt, 195

1958 New York
Times...

In today's demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the

machine made no distinction be-
tween them. It then started

registering a “Q" for the left
squares and “O"” for the right

squares.
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a “self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. e human brain
has 10,000,000,000 responsive
cellg, including 100,000,000 con-

nections with the eyes,




Perception = 1 Neuron

The neuron

Inspired by neuroscience and human brain, but resemblances do not
go too far

impulses carried
toward cell body

dendrites (

nucleus

"Neural networks copy the human brain." | cringe
every time | read something like this the press. It is
wrong in multiple ways.
First, neural nets are loosely *inspired* by some
/A \impusdlaspects of the brain, just as airplanes are loosely
cell oy away frofinspired by birds.
Second the Inspiration doesn't come from the human
brain. It comes from *any* animal brain: monkey, cat,
rat, mouse, bird, fish, fruit fly, aplysia sea slug, all the
way down to caenorhabditis elegans, the 1mm-long
roundworm whose brain has exactly 302 neurons.

Yann LeCun, Facebook A




Marvin L. Minsky and Seymour A. Papert

"Perceptrons have been widely publicised as
‘pattern recoanition' or 'learnina machines' and

(o °

i“ Al winter Xp 12languages v
C

Ve Article Talk Read Edit View history Tools v

i c From Wikipedia, the free encyclopedia

~

In the history of artificial intelligence, an Al winter is a period of reduced funding Part of a series on
and interest in artificial intelligence research.['l The field has experienced several Artificial intelligence
hype cycles, followed by disappointment and criticism, followed by funding cuts,

followed by renewed interest years or even decades later.

The term first appeared in 1984 as the topic of a public debate at the annual
meeting of AAAI (then called the "American Association of Artificial

T Intelligence").[?] Roger Schank and Marvin Minsky—two leading Al researchers Major goals [show]

1 who experienced the "winter" of the 1970s—warned the business community that Approaches [show]
enthusiasm for Al had spiraled out of control in the 1980s and that Applications [show]

. disappointment would certainly follow. They described a chain reaction, similar to Philosophy [show]
a "nuclear winter", that would begin with pessimism in the Al community, followed History [hide]

F by pessimism in the press, followed by a severe cutback in funding, followed by Timeline - Progress - Al winter - Al boom

J: the end of serious research.[?! Three years later the billion-dollar Al industry Glossary [show]

J began to collapse. S

There were two major winters approximately 1974—1980 and 1987-2000, ! and
several smaller episodes, including the following:

Marvin Minsky Seymour Papert, (1969).



neural nets

Complex neural network



Why neural nets?

Input Adjustable synapse Output
layer 1 2 3 layer

Complex neural network Informed Al network



2-layered networks

Input Hidden Output
layer layer layer
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2-layered networks
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Universal Approximation Theorem: Fix a continuous function o : R — R (activation function) and positive integers d, D. The function & is not a polynomial if and only if, for every continuous function
f: R4 — RY (target function), every compact subset K of R?, and every € > 0 there exists a continuous function fe: R? —» RP (the layer output) with representation

fe=Wyo000Wi,

where Wy, Wi are composable affine maps and o denotes component-wise composition, such that the approximation bound

sup || f(z) — fe(z)| <€
zeK

holds for any € arbitrarily small (distance from f to f. can be infinitely small).

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions

il

relu(x) = x if x>0 & 0 otherwise

0
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Why deep learning?
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Deep vs Shallow

One hidden layer Many hidden layer

“Input” layer



Deep vs Shallow
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Why deep?___

(i) With the same number of nodes, one can represent more
complex function with deep networks

7 "@*ﬁ (i) Many data are actually hierarchical...
# 5 ’u%f;b ...just think of the classification of animal species!

)

(iv) seems to do some weird uncanny magic that somehow prevents overfiting



Feed-forward Neural networks

. output layer
p

= x3 = g3(WsZs)

4x1 matrix

iInput layer
iy hidden layer 1 hidden layer 2

T1 = g1(Wixy) T = go(WaTy)

4x3 matrix 4x4 matrix

p = f(Zo) = g3(W3 g2(Wa g1 (W1Zp)))

W matrices are called the « weights »
The functions gn () are called « activation functions »




Modern neural nets
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Modern neural nets

i
Convolution
AvgPool
MaxPool
Concat
@» Dropout
@» Fully connected
@ Softmax

iInception res-net



Modern neural nets

Output
Probabilities

4
'y )
Add & Norm
Feed
Forward

~\ | Add & Norm |::

s 1
S Multi-Head
Feed Attention
Forward T 7 Nx
_k
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
\_ J \_ _J)
Positional @—@ & Positional
Encoding Encoding
Input Output
Embedding Embedding

T T

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformers



How do we minimise the empirical
risk for the neural network?



Optimization




Optimization

Follow the slope!



Minimising the cost function by gradient descent

9t+1 — O — ﬂV@(@t)

If eta small enough, converges to a (possible local) minima



https://en.wikipedia.org/wiki/Gradient_descent

Gradient descent
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Gradient descent

n=0.5
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Feed-forward Neural networks

. output layer
p
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How to compute the gradient efficiently?

