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A bit of history



Perceptron may eventually 
be able to learn,  

make decision, and 
translate languages
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"Neural networks copy the human brain." I cringe 
every time I read something like this the press. It is 
wrong in multiple ways. 
First, neural nets are loosely *inspired* by some 
aspects of the brain, just as airplanes are loosely 
inspired by birds. 
Second the Inspiration doesn't come from the human 
brain. It comes from *any* animal brain: monkey, cat, 
rat, mouse, bird, fish, fruit fly, aplysia sea slug, all the 
way down to caenorhabditis elegans, the 1mm-long 
roundworm whose brain has exactly 302 neurons.

Yann LeCun, Facebook IA 

Perception = 1 Neuron



 "Perceptrons have been widely publicised as 
‘pattern recognition' or 'learning machines' and 
as such have been discussed in a large number of 
books, journal articles, and
voluminous 'reports'.  Most of this writing ... 
is without scientific value .."

Marvin Minsky Seymour Papert, (1969).

The perceptron ... has many features that attract attention:  its 
linearity, its intriguing learning theorem.

There is no reason to suppose that any of these virtues carry over 
to the many-layered version.  Nevertheless, we consider it an 
important research problem to elucidate (or reject) our intuitive 
judgment that the extension is sterile.



neural nets



Why neural nets?



2-layered networks

X

W1 W2



2-layered networks

X

W1 W2
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Universal approximation

We can approximate any  with a linear combination
of translated/scaled ReLU functions
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Y =
X

i

↵iRelu(ai ⇤ x + bi)
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Why deep learning?



Deep vs Shallow

Many hidden layer

“Input” layer

x ∈ ℝ3 x ∈ ℝ3

“Output” layer

y ∈ ℝ2 y ∈ ℝ2

“Hidden” layers

One hidden layer



Deep vs Shallow

̂y = σ2 (W2 . σ1 (W1 ⃗x + b1) + b2) ̂y = σL (WL . σL−1(WL−1( . . . . σ1 (W1 ⃗x + b1) + b2)



Why deep?

(iv) seems to do some weird uncanny magic that somehow prevents overfiting

(ii) Many data are actually hierarchical…  
…just think of the classification of animal species!

(i) With the same number of nodes, one can represent more 
complex function with deep networks

(iii) inspiration from the visual cortex (convnet, see next lecture)



Feed-forward Neural networks

~x1 = g1(W1~x0)
4x3 matrix 

~x2 = g2(W2~x1)
4x4 matrix 

W matrices are called the « weights » 
The functions gn ( ) are called « activation functions »

~x0

p = f(~x0) = g3(W3 g2(W2 g1(W1~x0)))

4x1 matrix 
p = x3 = g3(W3~x2)



Modern neural nets
Alexnet

VGG-16

Lenet



Modern neural nets

inception res-net



Modern neural nets

Transformers



 How do we minimise the empirical 
risk for the neural network?
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Optimization
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Optimization

Follow the slope!
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Minimising the cost function by gradient descent

~✓t+1 = ~✓t � �
X

i

1

N
rl(~✓t; ~xi, yi)

Standard (or "batch") gradient descent 

Compute the gradient by averaging the derivative of the loss is the entire training set

If eta small enough, converges to a (possible local) minima

θt+1 = θt − η∇ℛ(θt)

https://en.wikipedia.org/wiki/Gradient_descent
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Feed-forward Neural networks

~x1 = g1(W1~x0)
4x3 matrix 

~x2 = g2(W2~x1)
4x4 matrix 

W matrices are called the « weights » 
The functions gn ( ) are called « activation functions »

~x0

p = f(~x0) = g3(W3 g2(W2 g1(W1~x0)))

4x1 matrix 
p = x3 = g3(W3~x2)



How to compute the gradient efficiently?

~x1 = g1(W1~x0)~x0 ~xn = gn(Wn~xn�1) p = gL(WL~xL�1)

~h1{ ~hn{ ~hL{

eL = gL
0(hL)(p� y)

Feed-forward

… …

L =
(y � p)2

2
Compute the loss

Back-propagation of errors

enj = gn
0(hn

j )
X

i

Wn+1
ij en+1

i …e1j = g1
0(h1

j )
X

i

W 2
ije

2
i …

@L

@W l
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= xl�1
b elaOnce this is done, gradients are given by
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How to compute the gradient efficiently?

