
A crash course in
deep learning

Florent Krzakala

florent.krzakala@epfl.ch

mailto:florent.krzakala@epfl.ch

A bit of history

Perceptron may eventually
be able to learn,

make decision, and
translate languages

Perceptron may eventually
be able to learn,

make decision, and
translate languages

"Neural networks copy the human brain." I cringe
every time I read something like this the press. It is
wrong in multiple ways.
First, neural nets are loosely *inspired* by some
aspects of the brain, just as airplanes are loosely
inspired by birds.
Second the Inspiration doesn't come from the human
brain. It comes from *any* animal brain: monkey, cat,
rat, mouse, bird, fish, fruit fly, aplysia sea slug, all the
way down to caenorhabditis elegans, the 1mm-long
roundworm whose brain has exactly 302 neurons.

Yann LeCun, Facebook IA

Perception = 1 Neuron

 "Perceptrons have been widely publicised as
‘pattern recognition' or 'learning machines' and
as such have been discussed in a large number of
books, journal articles, and
voluminous 'reports'. Most of this writing ...
is without scientific value .."

Marvin Minsky Seymour Papert, (1969).

The perceptron ... has many features that attract attention: its
linearity, its intriguing learning theorem.

There is no reason to suppose that any of these virtues carry over
to the many-layered version. Nevertheless, we consider it an
important research problem to elucidate (or reject) our intuitive
judgment that the extension is sterile.

neural nets

Why neural nets?

2-layered networks

X

W1 W2

2-layered networks

X

W1 W2

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 189/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 189 / 214relu(x) = x if x>0 & 0 otherwise

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 190/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 190 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 191/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 191 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 192/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 192 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 193/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 193 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 194/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 194 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 195/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 195 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 196/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 196 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 197/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 197 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 198/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 198 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 199/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 199 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 200/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 200 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 201/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 201 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 202/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 202 / 214

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#203 203/214

Universal approximation

We can approximate any with a linear combination
of translated/scaled ReLU functions

Slide credit: F. Fleuret 203 / 214

Y =
X

i

↵iRelu(ai ⇤ x + bi)

16/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-practicals/slides/lecture_5/index.html#166 123/214

Why deep learning?

Deep vs Shallow

Many hidden layer

“Input” layer

x ∈ ℝ3 x ∈ ℝ3

“Output” layer

y ∈ ℝ2 y ∈ ℝ2

“Hidden” layers

One hidden layer

Deep vs Shallow

̂y = σ2 (W2 . σ1 (W1 ⃗x + b1) + b2) ̂y = σL (WL . σL−1(WL−1(. . . . σ1 (W1 ⃗x + b1) + b2)

Why deep?

(iv) seems to do some weird uncanny magic that somehow prevents overfiting

(ii) Many data are actually hierarchical…
…just think of the classification of animal species!

(i) With the same number of nodes, one can represent more
complex function with deep networks

(iii) inspiration from the visual cortex (convnet, see next lecture)

Feed-forward Neural networks

~x1 = g1(W1~x0)
4x3 matrix

~x2 = g2(W2~x1)
4x4 matrix

W matrices are called the « weights »
The functions gn () are called « activation functions »

~x0

p = f(~x0) = g3(W3 g2(W2 g1(W1~x0)))

4x1 matrix
p = x3 = g3(W3~x2)

Modern neural nets
Alexnet

VGG-16

Lenet

Modern neural nets

inception res-net

Modern neural nets

Transformers

 How do we minimise the empirical
risk for the neural network?

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#9 9/214

Optimization

9 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#9 10/214

Optimization

Follow the slope!

10 / 214

Minimising the cost function by gradient descent

~✓t+1 = ~✓t � �
X

i

1

N
rl(~✓t; ~xi, yi)

Standard (or "batch") gradient descent

Compute the gradient by averaging the derivative of the loss is the entire training set

If eta small enough, converges to a (possible local) minima

θt+1 = θt − η∇ℛ(θt)

https://en.wikipedia.org/wiki/Gradient_descent

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 23/214

Gradient descent

Slide credit: F. Fleuret 23 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 23/214

Gradient descent

Slide credit: F. Fleuret 23 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 25/214

Gradient descent

Slide credit: F. Fleuret 25 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 26/214

Gradient descent

Slide credit: F. Fleuret 26 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 27/214

Gradient descent

Slide credit: F. Fleuret 27 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 28/214

Gradient descent

Slide credit: F. Fleuret 28 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 29/214