—

hl FLn hL

A — P
' N )

0 fl — (g1 (WlfO) fn — gn(ann—l) e P= gL(WLfL—l)




Demonstration by the chain rule of derivatives
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How to compute the gradient efficiently?
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Minimising the cost function by gradients descent

QH_I — 91‘ o }/]V‘% <9t’ {X}i=1,...n’ {y}izl,.,,n>

If eta small enough, converge to a (possible local) minima

Standard (or "batch") gradient descent

Compute the gradient by averaging the derivative of the loss is the entire training set

1 n
VK (6”’ {X}i=1,...n’ {Y}iz n) — ;l:Zl VZ(x;y;,0)

Batch gradient is the average gradient over all data in the training set


https://en.wikipedia.org/wiki/Gradient_descent

Gradient descent

Batch gradient d t I =
atch gradient descen Ot =0 — V% <9t» Xbiog {y}izl,...n>

for 1 1n range(nb_epochs):
params_grad = evaluate_gradient(loss_function, data, params)
params = params - learning_rate * params_grad

1_ n
VZ (0, {X}i=1,...n’ {y}i: )= ;lzzl VZ(X;, ;0

Batch gradient is the average gradient over all data in the training set



Gradient descent

Mini-batch gradient descent
1/n)
for i in range(nb_epochs): HH_( 2 _ et - nv‘% <9t {X}l =ny,...ny’ {y}i=n1,...n2)

np . random.shuffle(data)

for batch in get_batches(data, batch_size=50):
params_grad = evaluate_gradient(loss_function, batch, params)
params = params - learning_rate * params_grad

B _ vany
mini-batchs

{X}, 1,..b {X}z =2b+1,.

X} impit 2p

Mini-Batch gradient is the average gradient over all data in one mini-batch



Gradient descent

Stochastic gradient descent gi+(1n) _

—0' - VR (Qt, X}, {y}i>

for 1 1n range(nb_epochs):
np . random.shuffle(data)
for example 1in data:
params_grad = evaluate_gradient(loss_function, example, params)
params = params - learning_rate * params_grad

.., N Full-batoh
Xl-l-l-l- FRIERIENIEN O
1X3 L.

X2X,

v (0 (x),{},) = VL, 7, 0)

SGD gradient is the gradient for one element in the training set



Why Mini-batch gradient descent?

Qi+(/n) — gt _ nv@ Ht {X}l—nl, {y} )
=ny,..

The Tradeoffs of Large Scale Learning

e [he model update frequency is hi
faster and memory efficient (o

Léon Bottou Olivier Bousquet
NEC laboratories of America Google Ziirich
Princeton, NJ 08540, USA 8002 Zurich, Switzerland
. . . leon@bottou.or olivier.bousquet@médx.or
e Maybe? Effective noise in the dyi ’ ) ’
Could works better than full batct Abstract

This contribution develops a theoretical framework that takes into account the
effect of approximate optimization on learning algorithms. The analysis shows

o In pra Ctice: Th |S |S the on |y Way distinct tradeoffs for the case of small-scale and large-scale learning problems.
Small-scale learning problems are subject to the usual approximation—estimation
tradeoff. Large-scale learning problems are subject to a qualitatively different

networks

tradeoff involving the computational complexity of the underlying optimization
algorithms in non-trivial ways.




Mini-batch gradient descent

« Example of optimization progress while training a neural
network
e Showing loss over mini-batches as it goes down over time

25
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20 40 60 80 100
Epoch



Batch vs mini-batches

m—a Stochastic
3.6 —— Mini-batch
3.4 | ==e Batch

2.5 3.0 3.5 4.0 4.5



Mini-batch gradient descent

o Example of optimization progress while training a neural

network
o Epoch = one full pass of the training dataset through the

network

The effects of step size (or “learning rate”)
A

loss

low learning rate

high learning rate

good learning rate

epoch



Many mini-batch algorithms
(but we shall discuss them later)

- SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

1.0




Using Neural nets!

Many Python Frameworks

» Pytorch & Torch
» TensorFlow
- Caffe AN

° CaﬁeZ .F VS P Y Tb R C H

« Chainer
. CNTK Tensort oy

- DSSTNE
* DyNet .
« Gensim G O _
« Gluon L
- Keras
* Mxnet
- Paddle
» BigDL
» RIP: Theano & Ecosystem jaX VS pytorch



https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#torch
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#tensorflow
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe2
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#chainer
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#cntk
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dsstne
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dynet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gensim
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gluon
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#keras
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#mxnet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#paddle
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#bigdl
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#theano

Pytorch

class NeuralNetwork(nn.Module):
def __init_ (self):

super(NeuralNetwork, self).__init__ ()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28%28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

Note that the backward pass (backpropgation) is done automatically by pytorch
(This is called automatic differentiation!)

No need to code back propagation if you use pytorch!