~x0 ~x1 = g1(W1~x0) ~xn = gn(Wn~xn�1) p = gL(WL~xL�1)
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Minimising the cost function by gradients descent

Standard (or "batch") gradient descent 

Compute the gradient by averaging the derivative of the loss is the entire training set

If eta small enough, converge to a (possible local) minima

θt+1 = θt − η∇ℛ (θt, {x}i=1,…n, {y}i=1,…n)

∇ℛ (θt, {x}i=1,…n, {y}i=1,…n) =
1
n

n

∑
i=1

∇ℒ(xi, yi, θt)

Batch gradient is the average gradient over all data in the training set

https://en.wikipedia.org/wiki/Gradient_descent


∇ℛ (θt, {x}i=1,…n, {y}i=1,…n) =
1
n

n

∑
i=1

∇ℒ(xi, yi, θt)

Batch gradient is the average gradient over all data in the training set

Gradient descent
Batch gradient descent

for i in range(nb_epochs):
  params_grad = evaluate_gradient(loss_function, data, params)
  params = params - learning_rate * params_grad

θt+1 = θt − η∇ℛ (θt, {x}i=1,…n, {y}i=1,…n)



Gradient descent
Mini-batch gradient descent

for i in range(nb_epochs):
  np.random.shuffle(data)
  for batch in get_batches(data, batch_size=50):
    params_grad = evaluate_gradient(loss_function, batch, params)
    params = params - learning_rate * params_grad

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)

{x}i=1,…n

{x}i=1,…b
{x}i=b+1,…2b

{x}i=2b+1,…3b

Full-batch

Many 
mini-batchs

∇ℛ (θt, {x}i=i1,…i2
, {y}i=i1,…i2) =

1
i2 − i1

i2

∑
i=i1

∇ℒ(xi, yi, θt)

Mini-Batch gradient is the average gradient over all data in one mini-batch



{x}i=1,…n

x1

Full-batch

Mini-batchs 
Of size 1…

∇ℛ (θt, {x}i, {y}i) = ∇ℒ(xi, yi, θt)

SGD gradient is the gradient for one element in the training set

Gradient descent
Stochastic gradient descent

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad

θt+(1/n) = θt − η∇ℛ (θt, {x}i, {y}i)

x2
x3
x4

…..



Why Mini-batch gradient descent? 

	•	The model update frequency is higher than batch gradient descent:                  
faster and memory efficient  (often nothing else is actually possible) 

	  
•	 Maybe? Effective noise in the dynamics helps optimization/regularization:         

Could works better than full batch minimisation in practice? 

•	 In practice: This is the only way that we can use large data set with neural 
networks 

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)





Batch vs mini-batches





Many mini-batch algorithms 
(but we shall discuss them later)



Using Neural nets!
Many Python Frameworks

	•	Pytorch & Torch

	•	TensorFlow

	•	Caffe

	•	Caffe2

	•	Chainer

	•	CNTK

	•	DSSTNE

	•	DyNet

	•	Gensim

	•	Gluon

	•	Keras

	•	Mxnet

	•	Paddle

	•	BigDL

	•	RIP: Theano & Ecosystem


https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#torch
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#tensorflow
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe2
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#chainer
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#cntk
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dsstne
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dynet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gensim
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gluon
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#keras
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#mxnet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#paddle
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#bigdl
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#theano


Pytorch

Note that the backward pass (backpropgation) is done automatically by pytorch 
(This is called automatic differentiation!) 

No need to code back propagation if you use pytorch!  



 Gradient descents a gogo



How to compute the gradient efficiently?