Gradient descent

Slide credit: F. Fleuret 29 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 30/214

Gradient descent

Slide credit: F. Fleuret 30 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 31/214

Gradient descent

Slide credit: F. Fleuret 31 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 32/214

Gradient descent

Slide credit: F. Fleuret 32 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 34/214

Gradient descent

Slide credit: F. Fleuret 34 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 35/214

Gradient descent

Slide credit: F. Fleuret 35 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 36/214

Gradient descent

Slide credit: F. Fleuret 36 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 37/214

Gradient descent

Slide credit: F. Fleuret 37 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 38/214

Gradient descent

Slide credit: F. Fleuret 38 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 39/214

Gradient descent

Slide credit: F. Fleuret 39 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 40/214

Gradient descent

Slide credit: F. Fleuret 40 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 41/214

Gradient descent

Slide credit: F. Fleuret 41 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 42/214

Gradient descent

Slide credit: F. Fleuret 42 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 43/214

Gradient descent

Slide credit: F. Fleuret 43 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 44/214

Gradient descent

Slide credit: F. Fleuret 44 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 45/214

Gradient descent

Slide credit: F. Fleuret 45 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 46/214

Gradient descent

Slide credit: F. Fleuret 46 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 47/214

Gradient descent

Slide credit: F. Fleuret 47 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 48/214

Gradient descent

Slide credit: F. Fleuret 48 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 49/214

Gradient descent

Slide credit: F. Fleuret 49 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 50/214

Gradient descent

Slide credit: F. Fleuret 50 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 51/214

Gradient descent

Slide credit: F. Fleuret 51 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 52/214

Gradient descent

Slide credit: F. Fleuret 52 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 53/214

Gradient descent

Slide credit: F. Fleuret 53 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 54/214

Gradient descent

Slide credit: F. Fleuret 54 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 55/214

Gradient descent

Slide credit: F. Fleuret 55 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 56/214

Gradient descent

Slide credit: F. Fleuret 56 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 55/214

Gradient descent

Slide credit: F. Fleuret 55 / 214

17/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_5/index.html#23 58/214

Gradient descent

Slide credit: F. Fleuret 58 / 214

Feed-forward Neural networks

~x1 = g1(W1~x0)
4x3 matrix

~x2 = g2(W2~x1)
4x4 matrix

W matrices are called the « weights »
The functions gn () are called « activation functions »

~x0

p = f(~x0) = g3(W3 g2(W2 g1(W1~x0)))

4x1 matrix
p = x3 = g3(W3~x2)

How to compute the gradient efficiently?

~x1 = g1(W1~x0)~x0 ~xn = gn(Wn~xn�1) p = gL(WL~xL�1)

~h1{ ~hn{ ~hL{

eL = gL
0(hL)(p� y)

Feed-forward

… …

L =
(y � p)2

2
Compute the loss

Back-propagation of errors

enj = gn
0(hn

j)
X

i

Wn+1
ij en+1

i …e1j = g1
0(h1

j)
X

i

W 2
ije

2
i …

@L

@W l
ab

= xl�1
b elaOnce this is done, gradients are given by

@L

w(l)
ab

=
X

k

w(L)
k

@

@w(l)
ab

g(L�1)

"
X

k0

w(L�1)
kk0 x(L�2)

k0

#!
eL =

X

k

w(L)
k

g(L�1)0[hL�1

k]
X

k0

w(L�1)
kk0

@x(L�2)
k0

@w(l)
ab

!
eL

Demonstration by the chain rule of derivatives

L =
(y � p)2

2

@L

w(l)
ab

= (p� y)g0(L)(h(L))
X

k

w(L)
k

@x(L�1)
k

w(l)
ab

{eL = gL
0(hL)(p� y)

@L

w(l)
ab

= ?

@L

w(l)
ab

=
X

k

w(L)
k

@x(L�1)
k

w(l)
ab

eL

@L

w(l)
ab

=
X

k0

@x(L�2)
k0

@w(l)
ab

X

k

w(L�1)
kk0 w(L)

k

⇣
g(L�1)0[hL�1

k]
⌘
eL{

eL�1
k

=
X

k0

@x(L�2)
k0

@w(l)
ab

X

k

w(L�1)
kk0 eL�1

k

@L

w(l)
ab

=
X

k

@x(n�2)
k

w(l)
ab

X

i

w(n�1)
ik e(n�1)

i

…

@L

w(l)
ab

=
X

k

@x(l)
k

w(l)
ab

X

i

w(l+1)
ik e(l+1)

i = x(l�1)
b e(l)a

…

@

@

@@

@

@

@

@

How to compute the gradient efficiently?