Gradient descents a gogo



How to compute the gradient efficiently?
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Gradient descent

Batch sradient d t I —
atch gradient descen O =0"—nVRH <‘9ta {X}izl,...n’ {y}izl,...n>

for 1 1n range(nb_epochs
params_grad = evaluate_gradient(loss_function, data, params

params = params - learning_rate * params_grad

Mini-batch gradient descent
9t+(1/nb) = 0" — }/]V% Ht’ {X}i=n1,...n2’ {y}i=n1 o

for 1 1n range(nb_epochs 182

np . random.shuffle(data
for batch in get_batches(data, batch_size=50
params_grad = evaluate_gradient(loss_function, batch, params

params = params - learning_rate * params_grad

Stochastic gradient descent
O = ' =V (92 (x}, {y},.)

for 1 1n range(nb_epochs
np . random. shuffle(data

for example 1in data
params_grad = evaluate_gradient(loss_function, example, params

params = params - learning_rate * params_grad






Gradient descent

A physics analogy

“Speed”

v = VAG')
Hl‘+1 — 9 — Vl‘+1

“Movement”




Momentum

Keep the ball rolling on the same direction

U= =

“Speed” change with the gradient of the force

Vt+1 — }/Vt 4+ an(é’t)
6)t+1 — O — Vt+1

“Movement”

« Effective averaging of previous directions »

Momentum update

momentum
step
actual step

>

gradient
step



Nesterov acceleration

A slightly more clever ball

U= =

Vt+1 — }/Vt i r]Vf(é’t _ }/Vt)
9t+1 — O — Vt+1

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

>

gradient
step



Pytorch optimizer

class torch.optim.SGD(params, Ir=<object object>, momentum=0, dampening=0,
weight_decay=0, nesterov=False) [source]

Implements stochastic gradient descent (optionally with momentum).

Nesterov momentum is based on the formula from On the importance of initialization and
momentum in deep learning.

Parameters: e params (iterable) - iterable of parameters to optimize or dicts defining parameter

groups

> ° Ir (float) - learning rate

» ¢ momentum (float, optional) - momentum factor (default: O)

o weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
e dampening (float, optional) - dampening for momentum (default: O)

» e« nesterov (bool, optional) - enables Nesterov momentum (default: False)

Example

>>> optimizer = torch.optim.SGD(model.parameters(), 1r=0.1, momentum=0.9)
>>> optimizer.zero_grad()

>>> loss_fn(model(input), target).backward()

>>> optimizer.step()



Adaptive learning rates
6;t+1 — 0" — ﬂVf(Ht)

What about this guy ? /

Adagrad:

Adagrad scales y for each parameter according to the history of gradients (previous steps)

\V Gn+ € V)

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

9t+1 — Qt

Gt+1: Gt + (Vf)Q

With adagrad, one does not need to manually adapt y at each steps...

... but the problem is that eventually all update on gradients goes to zero!



Adaptive learning rates

Adagrad:

Adagrad scales y for each parameter according to the history of gradients (previous steps)

¢G}7+ - VO

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

Gt+1: Gt -+ (Vf)Q

9t+1 — 6)t

RMSprop

The only difference RMSprop has with Adagrad is that the term is calculated by exponentially
decaying moving average (like we did in momentum for the gradient itself!) instead of the sum of
gradients.

Gu= G+ (1 —7)(Vf)°



RMSprop

Proposed by G. Hinton during his coursera lecture

Home 2 Data Science » Machine Learning
Overview

Neural Networks for Machine Learning

Syllabus

FAQs

About this course: Learn about artificial neural networks and how they're being used for machine
Creators learning, as applied to speech and object recognition, image segmentation, modeling language and human
motion, etc. We'll emphasize both the basic algorithms and the practical tricks needed to get them to work

|

Ratings and Reviews

v More
Neural
Networks for Created by: University of Toronto
Machine X
Learning 8
TORONTO

Salgell
Starts Dec 25

Financial Aid is available for learners Taught by: Geoffrey Hinton, Professor

who cannot afford the fee.
Learn more and apply.

Department of Computer Science




Adaptive learning rates

ADAM= Adaptive learning rate + Momentum

Adam: Adaptive Moment Estimation

Adam also keeps an exponentially decaying average of past gradients, similar to momentum

G = B2Gi1+ (1 — B2)(V[)?
My = 1Mt (1 — 51)(VS)

These are estimates of the first moment (the mean) and the second moment (the uncentered
variance) of the gradients respectively, hence the name of the method.

A~ Mt A Gt
M — G p—
1-pt T 18

t
\/G + ¢

9t+1




Pytorch

ADAM

CLASS torch.optim.Adam(params, 1x=0.001, betas=(0.9, 0.999), eps=1e-08,
weight_decay=0, amsgrad=False) [SOURCE]

Implements Adam algorithm.

input : v (Ir), 81, B2 (betas), §y (params), f(0) (objective)
A (weight decay), amsgrad

max

initialize : mo < 0 ( first moment), vo < 0 (second moment), vg < 0

fort=1to ... do
g: <+ Vofi(60:-1)
if A 7é 0 Parameters

gt < gt + A6y

my < Bimy_1 + (1 — B1)g:
v Bov1 + (1 — B2)g;
my < my/(1— B)
;< v/ (1 — B3)

e params (iterable) - iterable of parameters to optimize or dicts defining parameter groups

e Ir (float, optional) - learning rate (default: 1e-3)

» betas (Tuple[float, float], optional) - coefficients used for computing running averages of
gradient and its square (default: (0.9, 0.999))

 eps (float, optional) - term added to the denominator to improve numerical stability

if amsgrad (default: Te-8)

v ma‘x("/’;maz’ vAt) » weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)

