A crash course in deep learning

Florent Krzakala

TAKE

A bit of history

Mark I Perceptron

- first implementation of the perceptron algorithm
- the machine was connected to a camera that used 20x20 cadmium sulfide photocells to produce a 400-pixel image
- it recognized letter of the alphabet

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

update rule:

$$w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i}$$

Perceptron may eventually be able to learn, make decision, and translate languages

Mark I Perceptron

cac

itr

firs NEW NAVY DEVICE • the LEARNS BY DOING

Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI) -The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

The embryo-the Weather Bureau's \$2,000,000 "704" computer-learned to differentiate between right and left after fifty attempts in the Navy's demonstration for newsmen.,

The service said it would use this principle to build the first of its Perceptron thinking machines that will be able to read and write. It is expected to be finished in about a year at a cost of \$100,000.

Dr. Frank Rosenblatt, designer of the Perceptron, conducted the demonstration. He said the machine would be the first device to think as the human brain. As do human beings, Perceptron will make mistakes at first, but will grow wiser as it gains experience, he said.

Dr. Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechanical space explorers.

Without Human Controls

The Navy said the perceptron would be the first non-living mechanism "capable of receiving, recognizing and identifying its surroundings without any human training or control."

The "brain" is designed to remember images and information it has perceived itself. Ordinary computers remember only what is fed into them on punch cards or magnetic tape.

Later Perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted.

Mr. Rosenblatt said in principle it would be possible to build brains that could reproduce themselves on an assembly line and which would be conscious of their existence.

1958 New York Times...

In today's demonstration, the "704" was fed two cards, one with squares marked on the left side and the other with squares on the right side.

Learns by Doing

In the first fifty trials, the machine made no distinction between them. It then started registering a "Q" for the left squares and "O" for the right squares.

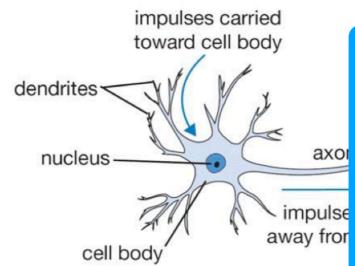
Dr. Rosenblatt said he could machine explain why the learned only in highly technical terms. But he said the computer had undergone a "self-induced change in the wiring diagram."

The first Perceptron will have about 1,000 electronic cells" receiving "association electrical impulses from an eyelike scanning device with 400 photo-cells. The human brain has 10,000,000,000 responsive cells, including 100,000,000 connections with the eyes.

Perception = 1 Neuron

The neuron

Inspired by neuroscience and human brain, but resemblances do not go too far



"Neural networks copy the human brain." I cringe every time I read something like this the press. It is wrong in multiple ways.

First, neural nets are loosely *inspired* by some aspects of the brain, just as airplanes are loosely inspired by birds.

Second the Inspiration doesn't come from the human brain. It comes from *any* animal brain: monkey, cat, rat, mouse, bird, fish, fruit fly, aplysia sea slug, all the way down to caenorhabditis elegans, the 1mm-long roundworm whose brain has exactly 302 neurons.

Yann LeCun, Facebook IA

"Perceptrons have been widely publicised as 'pattern recognition' or 'learning machines'

as AI winter

文A 12 languages ~

Edit View history Tools ∨

bc

Article Talk VC

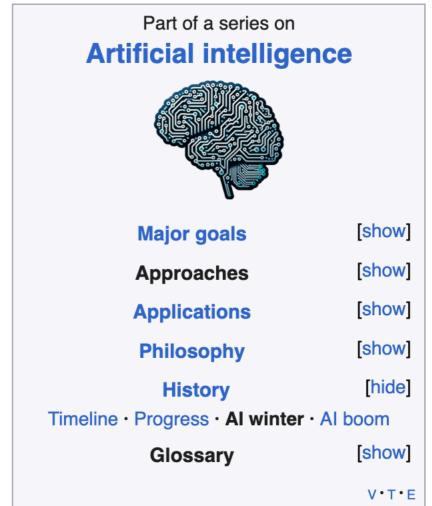
From Wikipedia, the free encyclopedia is

> In the history of artificial intelligence, an Al winter is a period of reduced funding and interest in artificial intelligence research.[1] The field has experienced several hype cycles, followed by disappointment and criticism, followed by funding cuts, followed by renewed interest years or even decades later.

The term first appeared in 1984 as the topic of a public debate at the annual meeting of AAAI (then called the "American Association of Artificial Intelligence").[2] Roger Schank and Marvin Minsky—two leading AI researchers who experienced the "winter" of the 1970s—warned the business community that enthusiasm for AI had spiraled out of control in the 1980s and that disappointment would certainly follow. They described a chain reaction, similar to a "nuclear winter", that would begin with pessimism in the AI community, followed by pessimism in the press, followed by a severe cutback in funding, followed by the end of serious research.^[2] Three years later the billion-dollar AI industry began to collapse.

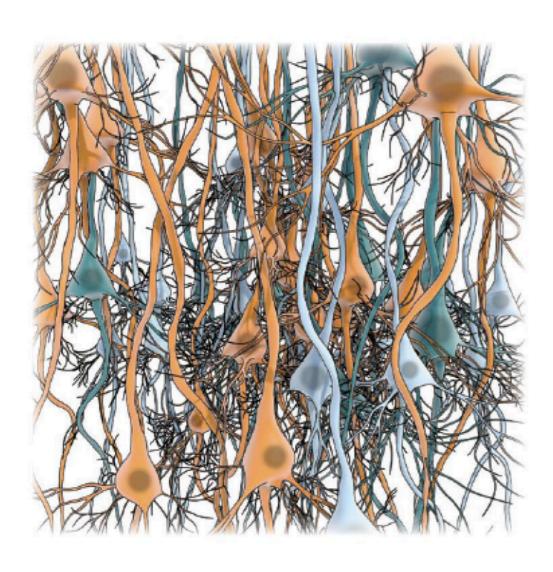
There were two major winters approximately 1974-1980 and 1987-2000, and 1987-2000, and several smaller episodes, including the following:

Marvin Minsky Seymour Papert, (1969).

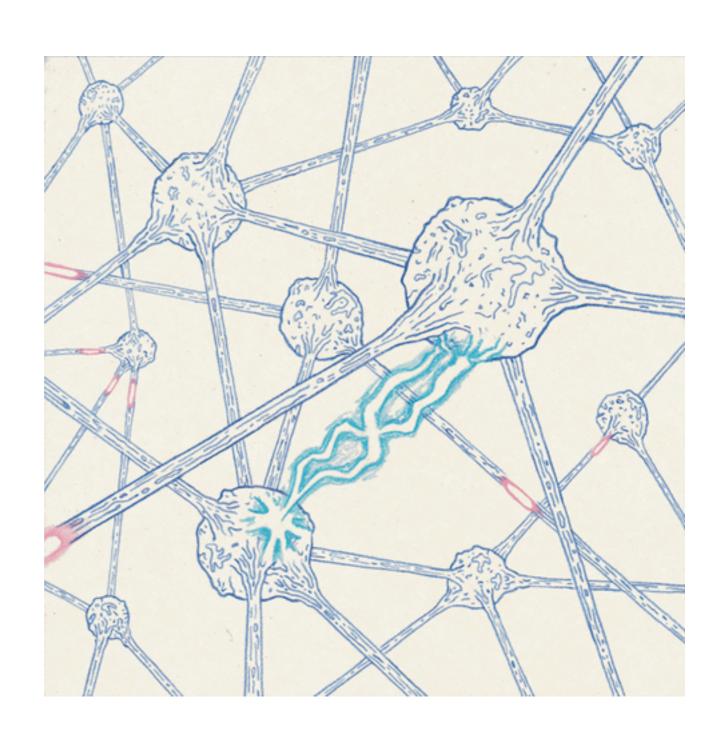


Read

neural nets

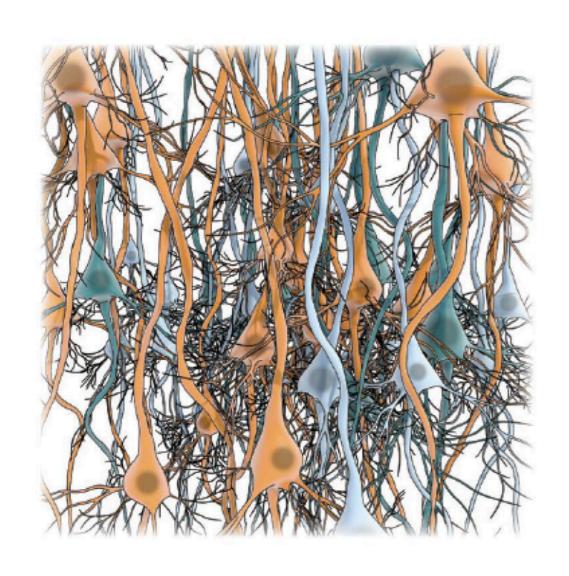


Complex neural network



Why neural nets?

Input



layer 1 2 3 layer

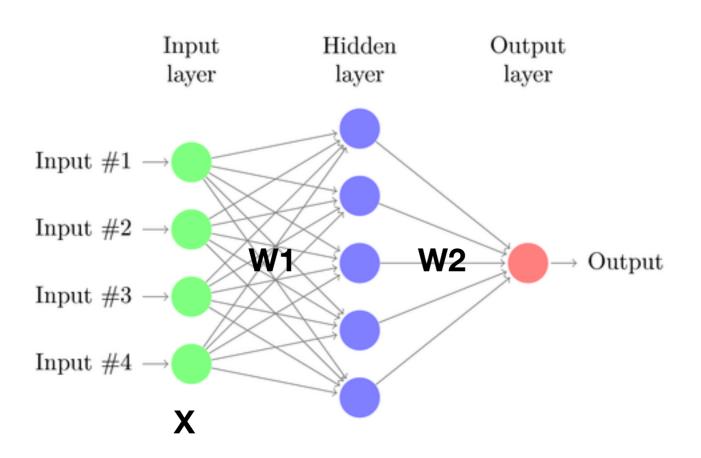
Adjustable synapse

Output

Complex neural network

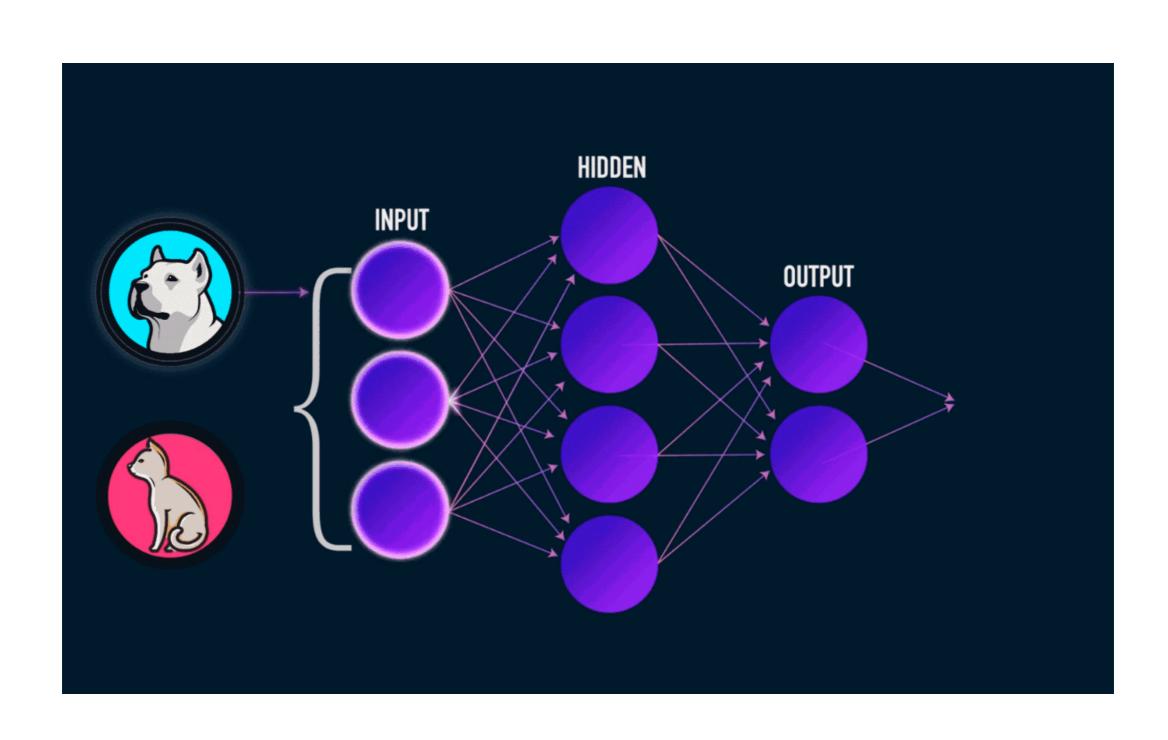
Informed AI network

2-layered networks



$$\hat{y} = \sigma_2 \left(\sum_{i=1}^n W_2^i \sigma_1 \left(\sum_{j=1}^D W_1^{ij} x_j + b_1^i \right) + b_2 \right)$$

2-layered networks



where W_2,W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

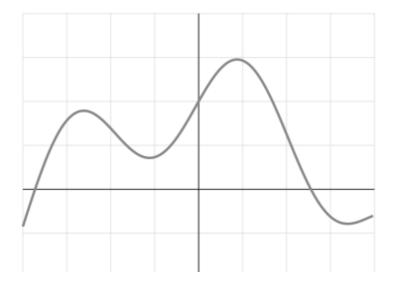
$$\sup_{x \in K} \|f(x) - f_{\epsilon}(x)\| < \varepsilon$$

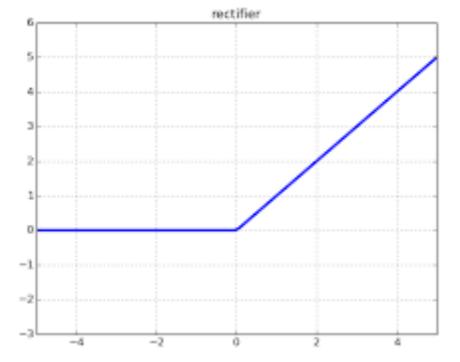
 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation

We can approximate any $f \in \mathcal{C}([a,b],\mathbb{R})$ with a linear combination of translated/scaled ReLU functions





relu(x) = x if x>0 & 0 otherwise

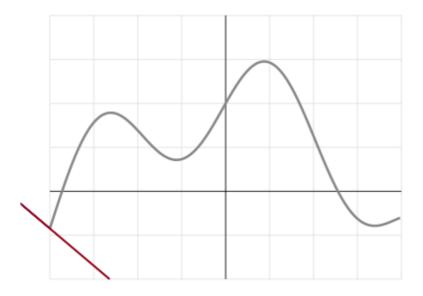
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



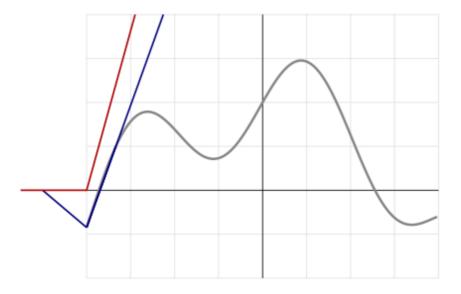
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



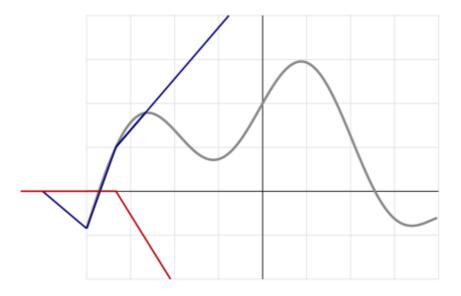
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_{\epsilon}(x)\| < arepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