~x0 ~x1 = g1(W1~x0) ~xn = gn(Wn~xn�1) p = gL(WL~xL�1)

~h1{ ~hn{ ~hL{

eL = gL
0(hL)(p� y)

Feed-forward

… …

L =
(y � p)2

2
Compute the loss

Back-propagation of errors

enj = gn
0(hn

j)
X

i

Wn+1
ij en+1

i …e1j = g1
0(h1

j)
X

i

W 2
ije

2
i …

@L

@W l
ab

= xl�1
b elaOnce this is done, gradients are given by

Minimising the cost function by gradients descent

Standard (or "batch") gradient descent

Compute the gradient by averaging the derivative of the loss is the entire training set

If eta small enough, converge to a (possible local) minima

θt+1 = θt − η∇ℛ (θt, {x}i=1,…n, {y}i=1,…n)

∇ℛ (θt, {x}i=1,…n, {y}i=1,…n) =
1
n

n

∑
i=1

∇ℒ(xi, yi, θt)

Batch gradient is the average gradient over all data in the training set

https://en.wikipedia.org/wiki/Gradient_descent

∇ℛ (θt, {x}i=1,…n, {y}i=1,…n) =
1
n

n

∑
i=1

∇ℒ(xi, yi, θt)

Batch gradient is the average gradient over all data in the training set

Gradient descent
Batch gradient descent

for i in range(nb_epochs):
 params_grad = evaluate_gradient(loss_function, data, params)
 params = params - learning_rate * params_grad

θt+1 = θt − η∇ℛ (θt, {x}i=1,…n, {y}i=1,…n)

Gradient descent
Mini-batch gradient descent

for i in range(nb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data, batch_size=50):
 params_grad = evaluate_gradient(loss_function, batch, params)
 params = params - learning_rate * params_grad

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)

{x}i=1,…n

{x}i=1,…b
{x}i=b+1,…2b

{x}i=2b+1,…3b

Full-batch

Many
mini-batchs

∇ℛ (θt, {x}i=i1,…i2
, {y}i=i1,…i2) =

1
i2 − i1

i2

∑
i=i1

∇ℒ(xi, yi, θt)

Mini-Batch gradient is the average gradient over all data in one mini-batch

{x}i=1,…n

x1

Full-batch

Mini-batchs
Of size 1…

∇ℛ (θt, {x}i, {y}i) = ∇ℒ(xi, yi, θt)

SGD gradient is the gradient for one element in the training set

Gradient descent
Stochastic gradient descent

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 params_grad = evaluate_gradient(loss_function, example, params)
 params = params - learning_rate * params_grad

θt+(1/n) = θt − η∇ℛ (θt, {x}i, {y}i)

x2
x3
x4

…..

Why Mini-batch gradient descent?

	•	The model update frequency is higher than batch gradient descent:
faster and memory efficient (often nothing else is actually possible)

	
•	 Maybe? Effective noise in the dynamics helps optimization/regularization:

Could works better than full batch minimisation in practice?

•	 In practice: This is the only way that we can use large data set with neural
networks

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)

Batch vs mini-batches

Many mini-batch algorithms
(but we shall discuss them later)

Using Neural nets!
Many Python Frameworks

	•	Pytorch & Torch

	•	TensorFlow

	•	Caffe

	•	Caffe2

	•	Chainer

	•	CNTK

	•	DSSTNE

	•	DyNet

	•	Gensim

	•	Gluon

	•	Keras

	•	Mxnet

	•	Paddle

	•	BigDL

	•	RIP: Theano & Ecosystem

https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#torch
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#tensorflow
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe2
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#chainer
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#cntk
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dsstne
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dynet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gensim
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gluon
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#keras
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#mxnet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#paddle
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#bigdl
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#theano

Pytorch

Note that the backward pass (backpropgation) is done automatically by pytorch
(This is called automatic differentiation!)

No need to code back propagation if you use pytorch!

 Gradient descents a gogo

How to compute the gradient efficiently?