0 < 0;_1 — ’77n\t/ ( VU 4 6) o amsgrad (boolean, optional) - whether to use the AMSGrad variant of this algorithm
else from the paper On the Convergence of Adam and Beyond (default: False)

9t<—9t—1—'77/n\t/( @?‘i‘f)




Pvtorch

CLASS toxch.optim.NAdam(params, 1r=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0,
momentum_decay=0. 004) [SOURCE] ADAM + NeSte rOV

NADAM

Implements NAdam algorithm.

input : v; (Ir), B1, B2 (betas), 6y (params), f(6) (objective)
A (weight decay), 1 (momentum decay)

initialize : mo < 0 ( first moment), vy < 0 ( second moment)

fort=1to ... do
gt < VOft(ot—l)
ifA#0
gt < gt + A1

pe < Bi(1— %0.96“")

Parameters

e params (iterable) - iterable of parameters to optimize or dicts defining parameter groups

1
pei1 + Bi(1— £0.967DY)

2 e Ir (float, optional) - learning rate (default: 2e-3)
my < Bimy—1 + (1 — B1)gs * betas (Tuple[float, float], optional) - coefficients used for computing running averages of gradient and
2
vy < Bovi1 + (1 — Ba)g; its square (default: (0.9, 0.999))
t+1

o * eps (float, optional) - term added to the denominator to improve numerical stability (default: 1e-8)
mi < perame/ (1= [ ] wa)

+ (1 — pt)ge /(1 — H#z‘)

Uy ’Ut/(l - ,35)
O < 6,1 — 'yﬁz\t/(\/ﬁ»; + 6)

* weight_decay (float, optional) — weight decay (L2 penalty) (default: 0)

* momentum_decay (f/oat, optional) - momentum momentum_decay (default: 4e-3)

return 6;
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training cost

10"

MNIST Multilayer Neural Network + dropout

20

AﬁaGrad
RMSProp

SGDNesterov||

AdaDelta
Adam

100
terations over entire dataset

150

200



In summary

Neural networks are parametric functions of the form:

y=o0; (WL-UL—l(WL—l( oo (WX + b)) + bz)

They are “trained” by finding the “Weights” using gradient descent to
minimise the empirical risk. In practice, this is done using mini-batchs

Qi+/m,) — gt _ NVAR <(9¢, {X}i=n1,...n2’ {y}i=n1 n2>

1 &
v <0t’ {X}izila---iz’ {y}i=i1,...i2> T Z VZ(X; 5,0

L hg

I - 1IN viany
mini-batchs

{X}i=1,...b {X}i=2b+1,...3b

X} ipi1. b



Le prix Turing honore les peres du deep learning
Yann LeCun, Yoshua Bengio et Geoffrey Hinton

Le Francais Yann LeCun, le Britannique Geoffrey Hinton et le Canadien Yoshua Bengio,
les trois peres fondateurs du deep learning, ont recu le 27 mars le prix Turing, équivalent
du Nobel d’informatique, pour leur apport a I'intelligence artificielle.

Yoshua Bengio Geoffrey Hinton Yann LeCun

- A bag of tricks: dropout, batchnorm, etc...
- Special layers: embedding, convolutions, pooling, etc...
- Convolution Networks (CNN)



“Computer, recognise simple characters
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“Computer, recognise images”
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CIFAR-10

60000 images, 10 classes

CIFAR-100
60000 images, 100 classes



ImageNet

From Wikipedia, the free encyclopedia

The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million('2] images have been hand-annotated by the project to indicate
what objects are pictured and in at least one million of the images, bounding boxes are also provided.!®] ImageNet contains more than 20,000 categories!?! with a typical category, such as "balloon" or
"strawberry", consisting of several hundred images.!*] The database of annotations of third-party image URLSs is freely available directly from ImageNet, though the actual images are not owned by
ImageNet.[S] Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where software programs compete to correctly
classify and detect objects and scenes. The challenge uses a "trimmed" list of one thousand non-overlapping classes.©!

Error in ImageNet Challenge

28% 8 layers

= ZF, 8 layers
VGG, 19 layers
GooglLeNet, 22 layers
52 layers

12% (Ensemble)

7 3%6 LA SENet
' ) f;‘s' % 'Lo'/;'z' '2;0/; "7 Humanemor

-J_-jﬂ-j;_

shallow
100% accuracy and reliability not realistic

N Tragtional computer vision
BN Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017




“Computer, drive my car”




“Computer, drive my car”
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Computer, make a portrait of myself

(A1) () iear (TR, ((‘nl",f‘é})

Playing a Stratocaster guitar in front of  As a mystical wise person, minimalist

a blackboard full of complex equations iconography, green and blue vibes As obi-wan Kenobi in Star-Wars




How does this works ?

Tricks.... & convnets



1: Tricks of the trade



Initialization of the weight

* Weights need to be small enough

o around origin for symmetric activation functions (tanh, sigmoid)
— stimulate activation functions near their linear regime

o Jarger gradients — faster training

* Weights need to be large enough

o otherwise signal is too weak for any serious learning

RELU prevent vanishing gradients
(but dead relus can exist! -> Leaky relu!)