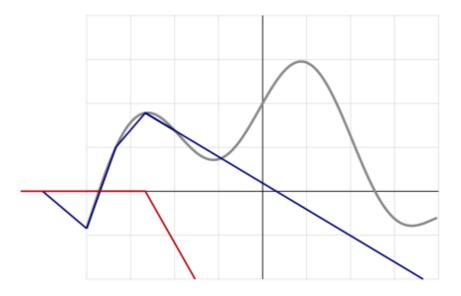
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



where W_2,W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation

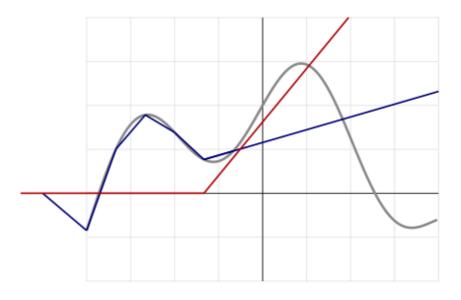
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



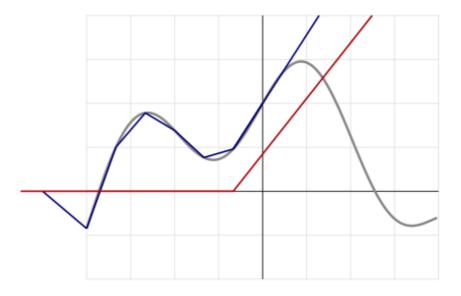
where W_2,W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



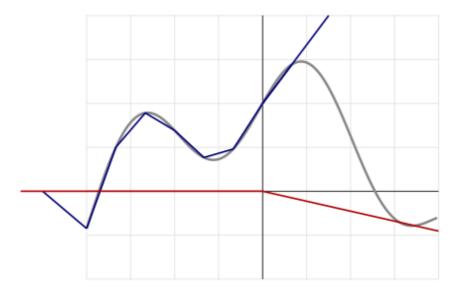
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



where W_2,W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



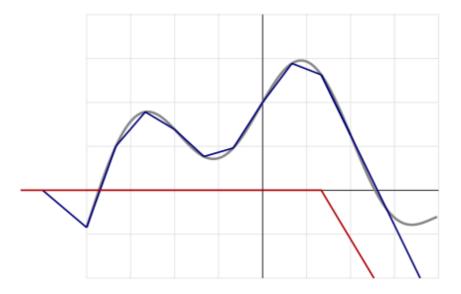
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



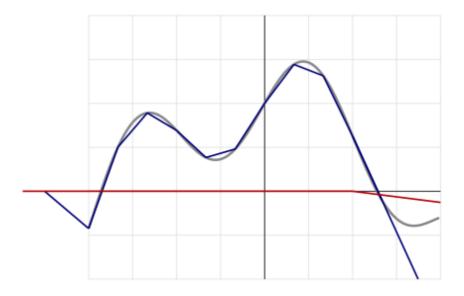
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



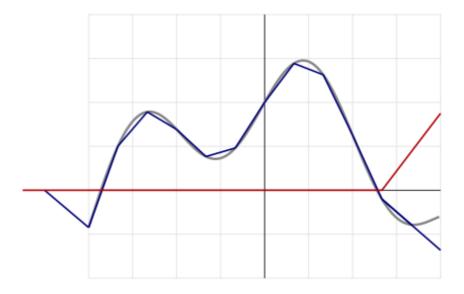
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



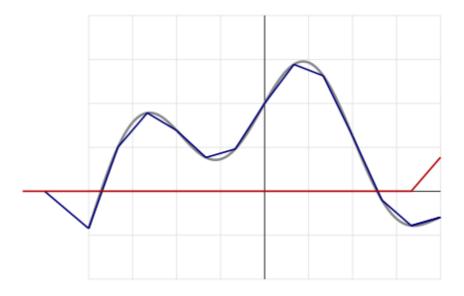
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon}=W_{2}\circ\sigma\circ W_{1},$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation



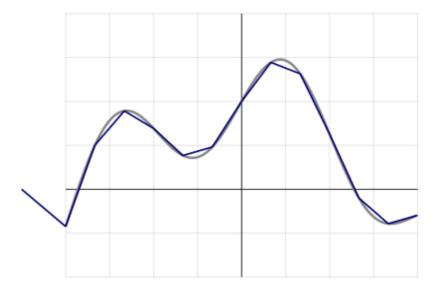
where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

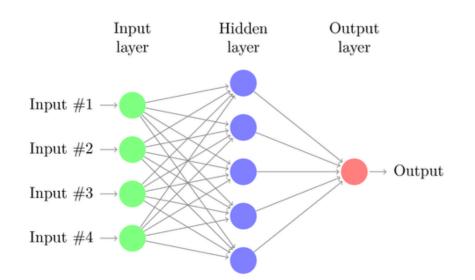
$$\sup_{x \in K} \|f(x) - f_\epsilon(x)\| < \varepsilon$$

 $f_{\epsilon} = W_2 \circ \sigma \circ W_1$,

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

Universal approximation

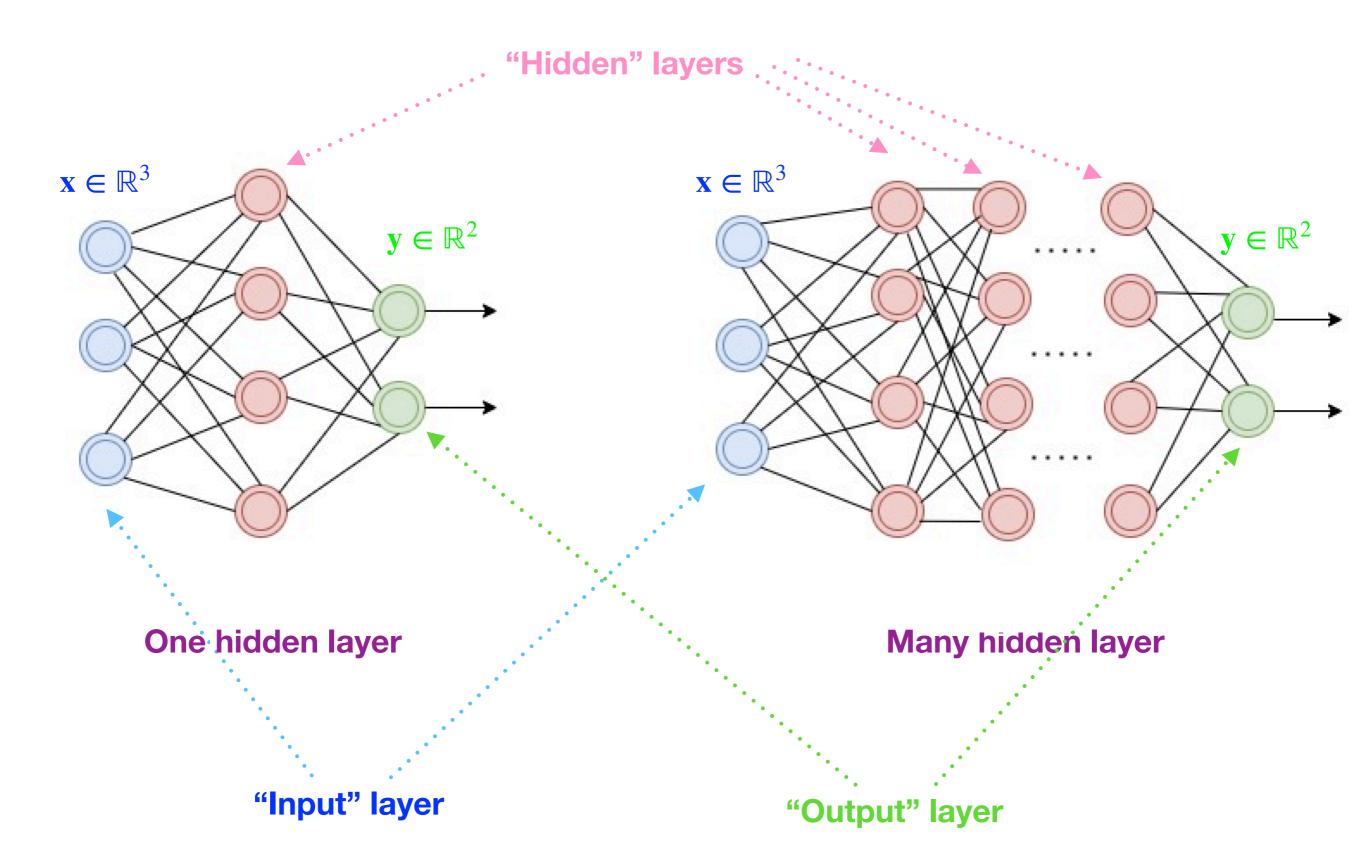




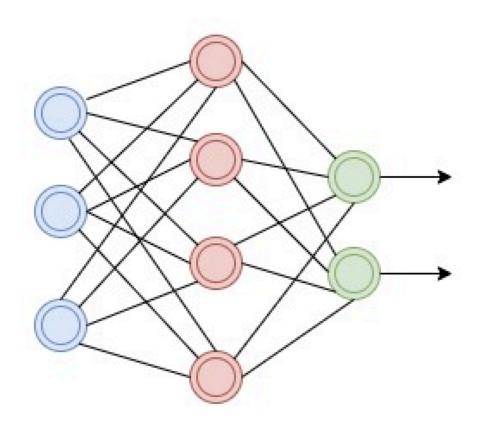
$$Y = \sum_{i} \alpha_{i} \operatorname{Relu}(\mathbf{a_i} * \mathbf{x} + \mathbf{b_i})$$

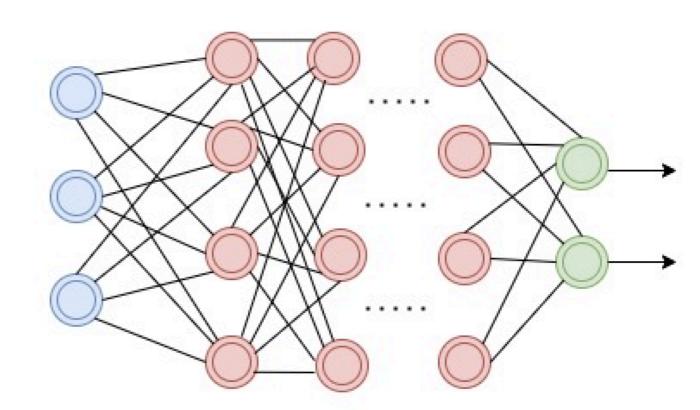
Why deep learning?

Deep vs Shallow



Deep vs Shallow





$$\hat{y} = \sigma_2 \left(W_2 \cdot \sigma_1 \left(W_1 \vec{x} + b_1 \right) + b_2 \right)$$

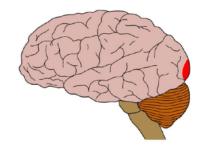
$$\hat{y} = \sigma_L \left(W_L . \sigma_{L-1} (W_{L-1} (... . \sigma_1 (W_1 \vec{x} + b_1) + b_2) \right)$$

Why deep?

(i) With the same number of nodes, one can represent more complex function with deep networks

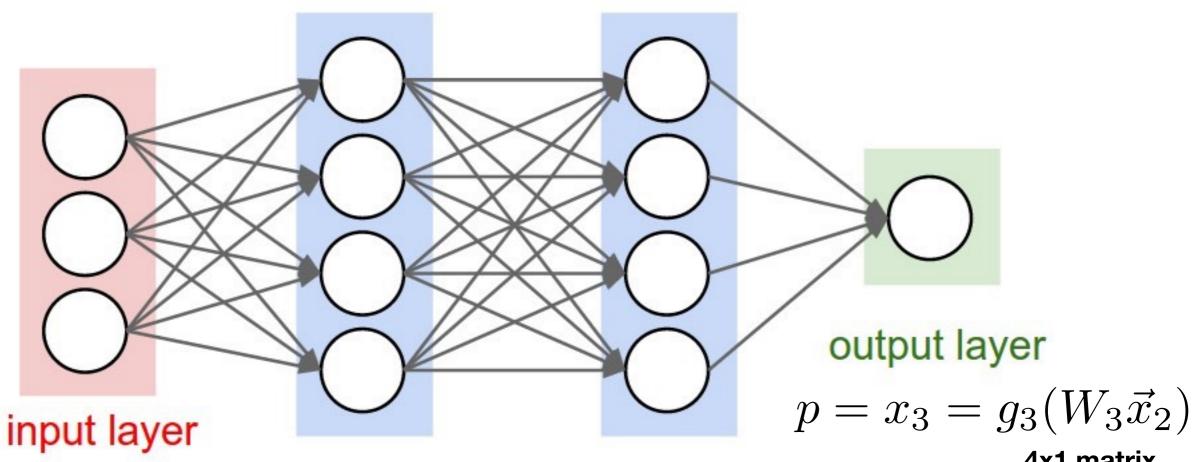
(ii) Many data are actually hierarchical...
...just think of the classification of animal species!

(iii) inspiration from the visual cortex (convnet, see next lecture)



(iv) seems to do some weird uncanny magic that somehow prevents overfiting

Feed-forward Neural networks



4x1 matrix

hidden layer 1 hidden layer 2 \vec{x}_0

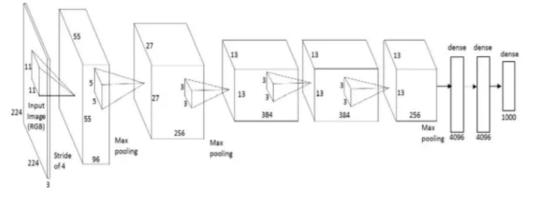
$$\vec{x}_1 = g_1(W_1\vec{x}_0)$$
 $\vec{x}_2 = g_2(W_2\vec{x}_1)$
4x3 matrix
4x4 matrix

$$p = f(\vec{x}_0) = g_3(W_3 \ g_2(W_2 \ g_1(W_1\vec{x}_0)))$$

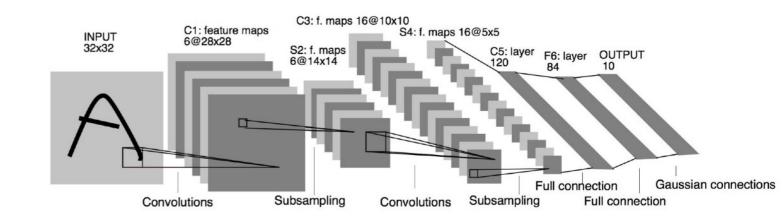
W matrices are called the <u>« weights »</u> The functions g_n () are called <u>« activation functions »</u>