~x1 = g1(W1~x0)~x0 ~xn = gn(Wn~xn�1) p = gL(WL~xL�1)

~h1{ ~hn{ ~hL{

eL = gL
0(hL)(p� y)

Feed-forward

… …

L =
(y � p)2

2
Compute the loss

Back-propagation of errors

enj = gn
0(hn

j)
X

i

Wn+1
ij en+1

i …e1j = g1
0(h1

j)
X

i

W 2
ije

2
i …

@L

@W l
ab

= xl�1
b elaOnce this is done, gradients are given by

Gradient descent
Batch gradient descent

for i in range(nb_epochs):
 params_grad = evaluate_gradient(loss_function, data, params)
 params = params - learning_rate * params_grad

Mini-batch gradient descent

for i in range(nb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data, batch_size=50):
 params_grad = evaluate_gradient(loss_function, batch, params)
 params = params - learning_rate * params_grad

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)

Stochastic gradient descent

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 params_grad = evaluate_gradient(loss_function, example, params)
 params = params - learning_rate * params_grad

θt+(1/n) = θt − η∇ℛ (θt, {x}i, {y}i)

θt+1 = θt − η∇ℛ (θt, {x}i=1,…n, {y}i=1,…n)

θt+1 = θt − vt+1
vt+1 = η∇f(θt)

Gradient descent
A physics analogy

“Speed”

“Movement”

Momentum
Keep the ball rolling on the same direction

« Effective averaging of previous directions »

θt+1 = θt − vt+1
vt+1 = γvt + η∇f(θt)

“Speed” change with the gradient of the force

“Movement”

Nesterov acceleration
A slightly more clever ball

θt+1 = θt − vt+1
vt+1 = γvt + η∇f(θt − γvt)

Pytorch optimizer

Adaptive learning rates

What about this guy ?

With adagrad, one does not need to manually adapt γ at each steps…

… but the problem is that eventually all update on gradients goes to zero!

Adagrad:

Adagrad scales γ for each parameter according to the history of gradients (previous steps)

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

Gt = Gt + (rf)2+1

θt+1 = θt −
η

Gt + ϵ
∇f(θt)

θt+1 = θt − η∇f(θt)

Adaptive learning rates
Adagrad:

Adagrad scales γ for each parameter according to the history of gradients (previous steps)

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

RMSprop

The only difference RMSprop has with Adagrad is that the term is calculated by exponentially
decaying moving average (like we did in momentum for the gradient itself!) instead of the sum of
gradients.

Gt = Gt + (rf)2

Gt = �Gt + (1� �)(rf)2

+1

+1

θt+1 = θt −
η

Gt + ϵ
∇f(θt)

RMSprop
Proposed by G. Hinton during his coursera lecture

Adaptive learning rates
Adam: Adaptive Moment Estimation

Adam also keeps an exponentially decaying average of past gradients, similar to momentum

Mt = �1Mt + (1� �1)(rf)
These are estimates of the first moment (the mean) and the second moment (the uncentered
variance) of the gradients respectively, hence the name of the method.

Ĝt =
Gt

1� �2

Gt = �2Gt�1 + (1� �2)(rf)2

M̂t =
Mt

1� �1
t t

-1

θt+1 = θt −
η

Ĝt + ϵ
M̂t

ADAM= Adaptive learning rate + Momentum

Pytorch

Pytorch
ADAM+Nesterov

In summary
Neural networks are parametric functions of the form:

̂y = σL (WL . σL−1(WL−1(. . . . σ1 (W1 ⃗x + b1) + b2)

They are “trained” by finding the “Weights” using gradient descent to
minimise the empirical risk. In practice, this is done using mini-batchs

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)

{x}i=1,…b
{x}i=b+1,…2b

{x}i=2b+1,…3b

Many
mini-batchs

∇ℛ (θt, {x}i=i1,…i2
, {y}i=i1,…i2) =

1
i2 − i1

i2

∑
i=i1

∇ℒ(xi, yi, θt)

Preview of next lecture

- A bag of tricks: dropout, batchnorm, etc…
- Special layers: embedding, convolutions, pooling, etc…
- Convolution Networks (CNN)

The convnet revolution

“Computer, recognise simple characters”

MNIST notMNIST

“Computer, recognise images”

CIFAR-10
60000 images, 10 classes

CIFAR-100
60000 images, 100 classes

“Computer, drive my car”

“Computer, drive my car”

Computer, make a portrait of myself

Playing a Stratocaster guitar in front of
a blackboard full of complex equations

As a mystical wise person, minimalist
iconography, green and blue vibes As obi-wan Kenobi in Star-Wars

How does this works ?