15 : - : : 15 : ; - : : 15 ; - : v /
: : 10

0.5

0.0

-0.5 -0.5

-1.0 4 -1.0

-1.5 I 1 1 1 -1.5 1 I 1 -1.5 I i 1 1 1
-4 -2 0 2 4 -4 -2 0 2 4 -2.0 -1.5 -1.0 -05 0.0 0.5 1.0 1.5 2.0

B 1 62:1: -1
 l4e®

sigm () relu(xz) = max(0, x)

sigm’(z) = sigm(z)(1 — sigm(x)) tanh’(z) = 1 — tanh(z)? relu’(z) = 1,0



Initialization of the weight

Xavier Initialization

)
’ Nzn + Nout

N (0

glorot_uniform
glorot_uniform(seed=None)

Glorot uniform initializer, also called Xavier uniform initializer.

It draws samples from a uniform distribution within [-limit, limit] where 1imit is
sqrt(6 / (fan_in + fan out)) where fan_in isthe number of input units in the weight tensor and
fan_out isthe number of output units in the weight tensor.

Arguments

e seed: A Python integer. Used to seed the random generator.

Datiirmne



Initialization of the weight

2
Kaiming-He initialization N (0, N_-)

* Scale the incoming weight to have a O(1) variable
* The factor 2 depends on activation: ReLUs ground to O the linear activation about

half the Time -> Double weight variance for Relu to adapt

he_normal
he_normal (seed=None)

He normal initializer.

It draws samples from a truncated normal distribution centered onOwith stddev = sqrt(2 / fan_in) where
fan_in isthe number of input units in the weight tensor.

Arguments

e seed: A Python integer. Used to seed the random generator.

Returns



Initialization of the weight

[ J [ J [ J [ J [ J [ J [ J 2
Kaiming-He initialization N (0, N—)
)
The same type of reasoning can be applied to other activation functions

From torch/nn/init.py:

def calculate_gain(nonlinearity, param=None):
linear_fns = ['linear', 'convid', 'conv2d', 'conv3d', 'conv_transposeld', 'conv_transpose2d', 'conv_transpose3d']

if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1

elif nonlinearity == 'tanh':
return 5.0 / 3

elif nonlinearity == 'relu’':
return math.sqrt(2.0)

elif nonlinearity == 'leaky relu':

if param is None:
negative_slope = 0.01
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):

negative_slope = param
else:
raise ValueError("negative_slope {} not a valid number".format(param))
return math.sqrt(2.0 / (1 + negative_slope ** 2))
else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))



Weight initialization

Does it actually matter that much?



Weight initialization

Does it actually matter that much?

0s

T [ Fotows IS
Initialization in deep learning matters a lot! In
a simple @PyTorch code for seg2seq NMT,
changing the init of embeddings from default
to kaiming (Gaussian vs uniform is not
important, but rescaling is!) and regularizing
more boosts results by 2 BLEU. How to tune
these things?

mode="fan_in') to init embeddings

BLEU on the training set

BLUE: default pytorch init for embeddings
GREEN: using nn.init.kaiming_uniform(self.weight,

RED: adding dropout on top of embeddings

o1

training iterations
0 S0k 100 150

200k

BLEU score on the validation set

BLUE: default pytorch embeddings

GREEN: using nn.init.kaiming_uniform(self.weight,
mode="fan_in') to initialize embeddings

RED: adding dropout 0.3 on top of embeddings

Training steps



ata pre-processing

sklearn.preprocessing.StandardScaler

class sklearn.preprocessing.StandardScaler(*, copy=True, with_mean=True, with_std=True)

o Network is Forced to fFind non-trivial correlations between inputs
o Decorrelated inputs — better optimization

e |Input variables follow a more of less Gaussian distribution

e In practice:

o compute mean and standard deviation

= per pixel: (4, 6%)
= per color channel:

10

=10 |

=15 |

20 - - 1 ! 1 1 —20 ! |
- - - 5 10 15 20 -15 -10 -5

20



Batch Normalization

from keras.layers.normalization import BatchNormalization
model = Sequential()

# think of this as the input layer

model.add(Dense(64, input_dim=16, init='uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))

model.add(Dropout(0.5))

# think of this as the hidden layer

model.add(Dense(64, init='uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))

model.add(Dropout(0.5))

# think of this as the output layer

model.add(Dense(2, init='uniform’))
model.add(BatchNormalization())
model.add(Activation(‘softmax’))

# optimiser and loss function
model.compile(loss='binary_crossentropy’, optimizer=sgd)

During training, we normalise the activations of the previous layer for each batch:

We normalise in order to maintains the mean activation close to 0 and the activation standard deviation close to 1 befo

the activation function



Batch Normalization

Input: Values of x over a mini-batch: B = {z1. . };
Parameters to be learned: ~, 3
Output: {y; = BN, g(z:)}

1 & L
Up — — Z X // mini-batch mean
e
1 ™m
O — - Z:(a;Z — 1B)° // mini-batch variance
i=1
~ Xy — .
7 — 2 FB // normalize

\/0223+<—:

yi < 7x; + 5 = BN, g(x;) // scale and shift




What do you do when do not have
enough data?

You create more!