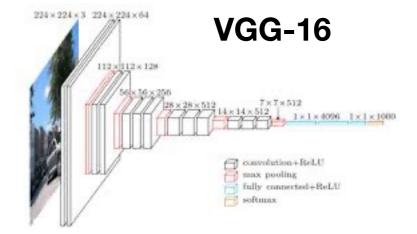
Modern neural nets

Alexnet

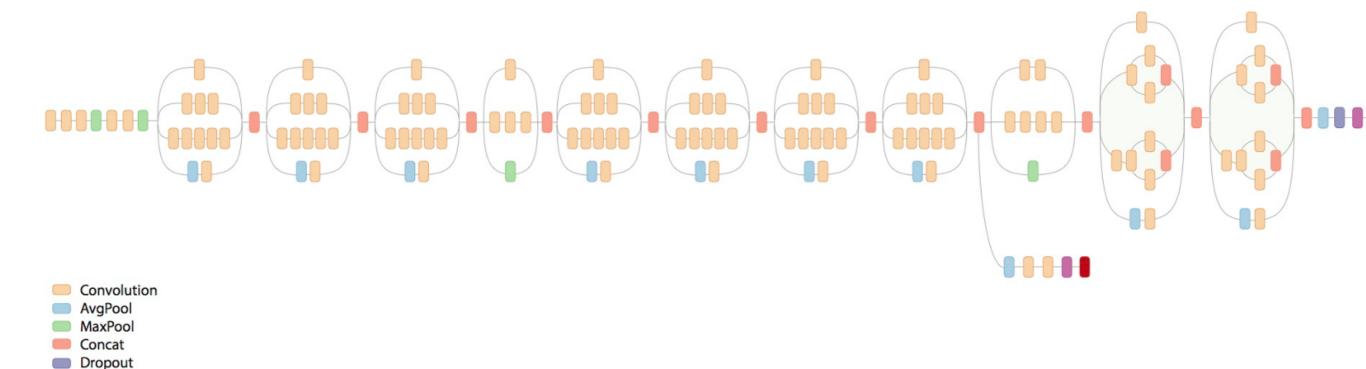


Lenet





Modern neural nets



Fully connected

Softmax

Modern neural nets

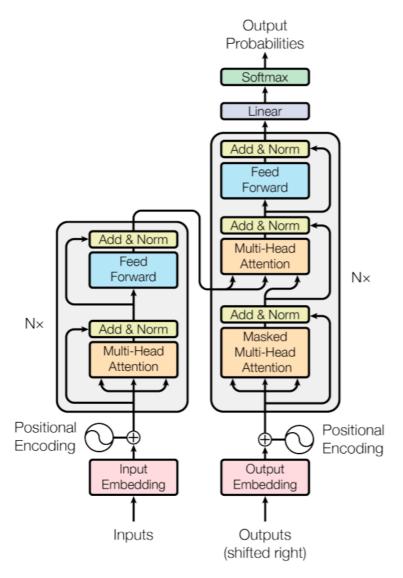
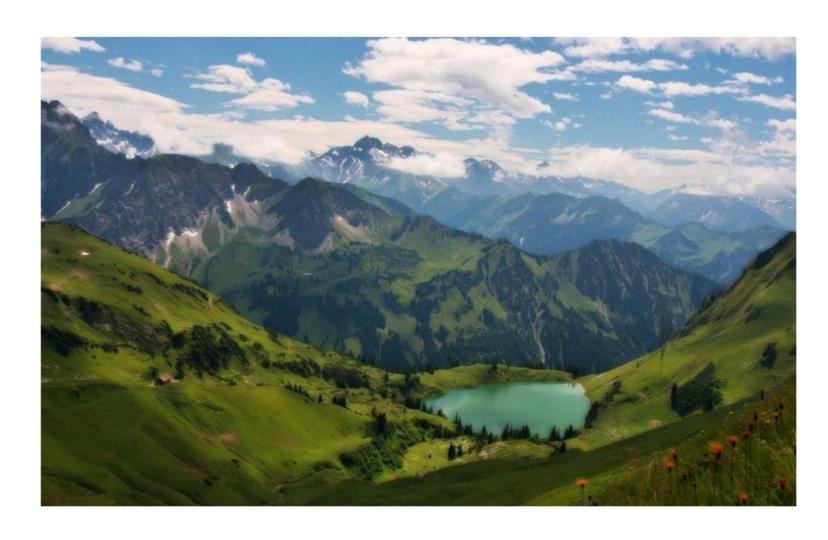


Figure 1: The Transformer - model architecture.

Transformers

How do we minimise the empirical risk for the neural network?

Optimization



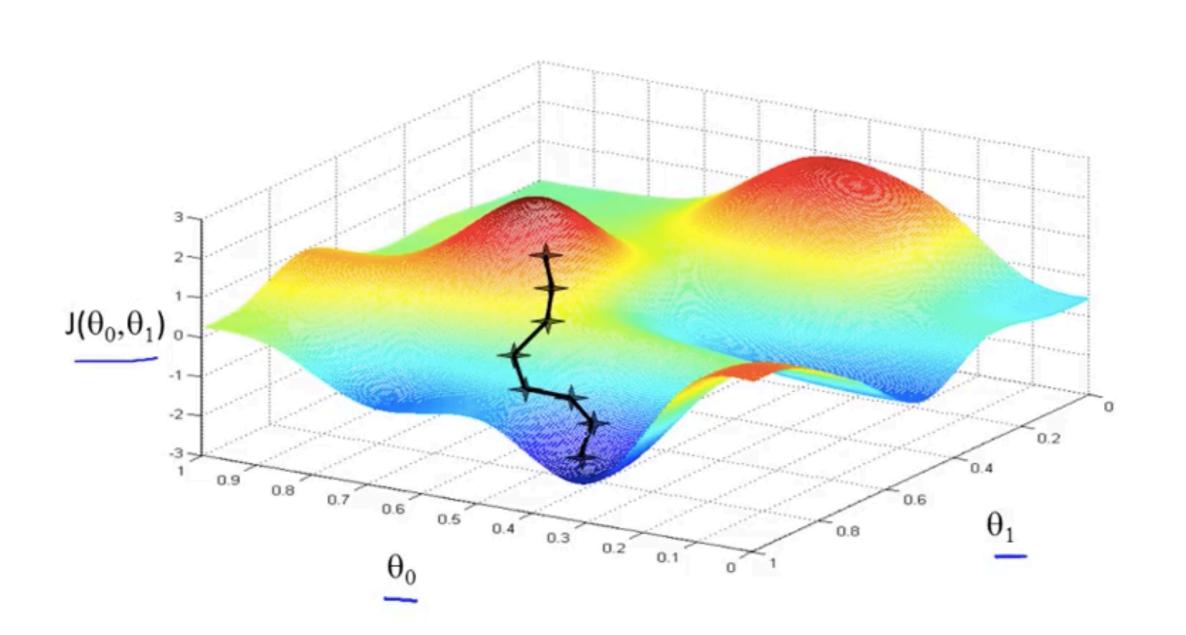
Optimization

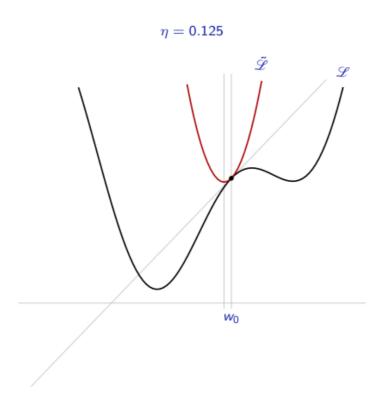
Follow the slope!

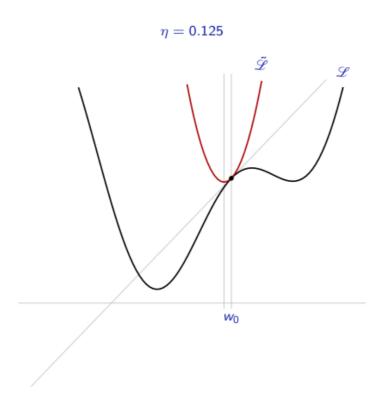
Minimising the cost function by gradient descent

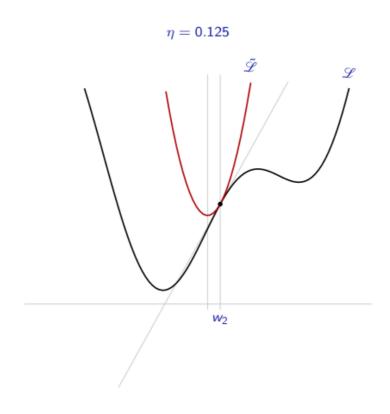
$$\theta^{t+1} = \theta^t - \eta \nabla \mathcal{R}(\theta^t)$$

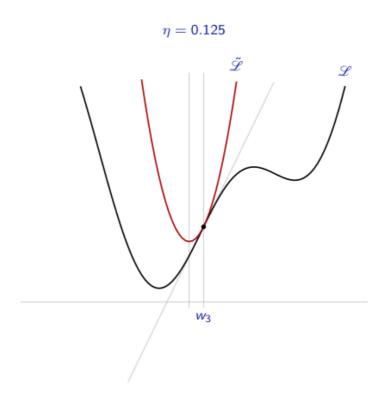
If eta small enough, converges to a (possible local) minima