~x1 = g1(W1~x0)~x0 ~xn = gn(Wn~xn�1) p = gL(WL~xL�1)

~h1{ ~hn{ ~hL{

eL = gL
0(hL)(p� y)

Feed-forward

… …

L =
(y � p)2

2
Compute the loss

Back-propagation of errors

enj = gn
0(hn

j )
X

i

Wn+1
ij en+1

i …e1j = g1
0(h1

j )
X

i

W 2
ije

2
i …

@L

@W l
ab

= xl�1
b elaOnce this is done, gradients are given by



Gradient descent
Batch gradient descent

for i in range(nb_epochs):
  params_grad = evaluate_gradient(loss_function, data, params)
  params = params - learning_rate * params_grad

Mini-batch gradient descent

for i in range(nb_epochs):
  np.random.shuffle(data)
  for batch in get_batches(data, batch_size=50):
    params_grad = evaluate_gradient(loss_function, batch, params)
    params = params - learning_rate * params_grad

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)

Stochastic gradient descent

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad

θt+(1/n) = θt − η∇ℛ (θt, {x}i, {y}i)

θt+1 = θt − η∇ℛ (θt, {x}i=1,…n, {y}i=1,…n)





θt+1 = θt − vt+1
vt+1 = η∇f(θt)

Gradient descent 
A physics analogy

“Speed”

“Movement”



Momentum 
Keep the ball rolling on the same direction

« Effective averaging of previous directions »

θt+1 = θt − vt+1
vt+1 = γvt + η∇f(θt)

“Speed” change with the gradient of the force

“Movement”



Nesterov acceleration 
A slightly more clever ball

θt+1 = θt − vt+1
vt+1 = γvt + η∇f(θt − γvt)



Pytorch optimizer



Adaptive learning rates

What about this guy ?

With adagrad, one does not need to manually adapt γ at each steps…

… but the problem is that eventually all update on gradients goes to zero!

Adagrad: 

Adagrad scales γ for each parameter according to the history of gradients (previous steps) 

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

Gt = Gt + (rf)2+1

θt+1 = θt −
η

Gt + ϵ
∇f(θt)

θt+1 = θt − η∇f(θt)



Adaptive learning rates
Adagrad: 

Adagrad scales γ for each parameter according to the history of gradients (previous steps) 

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

RMSprop 

The only difference RMSprop has with Adagrad is that the term is calculated by exponentially 
decaying moving average (like we did in momentum for the gradient itself!) instead of the sum of 
gradients. 

Gt = Gt + (rf)2

Gt = �Gt + (1� �)(rf)2

+1

+1

θt+1 = θt −
η

Gt + ϵ
∇f(θt)



RMSprop
Proposed by G. Hinton during his coursera lecture



Adaptive learning rates
Adam: Adaptive Moment Estimation 

Adam also keeps an exponentially decaying average of past gradients, similar to momentum

Mt = �1Mt + (1� �1)(rf)
These are estimates of the first moment (the mean) and the second moment (the uncentered 
variance) of the gradients respectively, hence the name of the method.

Ĝt =
Gt

1� �2

Gt = �2Gt�1 + (1� �2)(rf)2

M̂t =
Mt

1� �1
t t

-1

θt+1 = θt −
η

Ĝt + ϵ
M̂t

ADAM= Adaptive learning rate + Momentum



Pytorch



Pytorch
ADAM+Nesterov







In summary
Neural networks are parametric functions of the form:

̂y = σL (WL . σL−1(WL−1( . . . . σ1 (W1 ⃗x + b1) + b2)

They are “trained” by finding the “Weights” using gradient descent to 
minimise the empirical risk. In practice, this is done using mini-batchs

θt+(1/nb) = θt − η∇ℛ (θt, {x}i=n1,…n2
, {y}i=n1,…n2)

{x}i=1,…b
{x}i=b+1,…2b

{x}i=2b+1,…3b

Many 
mini-batchs

∇ℛ (θt, {x}i=i1,…i2
, {y}i=i1,…i2) =

1
i2 − i1

i2

∑
i=i1

∇ℒ(xi, yi, θt)



Preview of next lecture

- A bag of tricks: dropout, batchnorm, etc… 
- Special layers: embedding, convolutions, pooling, etc… 
- Convolution Networks (CNN) 

The convnet revolution



“Computer, recognise simple characters”

MNIST notMNIST



“Computer, recognise images”

CIFAR-10 
60000 images, 10 classes

CIFAR-100 
60000 images, 100 classes





“Computer, drive my car”



“Computer, drive my car”



Computer, make a portrait of myself

Playing a Stratocaster guitar in front of 
a blackboard full of complex equations

As a mystical wise person, minimalist 
iconography, green and blue vibes As obi-wan Kenobi in Star-Wars



How does this works ? 