Data augmentation

e Changing the pixels without changing the label
e Train on transformed data
o Widely used

Flip Random crop

original

Contrast Tint




Data augmentation

Horizontal flips




Data augmentation

Random crops/scales




Data augmentation

Color jitter

e randomly jitter color, brightness, contrast, etc.



Data augmentation

e Various techniques can be mixed

« Domain knowledge helps in finding new data augmentation
techniques

e Very useful for small datasets




Figure 1: The result of using a spatial transformer as the
first layer of a fully-connected network trained for distorted
MNIST digit classification. (a) The input to the spatial trans-
former network is an image of an MNIST digit that is dis-
torted with random translation, scale, rotation, and clutter. (b)
The localisation network of the spatial transformer predicts a
transformation to apply to the input image. (c) The output
of the spatial transformer, after applying the transformation.
(d) The classification prediction produced by the subsequent
fully-connected network on the output of the spatial trans-
former. The spatial transformer network (a CNN including a
spatial transformer module) is trained end-to-end with only
class labels — no knowledge of the groundtruth transforma-
tions is given to the system.

Great overview of the function of a Spatial Tranfomer module

Data augmentation

AT EIcIIeT|L e
GO CE [ (e
APl ®T
CACTIY 19 1T [ iede 1 [
eege e L
CFIC® AT A=
FICEEIFIZIZAT S
GGG S
[CEIAE AL EE




gy e e




CPU vs GPU

CPU GPU




CPU vs GPU

e CPU: e GPU:
o fewer cores; each core is faster and more powerful o more cores; each core is slower and weaker
o useful for sequential tasks o great for parallel tasks
CPU (Multiple Cores) GPU (Hundreds of Cores)
A EEEEEEEEEES)
Siiiiassassssass
SESEEEENEEEEEEEES
SESSEESEENEEEEEES
SESEEESEEEEEEEES
SESSEESEEEEEEEES
SESSEESEEEEEEEES
L J

System Memory




CPU vs GPU

o SP =single precision, 32 bits / 4 bytes
« DP =double precision, 64 bits / 8 bytes
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7000
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Theoretical peak (GFLOPS)
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Willameftel SE— S
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GeForce GTX 280
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GeForce GTX 780 Tl
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Market Summary > NVIDIA Corporation

303.90 uso

+280.56 (1,202.06%) 4 past 5 years

Closed: 15 Nov, 05:34 GMT-5 ¢ Disclaimer
Pre-market 303.76 —0.14 (0.046%)

NASDAQ: NVDA

4+ Follow

1D 5D 1™ 6M YTD 1Y 5Y Max
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@ colab.research.google.com/drive/1rXiiOH9N-Zk4zp6BwjXFmaPVj3DaWPqg3
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2: Regularization



Early stopping

To avoid overfitting another popular technique is early stopping

Monitor performance on validation set

Training the network will decrease training error, as well validation error (although with a
slower rate usually)

Stop when validation error starts increasing

o most likely the network starts to overfit
o use a patienceterm to let it degrade for a while and then stop

Error

Early stopping

Training cycles



Remember this?

The linear model revisited: regularisation

Beplace By
0 = argmin(|[Y — A0)||2) ) = argmin(|[Y — A6||2) + g(6)

aka Ridge regression aka Weight decay

0

argmin(||Y — A9][3) + I'(|6]3

Find the best I'
using cross-validation




Weight Decay

= ¢, regularisation = Ridge = Tikhonov

| 2 regularization:

Regularization  |g| = (w, )’ +(w, ) +...

e New loss function to be minimized

, | , oL OL
L(H):L(H) /15”6”2 Gradient: E:aw AW

oW ow

CaL

o

Closer to zero

Update: W' — 1/ 778L =W —n oL | /IW’]
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(a) Standard Neural Net (b) After applying dropout.

Each time we load an example into a minibatch, we randomly sample a different binary
mask to apply to all of the input and hidden units in the network. The mask for each unit
Is sampled independently from all of the others



Dropout

Journal of Machine Learning Research 15 (2014) 1929-1958 Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting

Nitish Srivastava NITISHQCS.TORONTO.EDU

Geoffrey Hinton HINTON@CS.TORONTO.EDU

Alex Krizhevsky KRIZ@CS.TORONTO.EDU

Ilya Sutskever ILYA@CS.TORONTO.EDU

Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU

Department of Compuler Science

University of Toronto

10 Kings College Road, Rm 3302

Toronto, Ontario, M5S 3G4, Canada.
Test Error

Editor: Yoshua Bengio 15 frames 3 layers 2000 units |
| 15 frames 3 layers 4000 units

31 frames 3 layers 4000 units |
Abstract

31 frames 4 layers 4000 units

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,
it is easy to approximate the effect of averaging the predictions of all these thinned networks

by simply using a single unthinned network that has smaller weights. This significantly \ Y hinetuning without dropoost
reduces overfitting and gives major improvements over other regularization methods. We *..

show that dropout improves the performance of neural networks on supervised learning X

: ~ - A - finetuning th dropout
3 )\ L g W {
.&_ g A‘V A A

|
- - v |
e i S e e i

Classthcation Lrror %

W —

SO 100 150 700
Epochs

Fig. 2: The frame classification error rate on the core test set of the TIMIT benchmark. Com-
parison of standard and dropout finetuning for different network architectures. Dropout of 50%
of the hidden units and 20% of the input units improves classification.