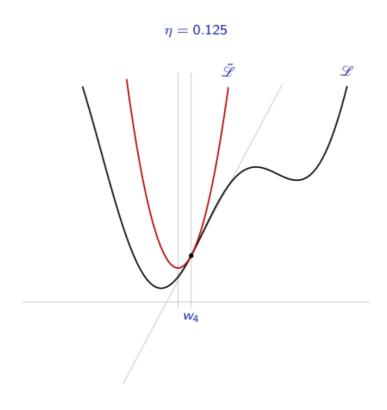


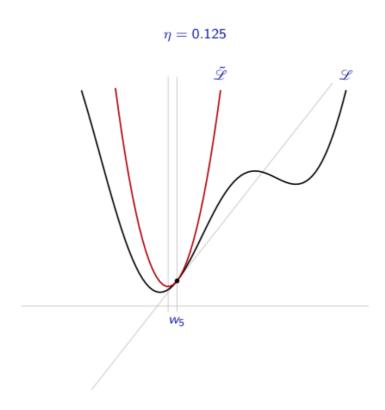


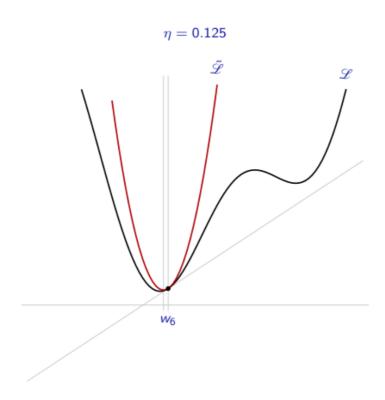


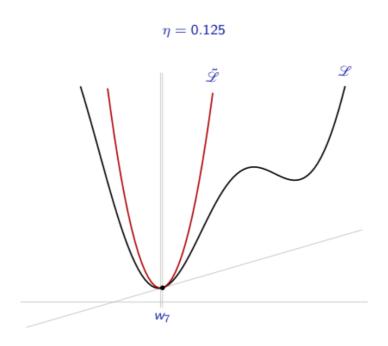


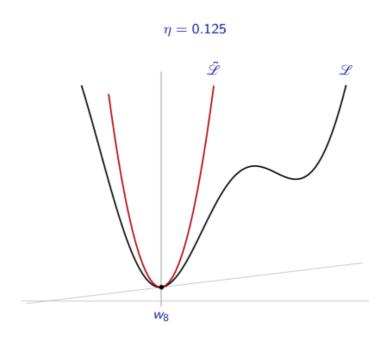


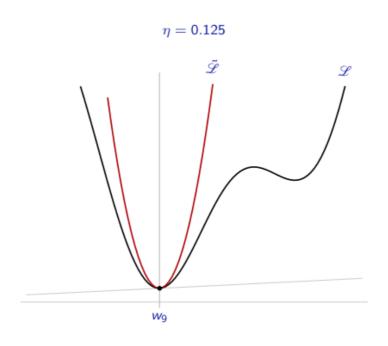


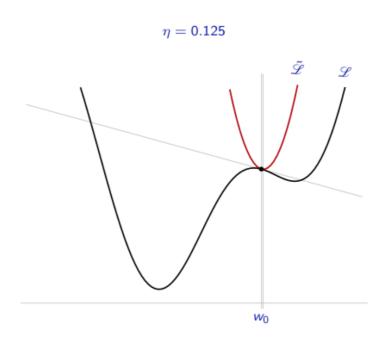


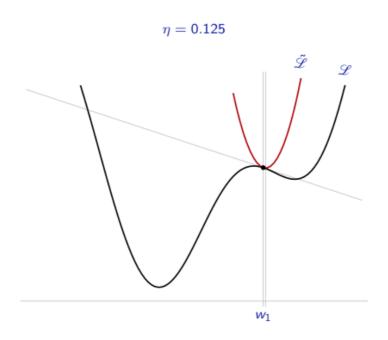


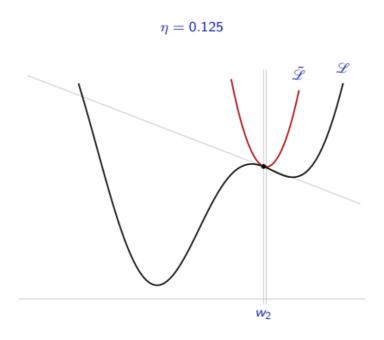


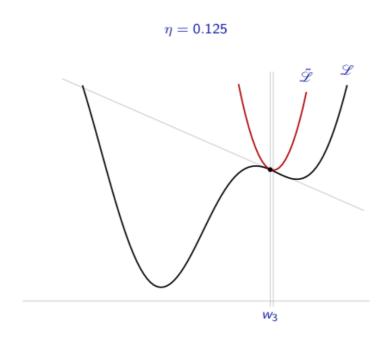


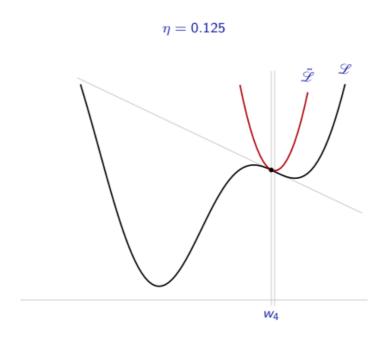


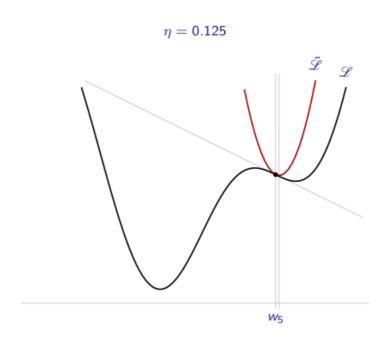


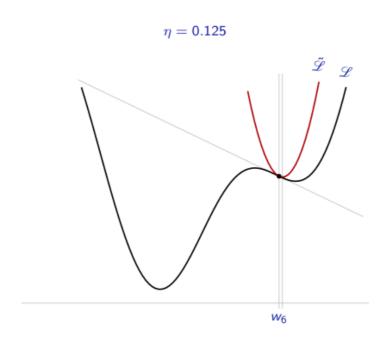


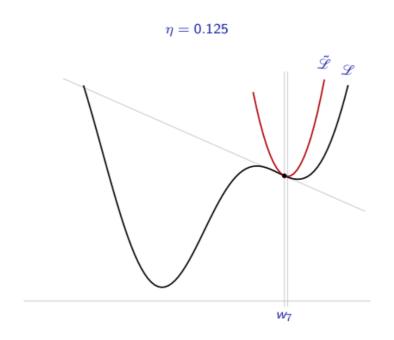


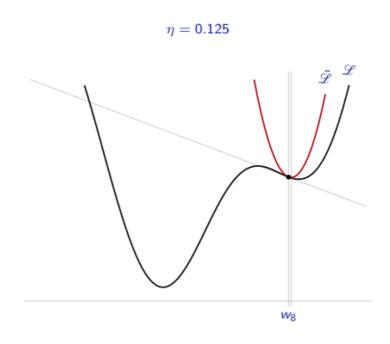


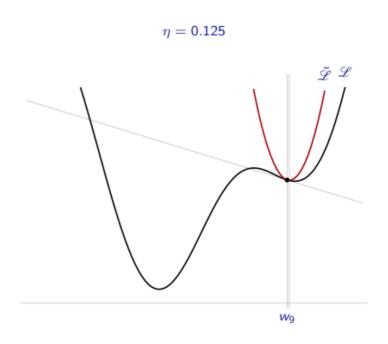


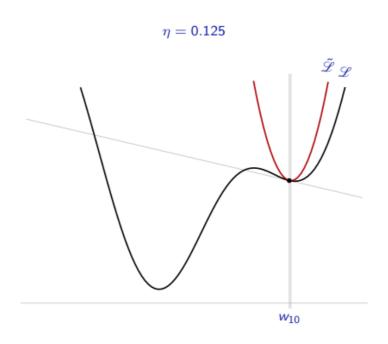


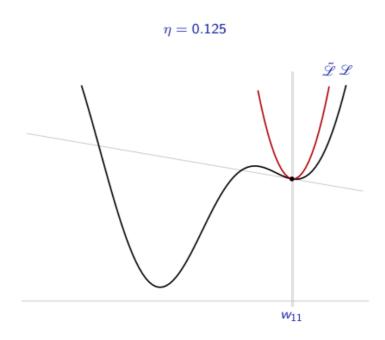


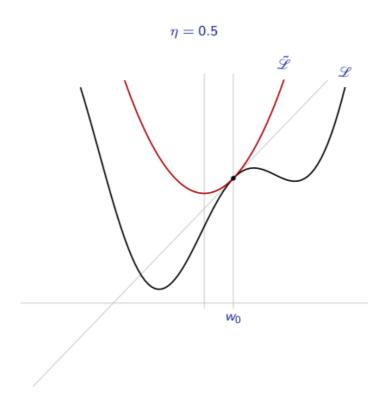


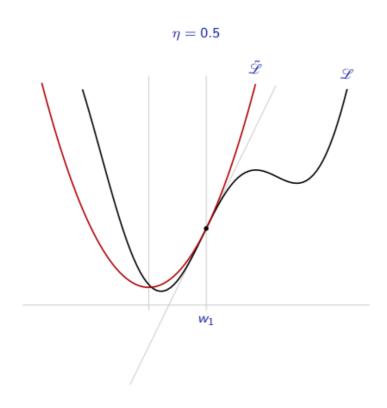


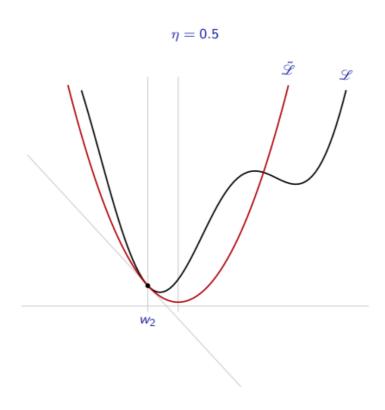


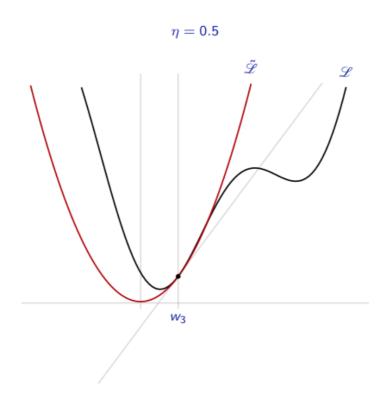


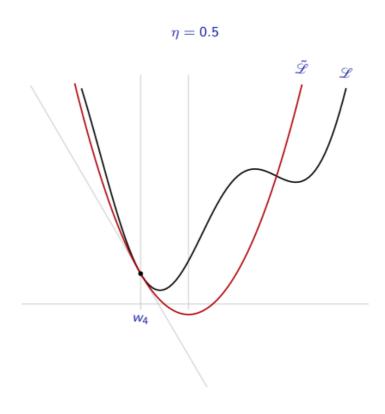


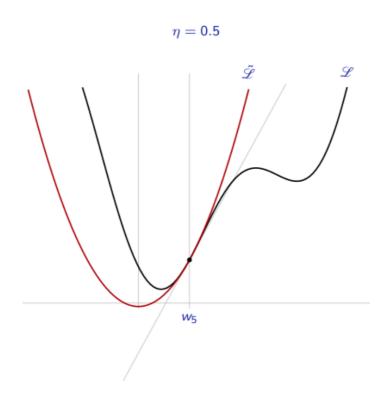


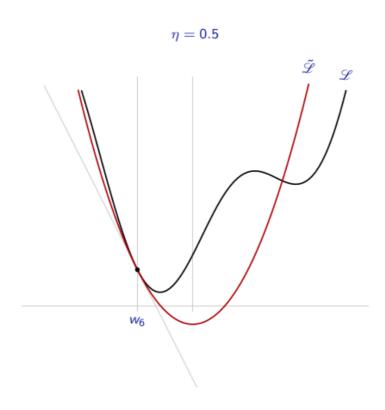


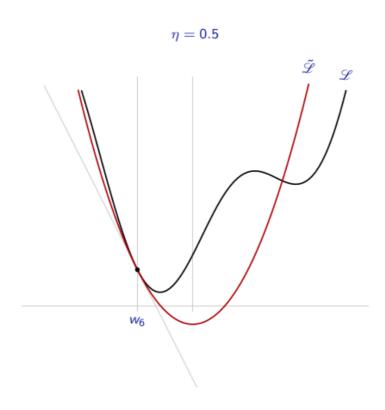


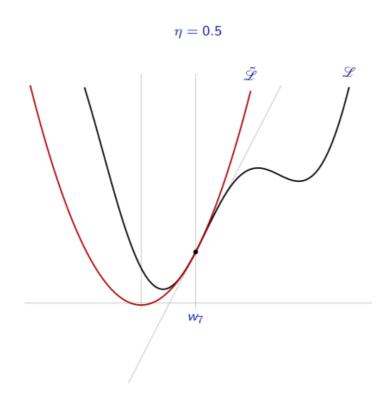


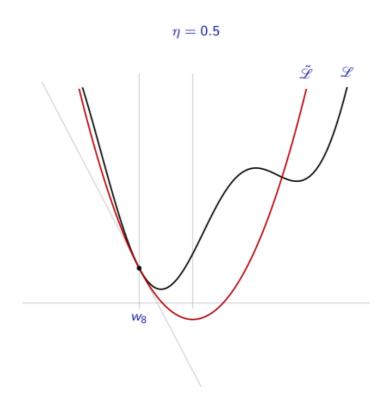


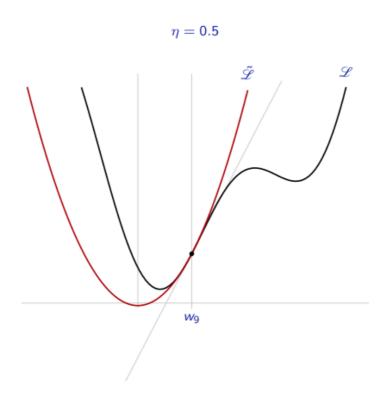


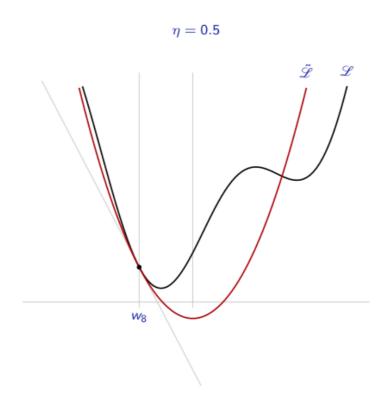


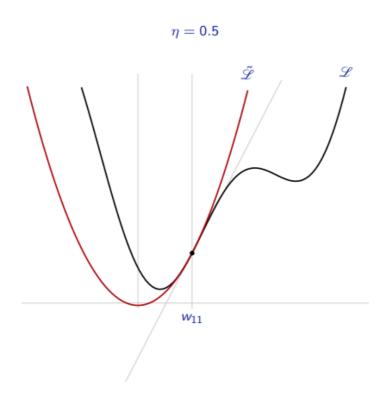




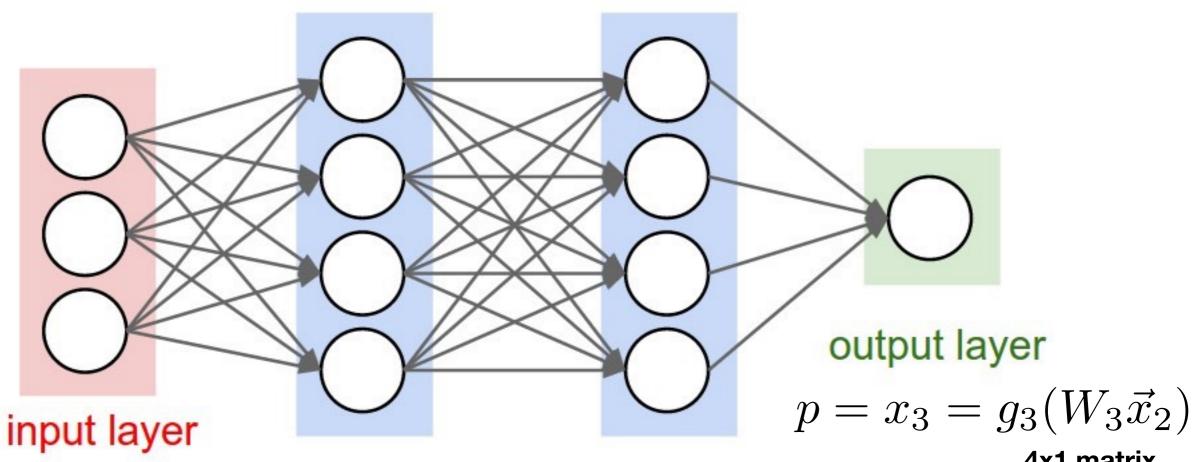








Feed-forward Neural networks



4x1 matrix

hidden layer 1 hidden layer 2 \vec{x}_0

$$\vec{x}_1 = g_1(W_1\vec{x}_0)$$
 $\vec{x}_2 = g_2(W_2\vec{x}_1)$
4x3 matrix
4x4 matrix

$$p = f(\vec{x}_0) = g_3(W_3 \ g_2(W_2 \ g_1(W_1\vec{x}_0)))$$

W matrices are called the <u>« weights »</u> The functions g_n () are called <u>« activation functions »</u>

How to compute the gradient efficiently?

$$\vec{x}_0$$
 $\vec{x}_1 = g_1(\vec{W}_1\vec{x}_0)$... $\vec{x}_n = g_n(\vec{W}_n\vec{x}_{n-1})$... $p = g_L(\vec{W}_L\vec{x}_{L-1})$

Feed-forward

Compute the loss
$$L = \frac{(y-p)^2}{2}$$

Back-propagation of errors

$$e_j^1 = g_1'(h_j^1) \sum_i W_{ij}^2 e_i^2$$
 ... $e_j^n = g_n'(h_j^n) \sum_i W_{ij}^{n+1} e_i^{n+1}$... $e^L = g_L'(h^L)(p-y)$

Once this is done, gradients are given by $\ \frac{\partial L}{\partial W^{l}_{I}}=x_{b}^{l-1}e_{a}^{l}$

Demonstration by the chain rule of derivatives

$$L = \frac{(y-p)^2}{2} \qquad \qquad \frac{\partial L}{\partial w_{ab}^{(l)}} = \mathbf{?}$$

$$\frac{\partial L}{\partial w_{ab}^{(l)}} = (p - y)g'^{(L)}(h^{(L)}) \sum_{k} w_{k}^{(L)} \frac{\partial x_{k}^{(L-1)}}{\partial w_{ab}^{(l)}} \qquad \frac{\partial L}{\partial w_{ab}^{(l)}} = \sum_{k} w_{k}^{(L)} \frac{\partial x_{k}^{(L-1)}}{\partial w_{ab}^{(l)}} e^{L}$$

$$\frac{\partial L}{\partial w_{ab}^{(l)}} = \sum_{k} w_{k}^{(L)} \left(\frac{\partial}{\partial w_{ab}^{(l)}} g^{(L-1)} \left[\sum_{k'} w_{kk'}^{(L-1)} x_{k'}^{(L-2)} \right] \right) e^{L}$$

$$\frac{\partial L}{\partial w_{ab}^{(l)}} = \sum_{k'} \frac{\partial x_{k'}^{(L-2)}}{\partial w_{ab}^{(l)}} \sum_{k} w_{kk'}^{(L-1)} w_{k}^{(L)} \left(g^{(L-1)'}[h_k^{L-1}] \right) e^L = \sum_{k'} \frac{\partial x_{k'}^{(L-2)}}{\partial w_{ab}^{(l)}} \sum_{k} w_{kk'}^{(L-1)} e_k^{L-1} e_k^{L-1}$$

 $\partial L \longrightarrow \partial x_1^{(n-2)} \longrightarrow (n-1)$

$$\frac{\partial L}{\partial w_{ab}^{(l)}} = \sum_{k} \frac{\partial x_{k}^{(n-2)}}{w_{ab}^{(l)}} \sum_{i} w_{ik}^{(n-1)} e_{i}^{(n-1)}$$

 $\frac{\partial L}{\partial w_{ab}^{(l)}} = \sum_{l} \frac{\partial x_k^{(l)}}{w_{ab}^{(l)}} \sum_{i} w_{ik}^{(l+1)} e_i^{(l+1)} = x_b^{(l-1)} e_a^{(l)}$

How to compute the gradient efficiently?

$$\vec{x}_0$$
 $\vec{x}_1 = g_1(\vec{W}_1\vec{x}_0)$... $\vec{x}_n = g_n(\vec{W}_n\vec{x}_{n-1})$... $p = g_L(\vec{W}_L\vec{x}_{L-1})$

Feed-forward

Compute the loss
$$L = \frac{(y-p)^2}{2}$$

Back-propagation of errors

$$e_j^1 = g_1'(h_j^1) \sum_i W_{ij}^2 e_i^2$$
 ... $e_j^n = g_n'(h_j^n) \sum_i W_{ij}^{n+1} e_i^{n+1}$... $e^L = g_L'(h^L)(p-y)$

Once this is done, gradients are given by $\ \frac{\partial L}{\partial W^{l}_{I}}=x_{b}^{l-1}e_{a}^{l}$

Minimising the cost function by gradients descent

$$\theta^{t+1} = \theta^t - \eta \nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=1,...n}, \{ y \}_{i=1,...n} \right)$$

If eta small enough, converge to a (possible local) minima

Standard (or "batch") gradient descent

Compute the gradient by averaging the derivative of the loss is the entire training set

$$\nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=1,\dots n}, \{ y \}_{i=1,\dots n} \right) = \frac{1}{n} \sum_{i=1}^n \nabla \mathcal{L}(\mathbf{x}_i, y_i, \theta^t)$$

Batch gradient is the average gradient over all data in the training set

Batch gradient descent

$$\theta^{t+1} = \theta^t - \eta \nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=1,...n}, \{ y \}_{i=1,...n} \right)$$