Tricks…. & convnets



1: Tricks of the trade



Initialization of the weight
• Weights need to be small enough

◦ around origin for symmetric activation functions (tanh, sigmoid)  
→ stimulate activation functions near their linear regime

◦ larger gradients → faster training

• Weights need to be large enough
◦ otherwise signal is too weak for any serious learning

RELU prevent vanishing gradients 
(but dead relus can exist! -> Leaky relu!)

1



Initialization of the weight
Xavier Initialization

N (0,
2

Nin +Nout
)

1



Initialization of the weight
Kaiming-He initialization

* Scale the incoming weight to have a O(1) variable
* The factor 2 depends on activation: ReLUs ground to 0 the linear activation about 

half the Time -> Double weight variance for Relu to adapt

N (0,
2

Nin
)

1



Initialization of the weight
Kaiming-He initialization

* Scale the incoming weight to have a O(1) variable
* The factor 2 depends on activation: ReLUs ground to 0 the linear activation about 

half the Time -> Double weight variance for Relu to adapt

N (0,
2

Nin
)

1



1



1
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Data pre-processing

Input variables should be as decorrelated as possible
Input variables are "more independent"
Network is forced to �nd non-trivial correlations between inputs
Decorrelated inputs  better optimization

Input variables follow a more of less Gaussian distribution
In practice:

compute mean and standard deviation
per pixel: 
per color channel:

2



Batch Normalization

from keras.layers.normalization import BatchNormalization 
model = Sequential() 
# think of this as the input layer 
model.add(Dense(64, input_dim=16, init=’uniform’)) 
model.add(BatchNormalization()) 
model.add(Activation(‘tanh’)) 
model.add(Dropout(0.5)) 
# think of this as the hidden layer  
model.add(Dense(64, init=’uniform’)) 
model.add(BatchNormalization()) 
model.add(Activation(‘tanh’)) 
model.add(Dropout(0.5)) 
# think of this as the output layer 
model.add(Dense(2, init=’uniform’)) 
model.add(BatchNormalization()) 
model.add(Activation(‘softmax’)) 
# optimiser and loss function 
model.compile(loss=’binary_crossentropy’, optimizer=sgd) 

During training, we normalise the activations of the previous layer for each batch: 

We normalise in order to maintains the mean activation close to 0 and the activation standard deviation close to 1 before 

the activation function 

2



Batch Normalization
2



You create more!

What do you do when do not have 
enough data?

3
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Data augmentation

Changing the pixels without changing the label
Train on transformed data
Widely used

Figure credit: E. Gavves 121 / 167

3
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Data augmentation

Horizontal �ips

122 / 167

3
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Data augmentation

Random crops/scales

123 / 167

3



19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_7/index.html#119 125/167

Data augmentation

Color jitter

randomly jitter color, brightness, contrast, etc.
other more complex alternatives exist (PCA-jittering)

125 / 167

3
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Data augmentation

Various techniques can be mixed
Domain knowledge helps in �nding new data augmentation
techniques
Very useful for small datasets

126 / 167

3



Data augmentation
3



4



4



4



4



4



4



4



2: Regularization 





Remember this?



Weight Decay 
=  regularisation = Ridge = Tikhonovℓ2



Dropout

Each time we load an example into a minibatch, we randomly sample a different binary 
mask to apply to all of the input and hidden units in the network. The mask for each unit 
is sampled independently from all of the others



Dropout





Easy to implement with pytorch: 
This is just another layer!

Batchnorm

Dropout



Playing Lego





3: Special Layers



Convolutional and pooling layers

Fundamental for images & sounds!
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Convolution 1d

 

Slide credit: F. Fleuret 85 / 231
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Convolution 1d

 

Slide credit: F. Fleuret 86 / 231
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Convolution 1d

 

Slide credit: F. Fleuret 87 / 231
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Convolution 1d

 

Slide credit: F. Fleuret 88 / 231
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Convolution 1d

 

Slide credit: F. Fleuret 89 / 231
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Convolution 1d

 

Slide credit: F. Fleuret 90 / 231
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Convolution 1d

 

Slide credit: F. Fleuret 91 / 231



19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 92/231

Convolution 1d

 

Slide credit: F. Fleuret 92 / 231
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Convolution 1d

 

Slide credit: F. Fleuret 93 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 94 / 231