Dropout

Features learned on MNIST with one hidded layer autoencoders
having 256 rectified linear units

(a) Without dropout (b) Dropout with p = 0.5.



Easy to implement with pytorch:
This is just another layer!

class Net(nn.Module):
def __init__(self):
super(Net,self).__init__QO
self.convl=nn.Conv2d(1,32,3,1)
self.convl_bn=nn.BatchNorm2d(32)

self.convZ2=nn.Conv2d(32,64,3,1)
self.convZ2_bn=nn.BatchNorm2d(64) < Batchnorm

self.dropoutl=nn.Dropout(@.25)

self.fcl=nn.Linear(9216,128)
self.fcl_bn=nn.BatchNorm1d(128)

self.fc2=nn.Linear(128,10)
def forward(self,x):

x=self.convl(x)

x=F.relu(self.convl_bn(x))

x=self.conv2(x)
x=F.relu(self.convZ2_bn(x))
— Dropout

x=F .max_pool2d(x,2)
x=self.dropoutl(x) «—

x=torch. flatten(x,1)

x=self.fcl(x)
X=F.relu(self.fcl_bn(x))

x=self.fc2(x)
output=F.log_softmax(x,dim=1)
return output



<

3 Playing Lego

class LeNet (Module):
def init (self, numChannels, classes):
# call the parent constructor

super (LeNet, self). init ()

# initialize first set of CONV => RELU => POOL layers

self.convl = Conv2d(in_channels=numChannels, out channels=20,
kernel size=(5, 5))

self.relul = ReLU()

self.maxpooll = MaxPool2d(kernel size=(2, 2), stride=(2, 2))

# initialize second set of CONV => RELU => POOL layers
self.conv2 = Conv2d(in_channels=20, out channels=50,
kernel size=(5, 5))
self.relu2 = ReLU()
self.maxpool2 = MaxPool2d(kernel size=(2, 2), stride=(2, 2))

# initialize first (and only) set of FC => RELU layers
self.fcl = Linear(in_ features=800, out features=500)
self.relu3 = ReLU()

# initialize our softmax classifier
self.fc2 = Linear(in_features=500, out features=classes)

self.logSoftmax = LogSoftmax(dim=1)



2007 NIPS Tutorial on:

Deep Belief Nets

Geoffrey Hinton

Canadian Institute for Advanced Research

&

Department of Computer Science

University of Toronto

How many layers should we use and how

wide should they be?
(I am indebted to Karl Rove for this slide)

* How many lines of code should an Al program use and how
long should each line be?

— This Is obviously a silly question.
* Deep belief nets give the creator a lot of freedom.

— How best to make use of that freedom depends on the
task.

— With enough narrow layers we can model any distribution
over binary vectors (Sutskever & Hinton, 2007)

| | freedom scares you, stick to convex optlmlzatlonof“ ]
shallow models that are obviously inadequate for doing ',
¢ Artificial Intelligence. !




3: Special Layers



Convolutional and pooling layers

Fundamental for images & sounds!

Samoyed (16); Papillon (5.7); Pomer
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Max-Pooling 1d




Max-Pooling 1d
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Max-Pooling 2d
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Translation invariance from pooling

Input




Translation invariance from pooling

Input




Translation invariance from pooling
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4: conv-nets



REVIEW

doi:10.1038/nature14539

Deep learning

Yann LeCun'?, Yoshua Bengio® & Geoffrey Hinton*~

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);
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ConvNet

o Neural network with specialized connectivity structure

o Stack multiple stage of feature extractors

o Higher stages compute more global, more invariant features
o Classification layer at the end

C3:L maps 16@10x10

. U5 ce laver  OUTPUT

r\-.\1 20 v 10

| ‘ | Full confection | Gavussian comnections
Convolutiors Subsamping Convolusons  Subsampling Full connechon



LeNet5

10 classes, input 1 x 28 x 28

(features): Sequential (

(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

(1): RelLU (1np1ace)

(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

(4): ReLU (inplace)

(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)

(classifier): Sequential (

(0): Linear (400 -> 120)

(1): ReLU (inplace)

(2): Linear (120 -> 84)

(3): ReLU (inplace)

(4): Linear (84 -> 10) )



AlexNet

(features): Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

(9):

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
RelLU (1np1ace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(192, 384, kernel _size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d(384, 256, kernel _size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

(10): Conv2d(256, 256, kernel _size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):

)

Dropout (p = 0.5)
Linear (9216 -> 4096)
ReLU (inplace)
Dropout (p = 0.5)
Linear (4096 -> 4096)
ReLU (inplace)

Linear (4096 -> 1000)



VGG-16

224 x224x3 224 x224xX64

112 x 128

56|X 56 X 256

28><28><51214 » 5I2><7><512
e 1x1x4096 1 x1x1000

P ( y

L

@ convolution+ReLLU

@ max pooling
) fully connected+ReLLU

@ softmax




model = Sequential()

model.add(ZeroPadding2D((1, 1), input_shape=(3, 224, 224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))