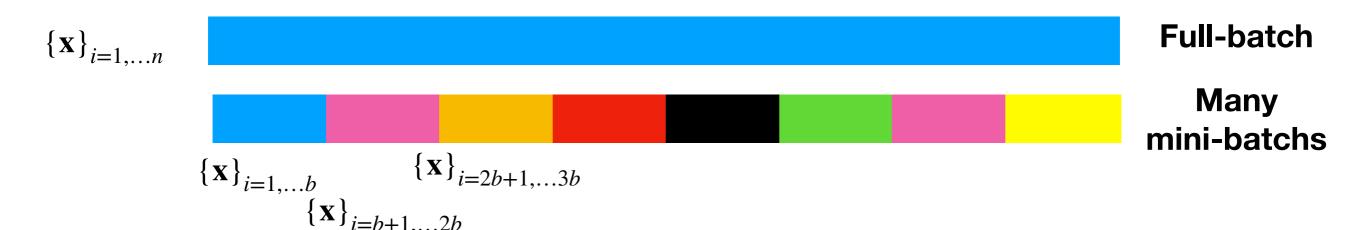
```
for i in range(nb_epochs):
   params_grad = evaluate_gradient(loss_function, data, params)
   params = params - learning_rate * params_grad
```

$$\nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=1,\dots n}, \{ y \}_{i=1,\dots n} \right) = \frac{1}{n} \sum_{i=1}^n \nabla \mathcal{L}(\mathbf{x}_i, y_i, \theta^t)$$

Batch gradient is the average gradient over all data in the training set

Mini-batch gradient descent

```
for i in range(nb_epochs): \theta^{t+(1/n_b)} = \theta^t - \eta \, \nabla \mathcal{R} \left( \theta^t, \{\mathbf{x}\}_{i=n_1,\dots n_2}, \{y\}_{i=n_1,\dots n_2} \right) for batch in get_batches(data, batch_size=50):  \text{params\_grad} = \text{evaluate\_gradient(loss\_function, batch, params)}   \text{params} = \text{params} - \text{learning\_rate} * \text{params\_grad}
```



$$\nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=i_1, \dots i_2}, \{ \mathbf{y} \}_{i=i_1, \dots i_2} \right) = \frac{1}{i_2 - i_1} \sum_{i=i_1}^{i_2} \nabla \mathcal{L}(\mathbf{x}_i, \mathbf{y}_i, \theta^t)$$

Mini-Batch gradient is the average gradient over all data in one mini-batch

Stochastic gradient descent

$$\theta^{t+(1/n)} = \theta^t - \eta \nabla \mathcal{R} \left(\theta^t, \left\{\mathbf{x}\right\}_i, \left\{y\right\}_i\right)$$

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function, example, params)
        params = params - learning_rate * params_grad
```


Full-batch

Mini-batchs
Of size 1...

$$\nabla \mathcal{R}\left(\theta^{t}, \left\{\mathbf{x}\right\}_{i}, \left\{y\right\}_{i}\right) = \nabla \mathcal{L}(\mathbf{x}_{i}, y_{i}, \theta^{t})$$

SGD gradient is the gradient for <u>one element in the training set</u>

Why Mini-batch gradient descent?

$$\theta^{t+(1/n_b)} = \theta^t - \eta \nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=n_1, \dots, n_2}, \{ y \}_{i=n_1, \dots, n_2} \right)$$

- The model update frequency is his
 faster and memory efficient (or
- Maybe? Effective noise in the dy Could works better than full batch
- In practice: This is the only way networks

The Tradeoffs of Large Scale Learning

Léon Bottou

NEC laboratories of America Princeton, NJ 08540, USA leon@bottou.org

Olivier Bousquet

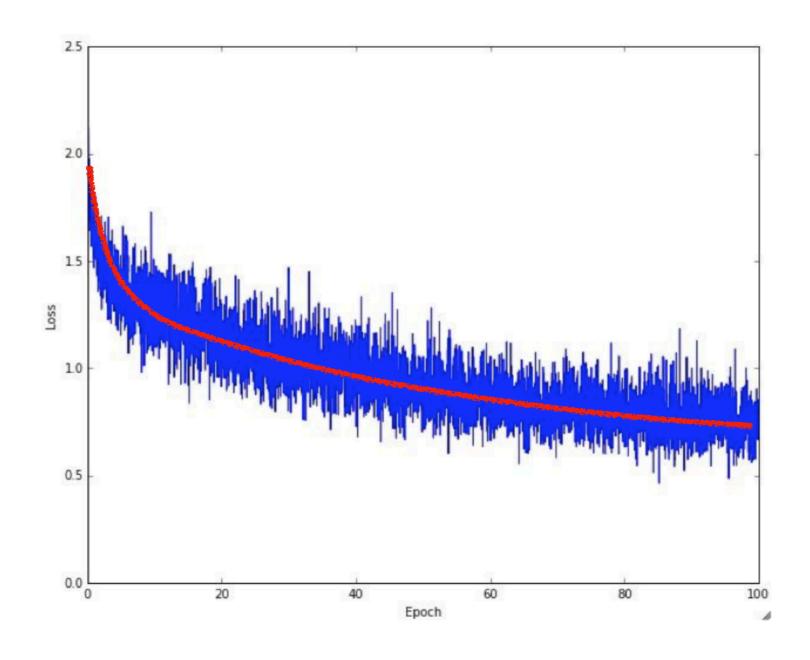
Google Zürich 8002 Zurich, Switzerland olivier.bousquet@m4x.org

Abstract

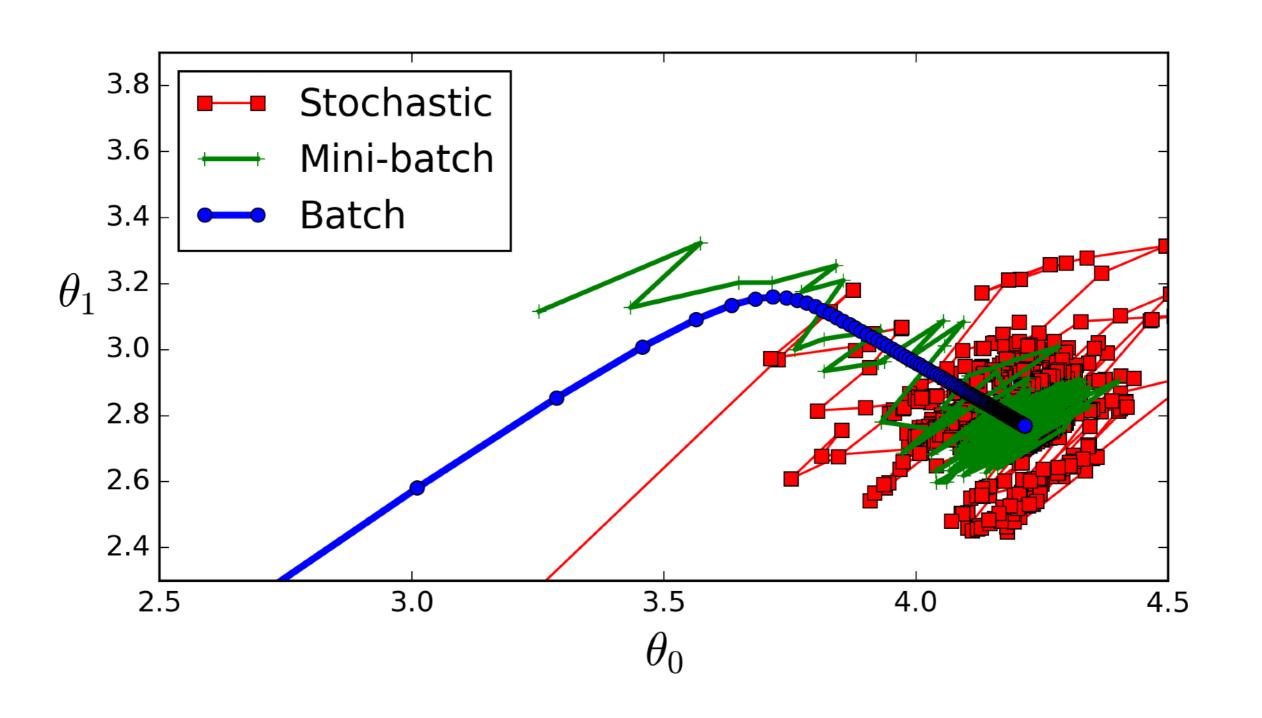
This contribution develops a theoretical framework that takes into account the effect of approximate optimization on learning algorithms. The analysis shows distinct tradeoffs for the case of small-scale and large-scale learning problems. Small-scale learning problems are subject to the usual approximation—estimation tradeoff. Large-scale learning problems are subject to a qualitatively different tradeoff involving the computational complexity of the underlying optimization algorithms in non-trivial ways.

Mini-batch gradient descent

- Example of optimization progress while training a neural network
- Showing loss over mini-batches as it goes down over time

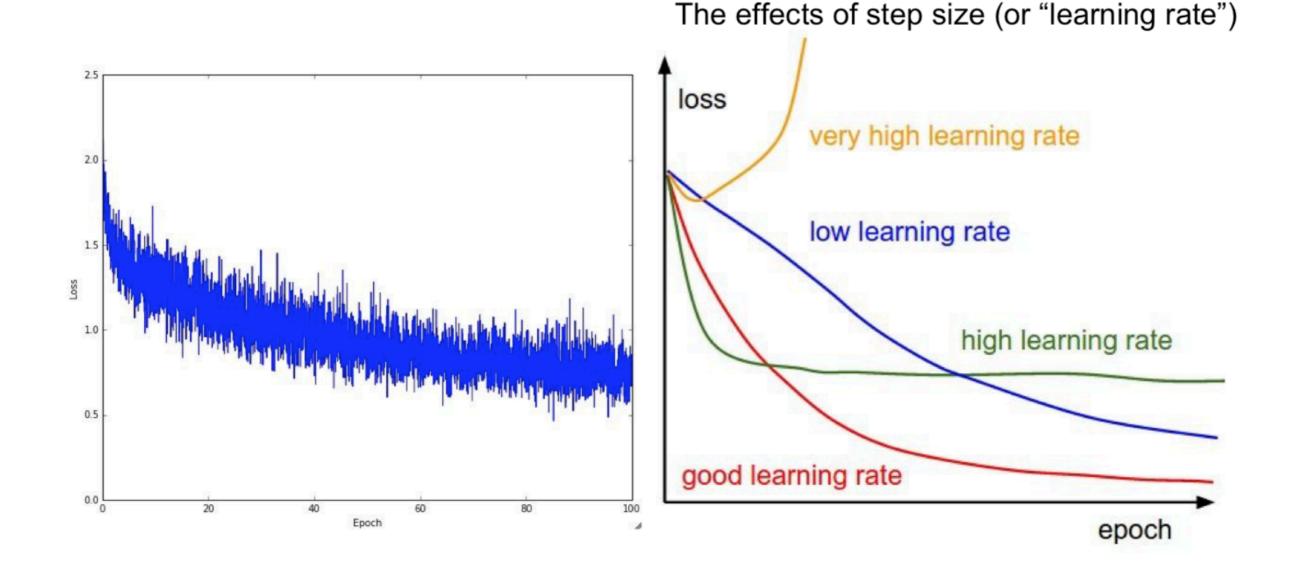


Batch vs mini-batches

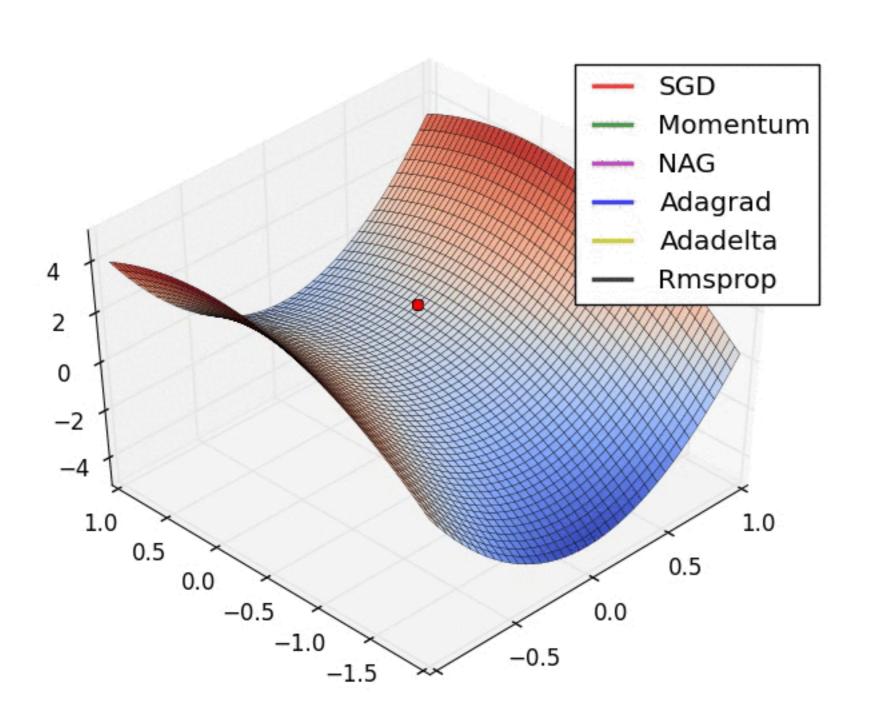


Mini-batch gradient descent

- Example of optimization progress while training a neural network
- Epoch = one full pass of the training dataset through the network



Many mini-batch algorithms (but we shall discuss them later)



Using Neural nets!

Many Python Frameworks

- Pytorch & Torch
- TensorFlow
- Caffe
- Caffe2
- Chainer
- CNTK
- DSSTNE
- DyNet
- Gensim
- Gluon
- Keras
- Mxnet
- Paddle
- BigDL
- RIP: Theano & Ecosystem

Pytorch

```
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.ReLU(),
            nn.ReLU(),
            nn.ReLU(),
            nn.ReLU(),
            nn.ReLU())
            nn.ReLU()
            nn.ReLU()
```

```
def forward(self, x):
    x = self.flatten(x)
    logits = self.linear_relu_stack(x)
    return logits
```

Note that the backward pass (backpropgation) is done automatically by pytorch (This is called *automatic differentiation*!)

No need to code back propagation if you use pytorch!

Gradient descents a gogo

How to compute the gradient efficiently?

$$\vec{x}_0$$
 $\vec{x}_1 = g_1(\vec{W}_1\vec{x}_0)$... $\vec{x}_n = g_n(\vec{W}_n\vec{x}_{n-1})$... $p = g_L(\vec{W}_L\vec{x}_{L-1})$

Feed-forward

Compute the loss
$$L = \frac{(y-p)^2}{2}$$

Back-propagation of errors

$$e_j^1 = g_1'(h_j^1) \sum_i W_{ij}^2 e_i^2$$
 ... $e_j^n = g_n'(h_j^n) \sum_i W_{ij}^{n+1} e_i^{n+1}$... $e^L = g_L'(h^L)(p-y)$

Once this is done, gradients are given by $\ \frac{\partial L}{\partial W^l} = x_b^{l-1} e_a^l$

Batch gradient descent

$$\theta^{t+1} = \theta^t - \eta \nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=1,...n}, \{ y \}_{i=1,...n} \right)$$

```
for i in range(nb_epochs):
   params_grad = evaluate_gradient(loss_function, data, params)
   params = params - learning_rate * params_grad
```

Mini-batch gradient descent