Tricks…. & convnets

1: Tricks of the trade

Initialization of the weight
• Weights need to be small enough

◦ around origin for symmetric activation functions (tanh, sigmoid)
→ stimulate activation functions near their linear regime

◦ larger gradients → faster training

• Weights need to be large enough
◦ otherwise signal is too weak for any serious learning

RELU prevent vanishing gradients
(but dead relus can exist! -> Leaky relu!)

1

Initialization of the weight
Xavier Initialization

N (0,
2

Nin +Nout
)

1

Initialization of the weight
Kaiming-He initialization

* Scale the incoming weight to have a O(1) variable
* The factor 2 depends on activation: ReLUs ground to 0 the linear activation about

half the Time -> Double weight variance for Relu to adapt

N (0,
2

Nin
)

1

Initialization of the weight
Kaiming-He initialization

* Scale the incoming weight to have a O(1) variable
* The factor 2 depends on activation: ReLUs ground to 0 the linear activation about

half the Time -> Double weight variance for Relu to adapt

N (0,
2

Nin
)

1

1

1

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_7/index.html#119 119/167

Data pre-processing

Input variables should be as decorrelated as possible
Input variables are "more independent"
Network is forced to �nd non-trivial correlations between inputs
Decorrelated inputs better optimization

Input variables follow a more of less Gaussian distribution
In practice:

compute mean and standard deviation
per pixel:
per color channel:

2

Batch Normalization

from keras.layers.normalization import BatchNormalization
model = Sequential()
think of this as the input layer
model.add(Dense(64, input_dim=16, init=’uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))
model.add(Dropout(0.5))
think of this as the hidden layer
model.add(Dense(64, init=’uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))
model.add(Dropout(0.5))
think of this as the output layer
model.add(Dense(2, init=’uniform’))
model.add(BatchNormalization())
model.add(Activation(‘softmax’))
optimiser and loss function
model.compile(loss=’binary_crossentropy’, optimizer=sgd)

During training, we normalise the activations of the previous layer for each batch:

We normalise in order to maintains the mean activation close to 0 and the activation standard deviation close to 1 before

the activation function

2

Batch Normalization
2

You create more!

What do you do when do not have
enough data?

3

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_7/index.html#119 121/167

Data augmentation

Changing the pixels without changing the label
Train on transformed data
Widely used

Figure credit: E. Gavves 121 / 167

3

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_7/index.html#119 122/167

Data augmentation

Horizontal �ips

122 / 167

3

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_7/index.html#119 123/167

Data augmentation

Random crops/scales

123 / 167

3

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_7/index.html#119 125/167

Data augmentation

Color jitter

randomly jitter color, brightness, contrast, etc.
other more complex alternatives exist (PCA-jittering)

125 / 167

3

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_7/index.html#119 126/167

Data augmentation

Various techniques can be mixed
Domain knowledge helps in �nding new data augmentation
techniques
Very useful for small datasets

126 / 167

3

Data augmentation
3

4

4

4

4

4

4

4

2: Regularization

Remember this?

Weight Decay
= regularisation = Ridge = Tikhonovℓ2

Dropout

Each time we load an example into a minibatch, we randomly sample a different binary
mask to apply to all of the input and hidden units in the network. The mask for each unit
is sampled independently from all of the others

Dropout

Easy to implement with pytorch:
This is just another layer!

Batchnorm

Dropout

Playing Lego

3: Special Layers

Convolutional and pooling layers

Fundamental for images & sounds!

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 85/231

Convolution 1d

Slide credit: F. Fleuret 85 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 86/231

Convolution 1d

Slide credit: F. Fleuret 86 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 87/231

Convolution 1d

Slide credit: F. Fleuret 87 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 88/231

Convolution 1d

Slide credit: F. Fleuret 88 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 89/231

Convolution 1d

Slide credit: F. Fleuret 89 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 90/231

Convolution 1d

Slide credit: F. Fleuret 90 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 91/231

Convolution 1d

Slide credit: F. Fleuret 91 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 92/231

Convolution 1d

Slide credit: F. Fleuret 92 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 93/231

Convolution 1d

Slide credit: F. Fleuret 93 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 94/231

Convolution 2d

Slide credit: F. Fleuret 94 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 95/231

Convolution 2d

Slide credit: F. Fleuret 95 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 96/231

Convolution 2d

Slide credit: F. Fleuret 96 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 97/231

Convolution 2d

Slide credit: F. Fleuret 97 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 98/231

Convolution 2d

Slide credit: F. Fleuret 98 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 99/231