# Add another conv layer with RelLU + GAP

model.add(Convolution2D(num_input_channels, 3, 3, activation='relu', border_mode="same"))
model.add(AveragePooling2D( (14, 14)))

model.add(Flatten())

# Add the W layer

model.add(Dense(nb_classes, activation='softmax'))



VGG-19

: Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: ReLU (inplace)
: Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: ReLU (inplace)
: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
: Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: ReLU (inplace)
: Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: ReLU (inplace)
: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
: Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1,
: Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1,
: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

padding=(1,
padding=(1,
padding=(1,
padding=(1,

1))
padding=(1,

padding=(1,
padding=(1,
padding=(1,

1))
padding=(1,

1))
1))
1))
1))

1))
1))
1))
1))

1))



A saturation point

If we continue stacking more layers on a CNN:

56-layer

§ 56-
= -layer
G) | -
o 2
c o)
C - -
g % 20-layer
- e

20-layer

[terations lterations

Deeper models are harder to optimize



Resnets: Skiped-connections

=
weight layer
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Resnets: Skiped-connections

a),_
50+
§
5 40r
L
30-- = = = = = = = l;'——;j—;j;—— v -
ResNet-18
—ResNet-34 34-layer
20() 10 20 30 40 50

iter. (1e4)



Deeper is better

ImageNet experiments 28.2
[ 152 layers } '
A\
\\‘\ 16.4
\\\ 11.7

22 layers 19 layers
\\ 6.7 7.3
3.57 I_ I 8 layers [ 8 layers

ILSVRC'15  ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)



Regularization

Parameter Count

Num Training Samples
MLP Ix512
pin: 24
50
test error
37,5
25
12,5
0
MLP Ix512

Slide credit: C. Zhang



Regularization

Parameter Count
Num Training Samples

Alexnet

MLP Ix512 P/n:28
p/n: 24 / y -

‘u'e
¢ \:v c |
50 )
test error
37,5
25
12,5
0
MLP Ix512 Alexnet

Slide credit: C. Zhang



Regularization

FParameter Count
Num Training Samples

Inceptior
p/n:33

Alexnet

MLP Ix512 P/n:28
pin: 24

50

test error

37,5
25
12,5

0

MLP Ix512 Alexnet Inception
Slide credit: C. Zhang



Regularization ‘.
Parameter Count )
Num Training Samples

Inceptio
n/n: 33 Wide Resnet
o/n: 179
Alexnet

MLP Ix512 Pp/n:28 g

p/n: 24 b ,a

50
test error
37,5
25
12,5
0
MLP Ix512 Alexnet Inception Wide Resnet

Slide credit: C. Zhang



Regularization
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We learn from KNN that we should be careful and not use too many parameters....

... S0 how come deep learning works in the overparamterized regime?

Short answer: we do not fully understand!

Long answer: Gradient descent is magic

We know they are many set of weights that minimise the loss, and most of them are bad
at generalisation, but gradient descent seems to be biased to go toward the “good”
ones: This is called the “implicit reqularisation” of gradient descent
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What is learned in conv-nets?




Convolutions

o A bank of 256 Filters (learned from data)
e Each Filteris 1d (it applies to a grayscale image)
o Each filteris 16 x 16 pixels

Convolutions

o A bank of 256 filters (learned from data)
3D Ffilters for RGB inputs




conv1_1:a few of the 64 filters

What sort of images maximise
the activity for a given neutron . e
in eaCh IayerS? conv2_1:a few of the 128 filters

conv3_1: a few of the 256 filters

conv4_1:afew of the 512 filters

conv5_1: a few of the 512 filters

S TTENL £

Slide credit: Francois Chollet



https://twitter.com/fchollet
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conv4 _1:a few of the 512 filters
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What sort of images maximise
the activity for a given neutron
in each layers?

What sort of images maximise
the activity for the final neutron

For a given category?

Let’s try with a see-snake!
(vgg-16 trainde on imagenet
With hundred categories)

Slide credit: Francois Chollet

This is a see-shake
« | am 99% positive! »
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What sort of images maximise
the activity for a given neutron
in each layers?

What sort of images maximise
the activity for the final neutron

For a given category?

Let’s try with a magpie!
(vgg-16 trainde on imagenet
With hundred categories)

Slide credit: Francois Chollet

This is a magpie
« | am 99% positive! »
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Computer Vision is Easy:
Transfer Learning

(state of art result in few minutes)

Transfer Learning with CNNs

image

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512

conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

1. Train on
ImageNet

image

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512

conv-512
maxpool
conv-512

conv-512

maxpool

FC-4096
FC-4096

FC-1000
softmax

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

l.e. swap the Softmax
layer at the end

image

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

3. If you have medium sized
dataset, “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

/




Computer Vision is Easy:
Transfer Learning

(state of art result in few minutes)

Probability for cat

.| N g

v

Probability for dog




In summary

Convolutional neural nets are the state of there art for images
(NB: Well, Vision Transformer are just as good actually)

C3: 1, maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

6@28x28
32x32 S2:f. maps C5: layer .
F6: layer OUTPUT
6@14x14 120 84 Y 10

| Full connection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

They are made by adding Convolution and pooling.
Regularization (dropout, batch norm) also help.
This allows to solve almost any supervised vision problem:
all computer vision is now using convents