```
\theta^{t+(1/n_b)} = \theta^t - \eta \, \nabla \mathcal{R} \left( \theta^t, \{\mathbf{x}\}_{i=n_1,\dots n_2}, \{y\}_{i=n_1,\dots n_2} \right) for i in range(nb_epochs): np.random.shuffle(data) for batch in get_batches(data, batch_size=50): params_grad = evaluate_gradient(loss_function, batch, params) params = params - learning_rate * params_grad
```

Stochastic gradient descent

$$\theta^{t+(1/n)} = \theta^t - \eta \nabla \mathcal{R} \left(\theta^t, \left\{\mathbf{x}\right\}_i, \left\{y\right\}_i\right)$$

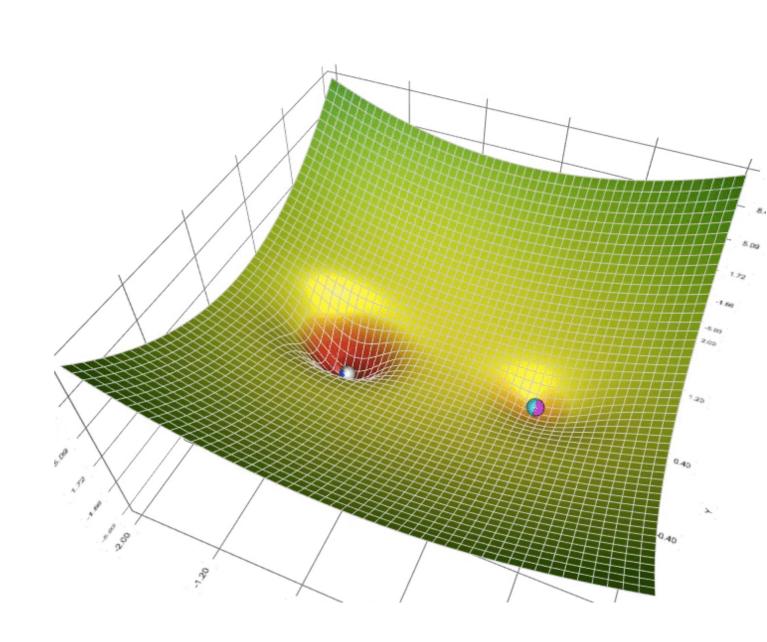
```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function, example, params)
        params = params - learning_rate * params_grad
```


A physics analogy

"Speed"

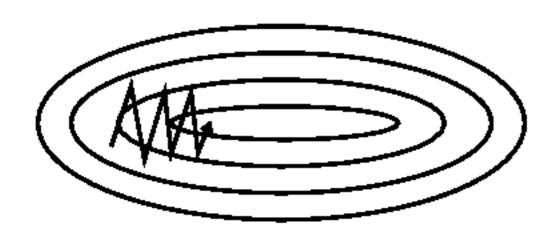
$$\mathbf{v}^{t+1} = \eta \, \nabla f(\theta^t)$$
$$\theta^{t+1} = \theta^t - \mathbf{v}^{t+1}$$

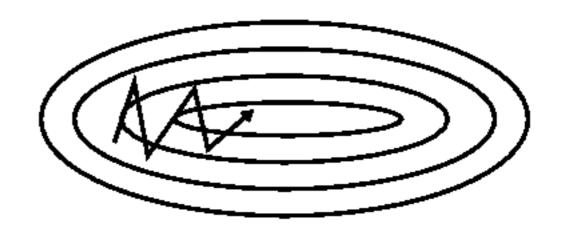
"Movement"



Momentum

Keep the ball rolling on the same direction



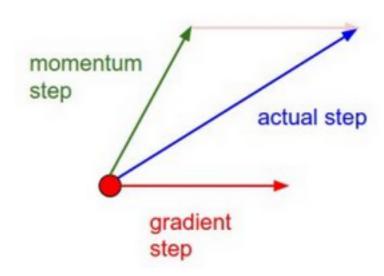


"Speed" change with the gradient of the force

$$\mathbf{v}^{t+1} = \gamma \mathbf{v}^t + \eta \nabla f(\theta^t)$$
$$\theta^{t+1} = \theta^t - \mathbf{v}^{t+1}$$

"Movement"

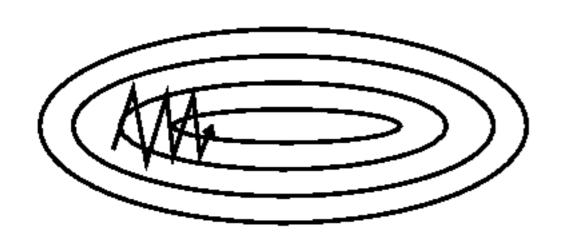
Momentum update

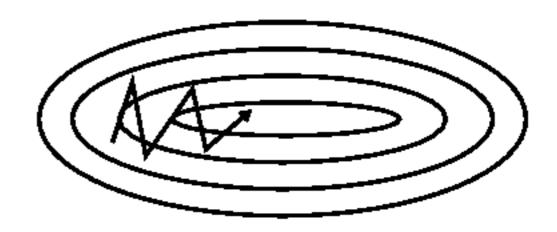


« Effective averaging of previous directions »

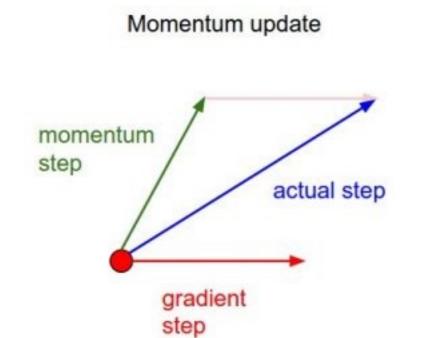
Nesterov acceleration

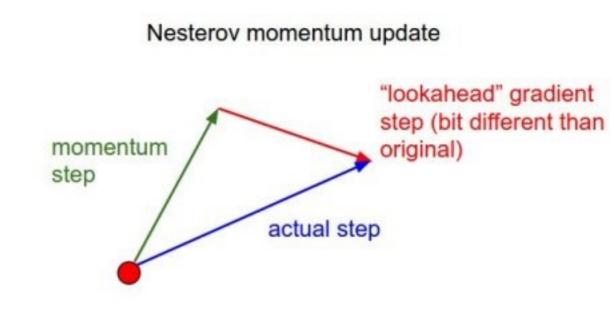
A slightly more clever ball





$$\mathbf{v}^{t+1} = \gamma \mathbf{v}^t + \eta \nabla f(\theta^t - \gamma \mathbf{v}^t)$$
$$\theta^{t+1} = \theta^t - \mathbf{v}^{t+1}$$



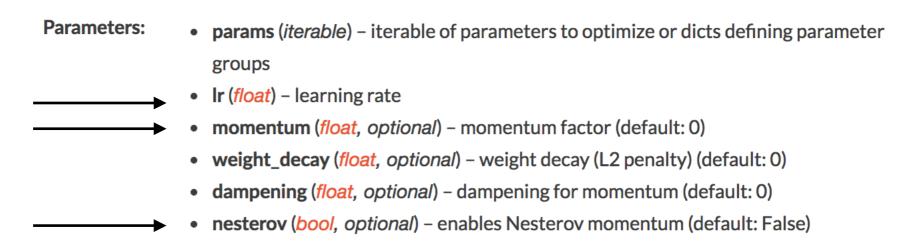


Pytorch optimizer

```
class torch.optim. SGD(params, Ir=<object object>, momentum=0, dampening=0,
weight_decay=0, nesterov=False) [source]
```

Implements stochastic gradient descent (optionally with momentum).

Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.



Example