19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 95/231

Convolution 2d

 

Slide credit: F. Fleuret 95 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 96 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 97 / 231



19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 98/231

Convolution 2d

 

Slide credit: F. Fleuret 98 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 99 / 231



19/12/2017 Deep Learning DIY lectures

file:///Users/florent/GitHub/dldiy-materials/slides/lecture_6/index.html#85 100/231

Convolution 2d

 

Slide credit: F. Fleuret 100 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 101 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 102 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 103 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 104 / 231
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Convolution 2d

 

Slide credit: F. Fleuret 105 / 231
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Max-Pooling 1d

 

Slide credit: F. Fleuret 152 / 231
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Max-Pooling 1d

 

Slide credit: F. Fleuret 153 / 231
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Max-Pooling 1d

 

Slide credit: F. Fleuret 154 / 231
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Max-Pooling 1d

 

Slide credit: F. Fleuret 155 / 231
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Max-Pooling 1d

 

Slide credit: F. Fleuret 156 / 231
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Max-Pooling 1d

 

Slide credit: F. Fleuret 157 / 231
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Max-Pooling 1d

 

Slide credit: F. Fleuret 158 / 231
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Max-Pooling 2d

 

Slide credit: F. Fleuret 159 / 231
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Max-Pooling 2d

 

Slide credit: F. Fleuret 160 / 231
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Max-Pooling 2d

 

Slide credit: F. Fleuret 161 / 231
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Max-Pooling 2d

 

Slide credit: F. Fleuret 162 / 231
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Max-Pooling 2d
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Max-Pooling 2d

 

Slide credit: F. Fleuret 164 / 231
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Max-Pooling 2d

 

Slide credit: F. Fleuret 165 / 231
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Max-Pooling 2d

 

Slide credit: F. Fleuret 166 / 231
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Max-Pooling 2d
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Max-Pooling 2d

 

Slide credit: F. Fleuret 168 / 231
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Max-Pooling 2d
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Max-Pooling 2d

 

Slide credit: F. Fleuret 170 / 231
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Translation invariance from pooling

 

Slide credit: F. Fleuret 174 / 231
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Translation invariance from pooling

 

Slide credit: F. Fleuret 175 / 231
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Translation invariance from pooling

 

Slide credit: F. Fleuret 176 / 231
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Translation invariance from pooling

 

Slide credit: F. Fleuret 178 / 231



Flatten 
2D->1D



4: conv-nets



















Resnets: Skiped-connections



Resnets: Skiped-connections















… So how come deep learning works in the overparamterized regime?

We learn from KNN that we should be careful and not use too many parameters….

Short answer: We do not fully understand!

Long answer: Gradient descent is magic

We know they are many set of weights that minimise the loss, and most of them are bad 
at generalisation, but gradient descent seems to be biased to go toward the “good” 

ones: This is called the “implicit regularisation” of gradient descent



What is learned in conv-nets?





What sort of images maximise 
 the activity for a given neutron  

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet
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What sort of images maximise 
 the activity for a given neutron  

in each layers?

 Slide credit: Francois Chollet

https://twitter.com/fchollet


What sort of images maximise 
 the activity for a given neutron  

in each layers?

What sort of images maximise 
 the activity for the final neutron  

For a given category?

This is a see-snake 
« I am 99% positive! »

Let’s try with a see-snake! 
(vgg-16 trainde on imagenet 

With hundred categories)

 Slide credit: Francois Chollet

https://twitter.com/fchollet


What sort of images maximise 
 the activity for a given neutron  

in each layers?

What sort of images maximise 
 the activity for the final neutron  

For a given category?

This is a magpie 
« I am 99% positive! »

Let’s try with a magpie! 
(vgg-16 trainde on imagenet 

With hundred categories)

 Slide credit: Francois Chollet

https://twitter.com/fchollet


Computer Vision is Easy: 
Transfer Learning 

(state of art result in few minutes)



Computer Vision is Easy: 
Transfer Learning 

(state of art result in few minutes)



In summary
Convolutional neural nets are the state of there art for images 


(NB: Well, Vision Transformer are just as good actually)

They are made by adding Convolution and pooling.  
Regularization (dropout, batch norm) also help.


This allows to solve almost any supervised vision problem: 

all computer vision is now using convents