Convolution 2d

Slide credit: F. Fleuret 99 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 100/231

Convolution 2d

Slide credit: F. Fleuret 100 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 101/231

Convolution 2d

Slide credit: F. Fleuret 101 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 102/231

Convolution 2d

Slide credit: F. Fleuret 102 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 103/231

Convolution 2d

Slide credit: F. Fleuret 103 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 104/231

Convolution 2d

Slide credit: F. Fleuret 104 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 105/231

Convolution 2d

Slide credit: F. Fleuret 105 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 152/231

Max-Pooling 1d

Slide credit: F. Fleuret 152 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 153/231

Max-Pooling 1d

Slide credit: F. Fleuret 153 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 154/231

Max-Pooling 1d

Slide credit: F. Fleuret 154 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 155/231

Max-Pooling 1d

Slide credit: F. Fleuret 155 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 156/231

Max-Pooling 1d

Slide credit: F. Fleuret 156 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 157/231

Max-Pooling 1d

Slide credit: F. Fleuret 157 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 158/231

Max-Pooling 1d

Slide credit: F. Fleuret 158 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 159/231

Max-Pooling 2d

Slide credit: F. Fleuret 159 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 160/231

Max-Pooling 2d

Slide credit: F. Fleuret 160 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 161/231

Max-Pooling 2d

Slide credit: F. Fleuret 161 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 162/231

Max-Pooling 2d

Slide credit: F. Fleuret 162 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 163/231

Max-Pooling 2d

Slide credit: F. Fleuret 163 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 164/231

Max-Pooling 2d

Slide credit: F. Fleuret 164 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 165/231

Max-Pooling 2d

Slide credit: F. Fleuret 165 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 166/231

Max-Pooling 2d

Slide credit: F. Fleuret 166 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 167/231

Max-Pooling 2d

Slide credit: F. Fleuret 167 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 168/231

Max-Pooling 2d

Slide credit: F. Fleuret 168 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 169/231

Max-Pooling 2d

Slide credit: F. Fleuret 169 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#152 170/231

Max-Pooling 2d

Slide credit: F. Fleuret 170 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#174 174/231

Translation invariance from pooling

Slide credit: F. Fleuret 174 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#174 175/231

Translation invariance from pooling

Slide credit: F. Fleuret 175 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#174 176/231

Translation invariance from pooling

Slide credit: F. Fleuret 176 / 231

19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#174 178/231

Translation invariance from pooling

Slide credit: F. Fleuret 178 / 231

Flatten
2D->1D

4: conv-nets

Resnets: Skiped-connections

Resnets: Skiped-connections

… So how come deep learning works in the overparamterized regime?

We learn from KNN that we should be careful and not use too many parameters….

Short answer: We do not fully understand!

Long answer: Gradient descent is magic

We know they are many set of weights that minimise the loss, and most of them are bad
at generalisation, but gradient descent seems to be biased to go toward the “good”

ones: This is called the “implicit regularisation” of gradient descent

What is learned in conv-nets?

What sort of images maximise
 the activity for a given neutron

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet

What sort of images maximise
 the activity for a given neutron

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet

What sort of images maximise
 the activity for a given neutron

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet

What sort of images maximise
 the activity for a given neutron

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet

What sort of images maximise
 the activity for a given neutron

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet

What sort of images maximise
 the activity for a given neutron

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet

What sort of images maximise
 the activity for a given neutron

in each layers?

What sort of images maximise
 the activity for the final neutron

For a given category?

This is a see-snake
« I am 99% positive! »

Let’s try with a see-snake!
(vgg-16 trainde on imagenet

With hundred categories)

 Slide credit: Francois Chollet

https://twitter.com/fchollet

What sort of images maximise
 the activity for a given neutron

in each layers?

What sort of images maximise
 the activity for the final neutron

For a given category?

This is a magpie
« I am 99% positive! »

Let’s try with a magpie!
(vgg-16 trainde on imagenet

With hundred categories)

 Slide credit: Francois Chollet

https://twitter.com/fchollet

Computer Vision is Easy:
Transfer Learning

(state of art result in few minutes)

Computer Vision is Easy:
Transfer Learning

(state of art result in few minutes)

In summary
Convolutional neural nets are the state of there art for images

(NB: Well, Vision Transformer are just as good actually)

They are made by adding Convolution and pooling.  
Regularization (dropout, batch norm) also help.

This allows to solve almost any supervised vision problem:

all computer vision is now using convents