```
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
```

Adaptive learning rates

$$\theta^{t+1} = \theta^t - \eta \, \nabla f(\theta^t)$$
 What about this guy ?

Adagrad:

Adagrad scales y for each parameter according to the history of gradients (previous steps)

$$\theta^{t+1} = \theta^t - \frac{\eta}{\sqrt{G_t + \epsilon}} \nabla f(\theta^t)$$

G is a diagonal matrix that contains the sum of all (squared) gradient so far When the gradient is very large, learning rate is reduced and vice-versa.

$$G_{t+1} = G_t + (\nabla f)^2$$

With adagrad, one does not need to manually adapt y at each steps...

... but the problem is that eventually all update on gradients goes to zero!

Adaptive learning rates

Adagrad:

Adagrad scales y for each parameter according to the history of gradients (previous steps)

$$\theta^{t+1} = \theta^t - \frac{\eta}{\sqrt{G_t + \epsilon}} \nabla f(\theta^t)$$

G is a diagonal matrix that contains the sum of all (squared) gradient so far When the gradient is very large, learning rate is reduced and vice-versa.

$$G_{t+1} = G_t + (\nabla f)^2$$

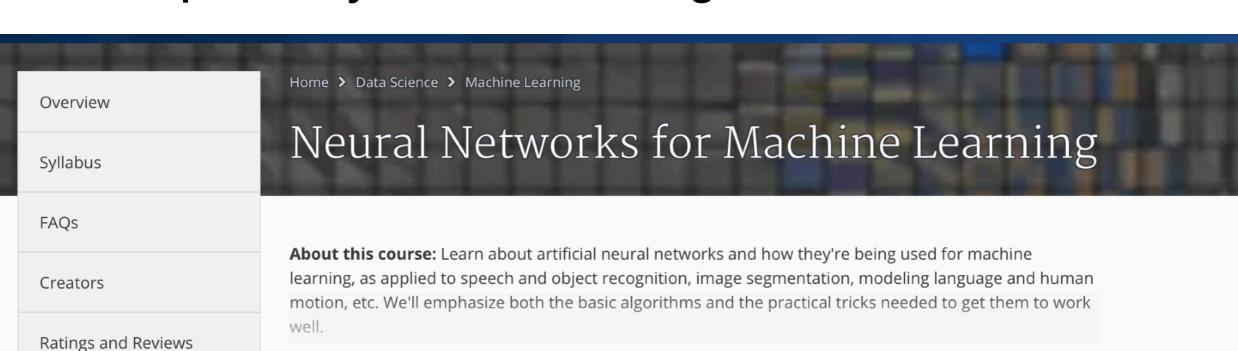
RMSprop

The only difference RMSprop has with Adagrad is that the term is calculated by exponentially decaying moving average (like we did in momentum for the gradient itself!) instead of the sum of gradients.

$$G_{t+1} = \gamma G_t + (1-\gamma)(\nabla f)^2$$

RMSprop

Proposed by G. Hinton during his coursera lecture



Neural Networks for Machine Learning

> Enroll Starts Dec 25

Financial Aid is available for learners who cannot afford the fee.

Learn more and apply.

More

Created by: University of Toronto

Taught by: Geoffrey Hinton, Professor

Department of Computer Science

Adaptive learning rates

ADAM= Adaptive learning rate + Momentum

Adam: Adaptive Moment Estimation

Adam also keeps an exponentially decaying average of past gradients, similar to momentum

$$G_t = \beta_2 G_{t-1} + (1 - \beta_2)(\nabla f)^2$$
 $M_t = \beta_1 M_{t-1} + (1 - \beta_1)(\nabla f)$

These are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients respectively, hence the name of the method.

$$\hat{M}_t = \frac{M_t}{1 - \beta_1^{\mathsf{t}}} \quad \hat{G}_t = \frac{G_t}{1 - \beta_2^{\mathsf{t}}}$$

$$\theta^{t+1} = \theta^t - \frac{\eta}{\sqrt{\hat{G}_t + \epsilon}} \hat{M}_t$$

Pytorch

ADAM

CLASS torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) [SOURCE]

Implements Adam algorithm.

 $\begin{aligned} \textbf{input}: \gamma \ (\text{lr}), \beta_1, \beta_2 \ (\text{betas}), \theta_0 \ (\text{params}), f(\theta) \ (\text{objective}) \\ \lambda \ (\text{weight decay}), \ amsgrad \\ \textbf{initialize}: m_0 \leftarrow 0 \ (\text{first moment}), v_0 \leftarrow 0 \ (\text{second moment}), \ \widehat{v_0}^{max} \leftarrow 0 \end{aligned}$

$$egin{aligned} \mathbf{for} \ t = 1 \ \mathbf{to} \ \dots \ \mathbf{do} \ g_t &\leftarrow
abla_{ heta} f_t(heta_{t-1}) \ \mathbf{if} \ \lambda
eq 0 \ g_t &\leftarrow g_t + \lambda heta_{t-1} \ m_t &\leftarrow eta_1 m_{t-1} + (1-eta_1) g_t \ v_t &\leftarrow eta_2 v_{t-1} + (1-eta_2) g_t^2 \ \widehat{m_t} &\leftarrow m_t / (1-eta_1^t) \ \widehat{v_t} &\leftarrow v_t / (1-eta_2^t) \ \mathbf{if} \ amsgrad \ \widehat{v_t}^{max} &\leftarrow \max(\widehat{v_t}^{max}, \widehat{v_t}) \ heta_t &\leftarrow heta_{t-1} - \gamma \widehat{m_t} / \left(\sqrt{\widehat{v_t}^{max}} + \epsilon
ight) \ \mathbf{else} \ \theta_t &\leftarrow heta_{t-1} - \gamma \widehat{m_t} / \left(\sqrt{\widehat{v_t}^{max}} + \epsilon
ight) \end{aligned}$$

Parameters

- params (iterable) iterable of parameters to optimize or dicts defining parameter groups
- Ir (float, optional) learning rate (default: 1e-3)
- betas (Tuple[float, float], optional) coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
- **eps** (*float*, *optional*) term added to the denominator to improve numerical stability (default: 1e-8)
- weight_decay (float, optional) weight decay (L2 penalty) (default: 0)
- **amsgrad** (boolean, optional) whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: False)

Pytorch

NADAM

CLASS torch.optim.NAdam(params, 1r=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, momentum_decay=0.004) [SOURCE]

ADAM+Nesterov

Implements NAdam algorithm.

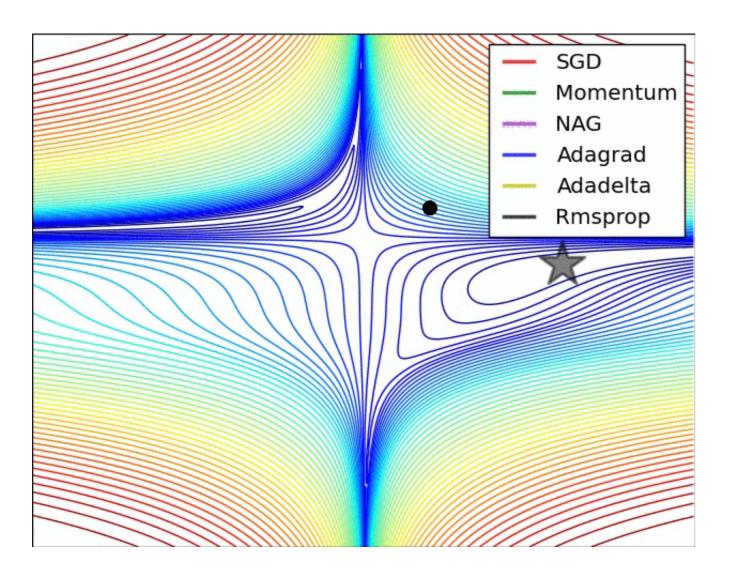
input: γ_t (lr), β_1 , β_2 (betas), θ_0 (params), $f(\theta)$ (objective) λ (weight decay), ψ (momentum decay)

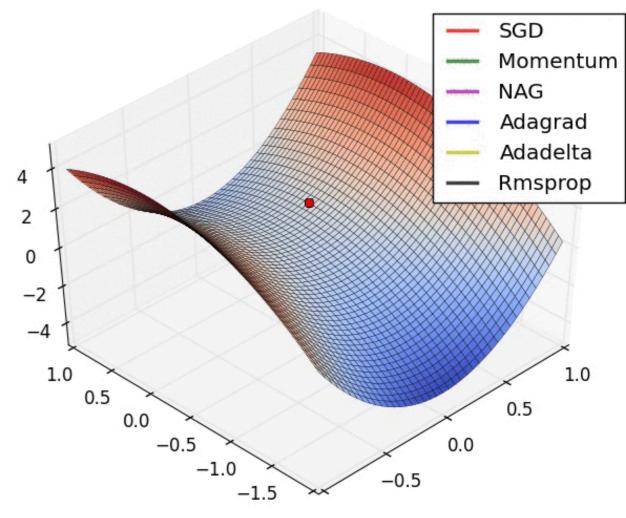
initialize : $m_0 \leftarrow 0$ (first moment), $v_0 \leftarrow 0$ (second moment)

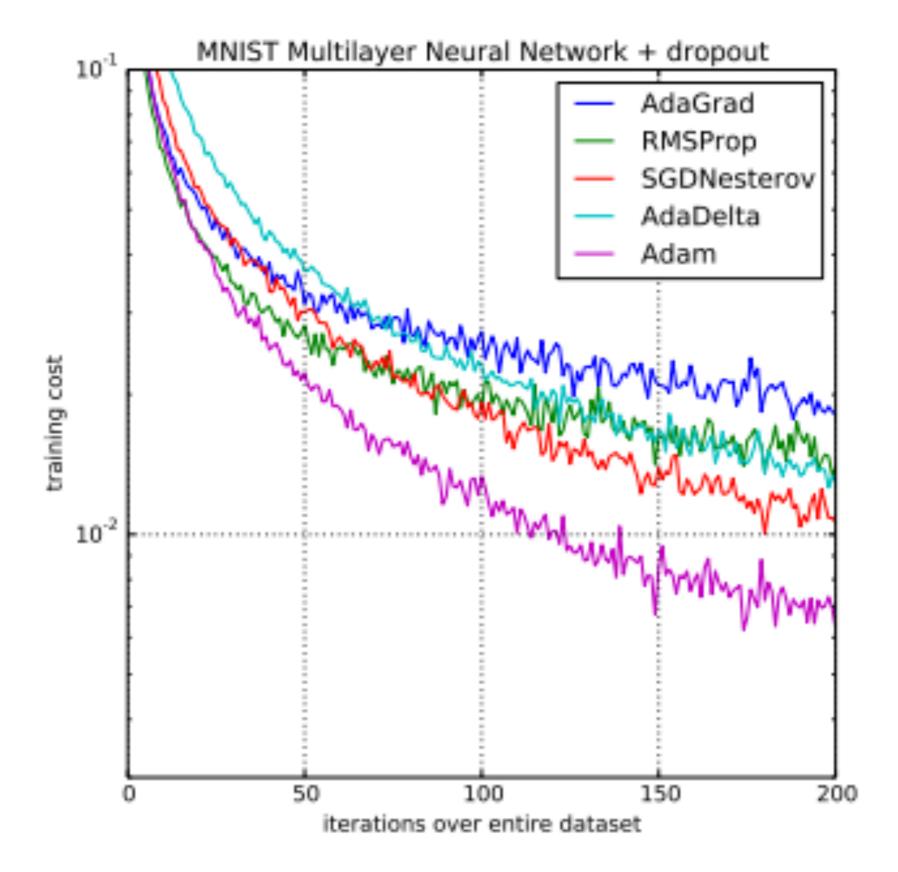
$$egin{aligned} \mathbf{for} \ t &= 1 \ \mathbf{to} \ \dots \ \mathbf{do} \ g_t &\leftarrow
abla_{ heta} f_t(heta_{t-1}) \ if \ \lambda &
eq 0 \ g_t &\leftarrow g_t + \lambda heta_{t-1} \ \mu_t &\leftarrow eta_1 ig(1 - rac{1}{2} 0.96^{t\psi}ig) \ \mu_{t+1} &\leftarrow eta_1 ig(1 - rac{1}{2} 0.96^{(t+1)\psi}ig) \ m_t &\leftarrow eta_1 m_{t-1} + (1 - eta_1) g_t \ v_t &\leftarrow eta_2 v_{t-1} + (1 - eta_2) g_t^2 \ \widehat{m_t} &\leftarrow \mu_{t+1} m_t / (1 - \prod_{i=1}^{t+1} \mu_i) \ &+ (1 - \mu_t) g_t / (1 - \prod_{i=1}^t \mu_i) \ \widehat{v_t} &\leftarrow v_t / ig(1 - eta_2^tig) \ heta_t &\leftarrow heta_{t-1} - \gamma \widehat{m_t} / ig(\sqrt{\widehat{v_t}} + \epsilonig) \end{aligned}$$

Parameters

- params (iterable) iterable of parameters to optimize or dicts defining parameter groups
- Ir (float, optional) learning rate (default: 2e-3)
- betas (Tuple[float, float], optional) coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
- eps (float, optional) term added to the denominator to improve numerical stability (default: 1e-8)
- weight_decay (float, optional) weight decay (L2 penalty) (default: 0)
- momentum_decay (float, optional) momentum momentum_decay (default: 4e-3)



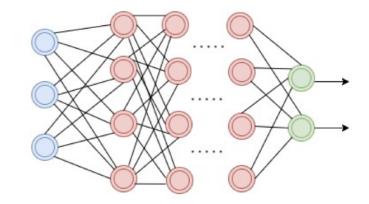




In summary

Neural networks are parametric functions of the form:

$$\hat{y} = \sigma_L \left(W_L . \sigma_{L-1} (W_{L-1} (\dots \sigma_1 (W_1 \vec{x} + b_1) + b_2) \right)$$



They are "trained" by finding the "Weights" using gradient descent to minimise the empirical risk. In practice, this is done using mini-batchs

$$\theta^{t+(1/n_b)} = \theta^t - \eta \nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=n_1, \dots n_2}, \{ y \}_{i=n_1, \dots n_2} \right)$$

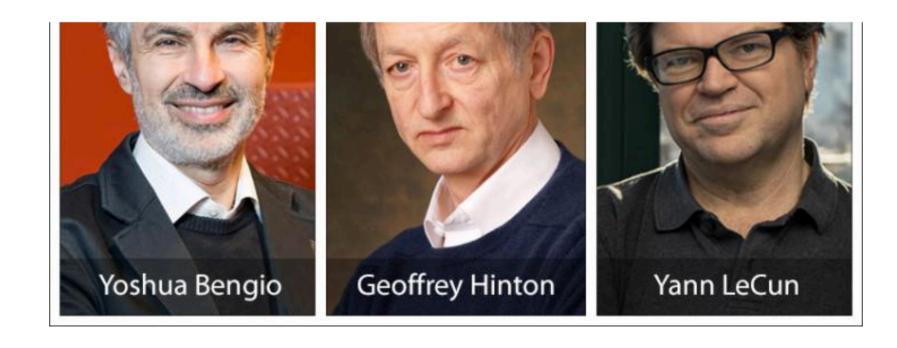
$$\nabla \mathcal{R} \left(\theta^t, \{ \mathbf{x} \}_{i=i_1, \dots i_2}, \{ \mathbf{y} \}_{i=i_1, \dots i_2} \right) = \frac{1}{i_2 - i_1} \sum_{i=i_1}^{i_2} \nabla \mathcal{L}(\mathbf{x}_i, y_i, \theta^t)$$

Many mini-batchs

$$\left\{\mathbf{x}\right\}_{i=1,...b} \left\{\mathbf{x}\right\}_{i=2b+1,...3b}$$

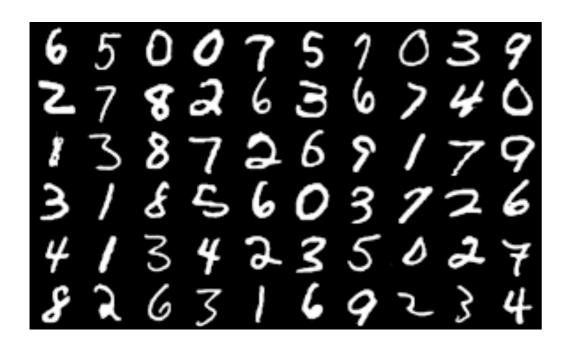
Le prix Turing honore les pères du deep learning Yann LeCun, Yoshua Bengio et Geoffrey Hinton

Le Français Yann LeCun, le Britannique Geoffrey Hinton et le Canadien Yoshua Bengio, les trois pères fondateurs du deep learning, ont reçu le 27 mars le prix Turing, équivalent du Nobel d'informatique, pour leur apport à l'intelligence artificielle.



- A bag of tricks: dropout, batchnorm, etc...
- Special layers: embedding, convolutions, pooling, etc...
- Convolution Networks (CNN)

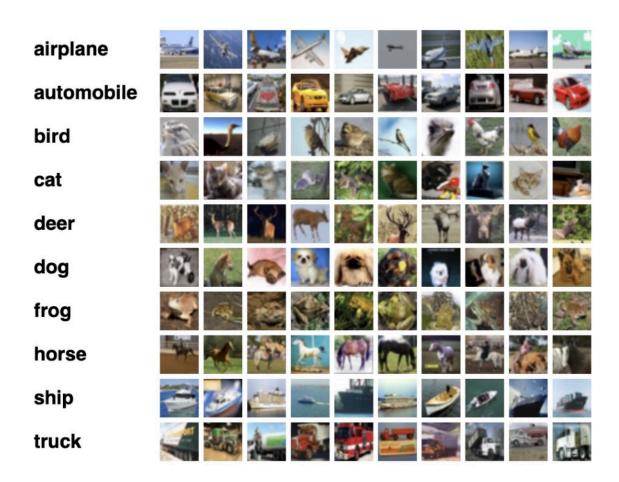
"Computer, recognise simple characters"



MNIST

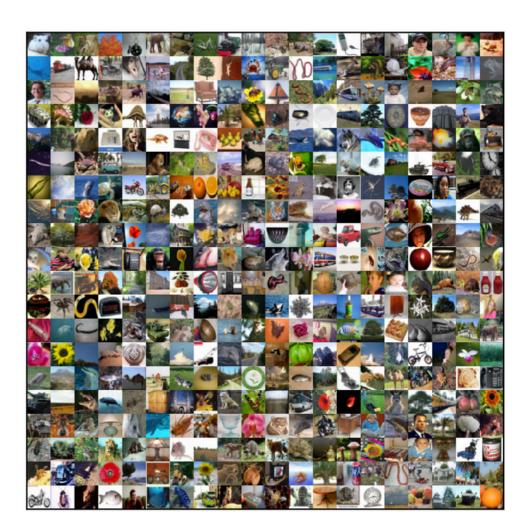
notMNIST

"Computer, recognise images"



CIFAR-10 60000 images, 10 classes



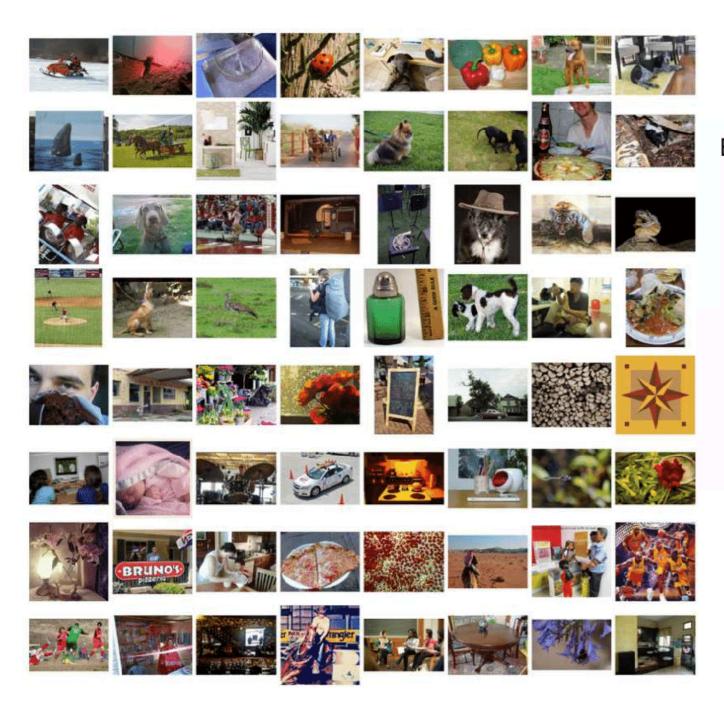


CIFAR-100 60000 images, 100 classes

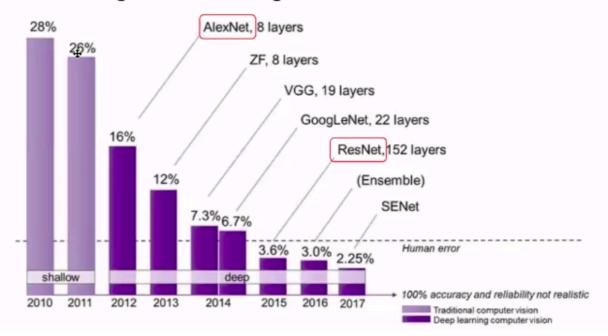
ImageNet

From Wikipedia, the free encyclopedia

The **ImageNet** project is a large visual database designed for use in visual object recognition software research. More than 14 million^{[1][2]} images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided.^[3] ImageNet contains more than 20,000 categories^[2] with a typical category, such as "balloon" or "strawberry", consisting of several hundred images.^[4] The database of annotations of third-party image URLs is freely available directly from ImageNet, though the actual images are not owned by ImageNet.^[5] Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where software programs compete to correctly classify and detect objects and scenes. The challenge uses a "trimmed" list of one thousand non-overlapping classes.^[6]



Error in ImageNet Challenge

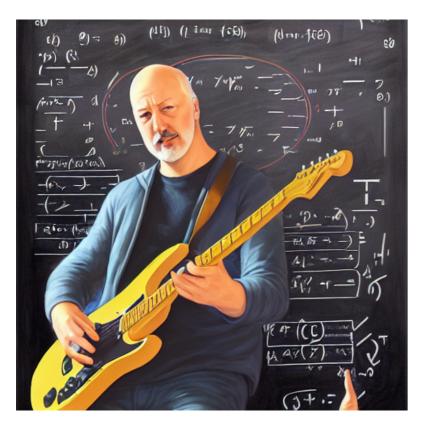


"Computer, drive my car"



"Computer, drive my car"

Computer, make a portrait of myself



Playing a Stratocaster guitar in front of a blackboard full of complex equations

As a mystical wise person, minimalist iconography, green and blue vibes

As obi-wan Kenobi in Star-Wars

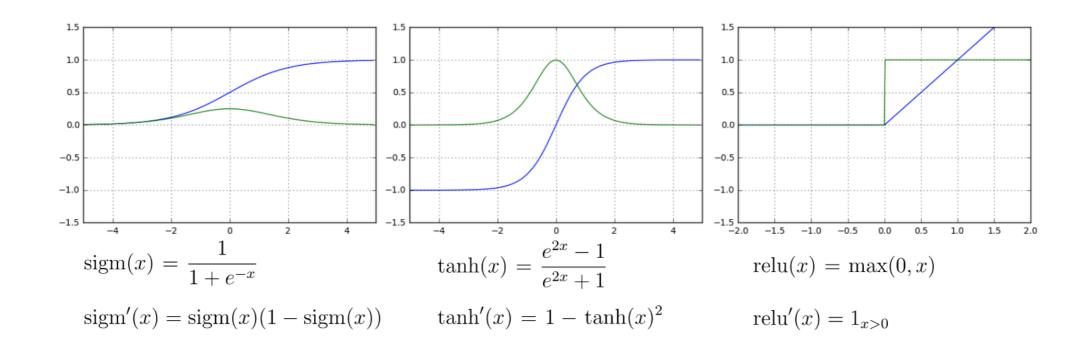
How does this works?

Tricks.... & convnets

1: Tricks of the trade

- Weights need to be small enough
 - around origin for symmetric activation functions (tanh, sigmoid)
 - → stimulate activation functions near their linear regime
 - ∘ larger gradients → faster training
- Weights need to be large enough
 - otherwise signal is too weak for any serious learning

RELU prevent vanishing gradients (but dead relus can exist! -> Leaky relu!)



Xavier Initialization

$$\mathcal{N}(0, \frac{2}{N_{in} + N_{out}})$$

glorot_uniform

glorot uniform(seed=None)

Glorot uniform initializer, also called Xavier uniform initializer.

It draws samples from a uniform distribution within [-limit, limit] where limit is sqrt(6 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and

fan_out is the number of output units in the weight tensor.

Arguments

• seed: A Python integer. Used to seed the random generator.

Doturne

Kaiming-He initialization

$$\mathcal{N}(0, \frac{2}{N_{in}})$$

- * Scale the incoming weight to have a O(1) variable
- * The factor 2 depends on activation: ReLUs ground to 0 the linear activation about half the Time -> Double weight variance for Relu to adapt

he_normal

he_normal(seed=None)

He normal initializer.

It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / fan_in) where fan_in is the number of input units in the weight tensor.

Arguments

• seed: A Python integer. Used to seed the random generator.

Returns

Kaiming-He initialization

$$\mathcal{N}(0, \frac{2}{N_{in}})$$

The same type of reasoning can be applied to other activation functions

From torch/nn/init.py:

```
def calculate_gain(nonlinearity, param=None):
 linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
      if nonlinearity in linear fns or nonlinearity == 'sigmoid':
          return 1
      elif nonlinearity == 'tanh':
          return 5.0 / 3
      elif nonlinearity == 'relu':
          return math.sqrt(2.0)
      elif nonlinearity == 'leaky_relu':
          if param is None:
              negative slope = 0.01
          elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
              # True/False are instances of int, hence check above
              negative slope = param
          else:
              raise ValueError("negative slope {} not a valid number".format(param))
          return math.sqrt(2.0 / (1 + negative_slope ** 2))
     else:
          raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
```

Weight initialization

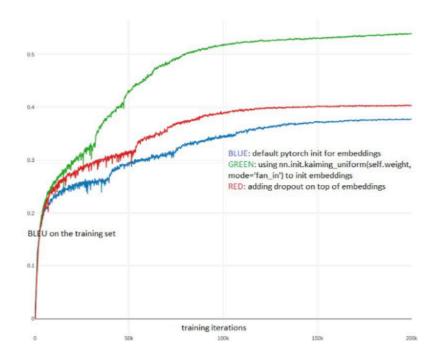
Does it actually matter that much?

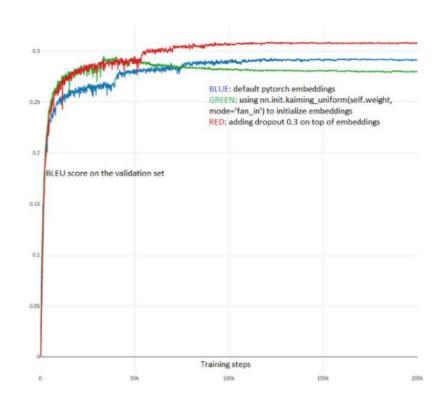
Weight initialization

Does it actually matter that much?

Following

Initialization in deep learning matters a lot! In a simple @PyTorch code for seq2seq NMT, changing the init of embeddings from default to kaiming (Gaussian vs uniform is not important, but rescaling is!) and regularizing more boosts results by 2 BLEU. How to tune these things?



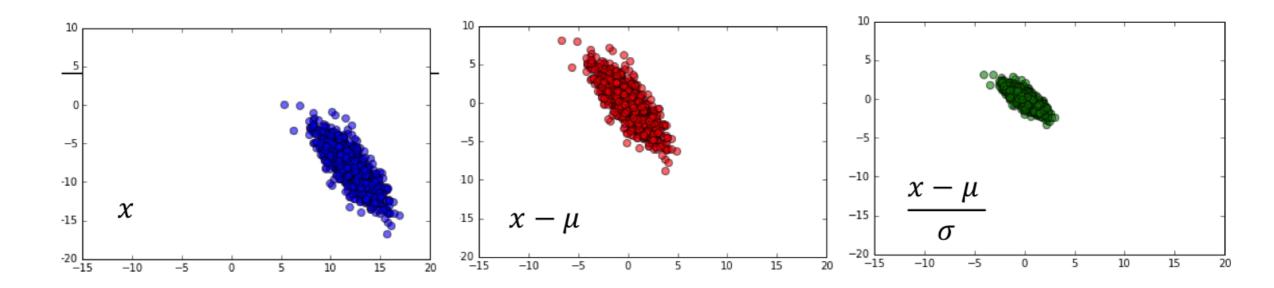


Data pre-processing

sklearn.preprocessing.StandardScaler

class sklearn.preprocessing.StandardScaler(*, copy=True, with_mean=True, with_std=True)

- Network is forced to find non-trivial correlations between inputs
- Decorrelated inputs → better optimization
- Input variables follow a more of less Gaussian distribution
- In practice:
 - compute mean and standard deviation
 - per pixel: (μ, σ^2)
 - per color channel:



Batch Normalization

```
from keras.layers.normalization import BatchNormalization
model = Sequential()
# think of this as the input layer
model.add(Dense(64, input_dim=16, init='uniform'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
# think of this as the hidden layer
model.add(Dense(64, init='uniform'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
# think of this as the output layer
model.add(Dense(2, init='uniform'))
model.add(BatchNormalization())
model.add(Activation('softmax'))
# optimiser and loss function
model.compile(loss='binary_crossentropy', optimizer=sgd)
```

During training, we normalise the activations of the previous layer for <u>each batch</u>:

We normalise in order to maintains the mean activation close to o and the activation standard deviation close to 1 before the activation function

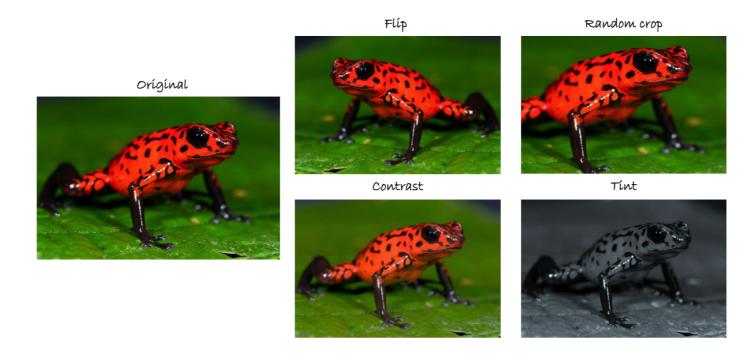
Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
              Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
  \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                      // mini-batch mean
  \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                   // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                             // scale and shift
```

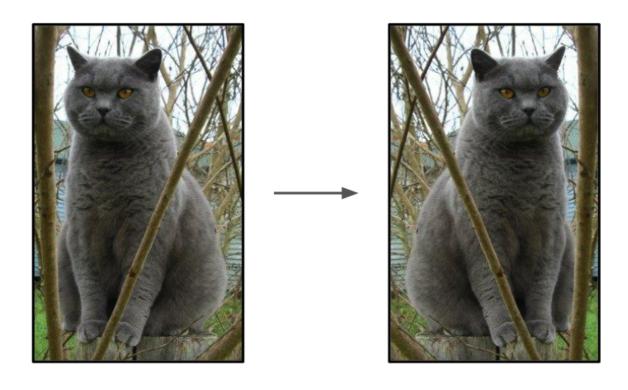
What do you do when do not have enough data?

You create more!

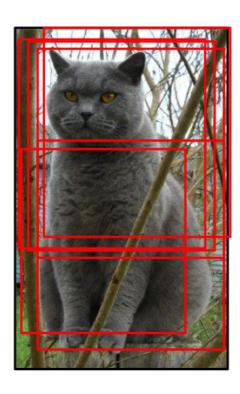
- Changing the pixels without changing the label
- Train on transformed data
- Widely used



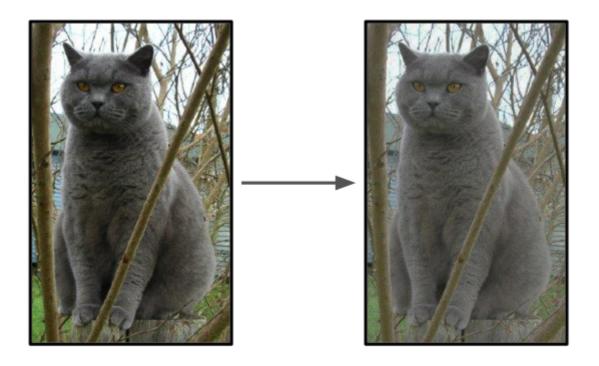
Horizontal flips



Random crops/scales



Color jitter



• randomly jitter color, brightness, contrast, etc.

- Various techniques can be mixed
- Domain knowledge helps in finding new data augmentation techniques
- Very useful for small datasets

Great overview of the function of a Spatial Tranfomer module

GPUs

CPU vs GPU

CPU

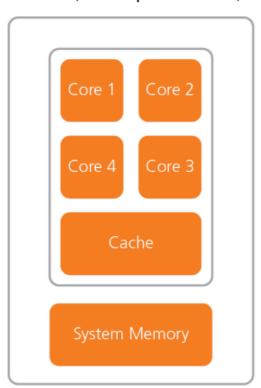
GPU

CPU vs GPU

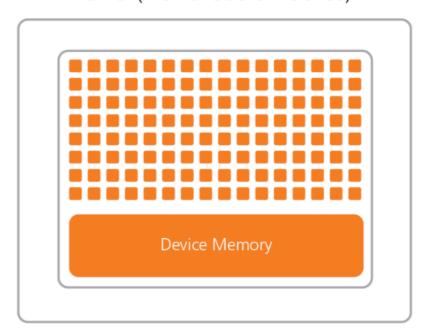
- CPU:
 - fewer cores; each core is faster and more powerful
 - useful for sequential tasks

- GPU:
 - o more cores; each core is slower and weaker
 - great for parallel tasks

CPU (Multiple Cores)

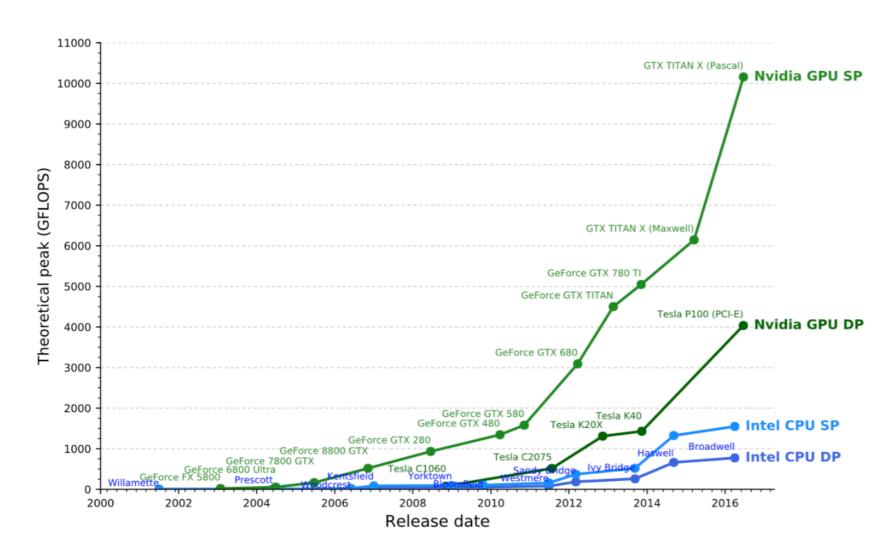


GPU (Hundreds of Cores)



CPU vs GPU

- SP = single precision, 32 bits / 4 bytes
- DP = double precision, 64 bits / 8 bytes



Market Summary > NVIDIA Corporation

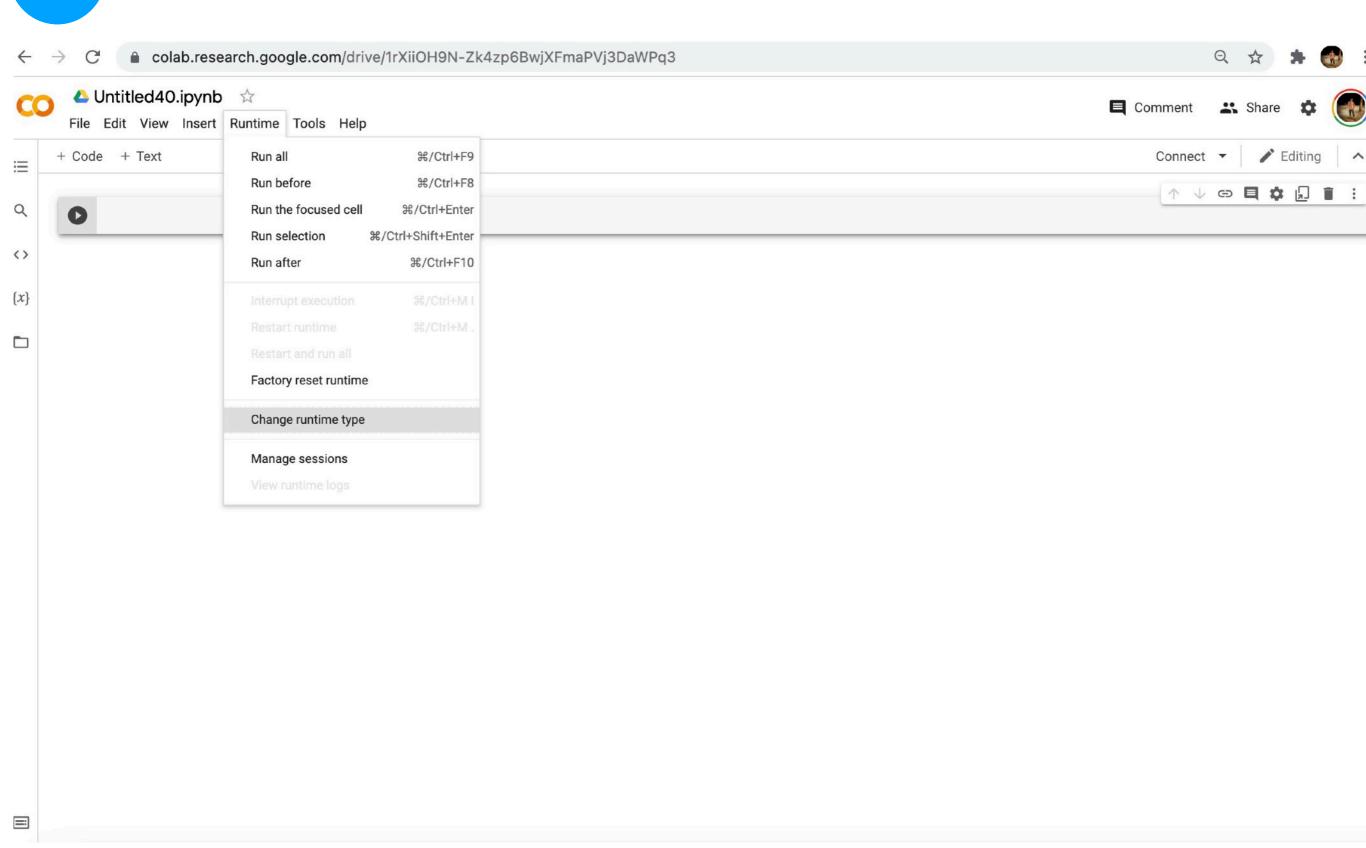
303.90 USD

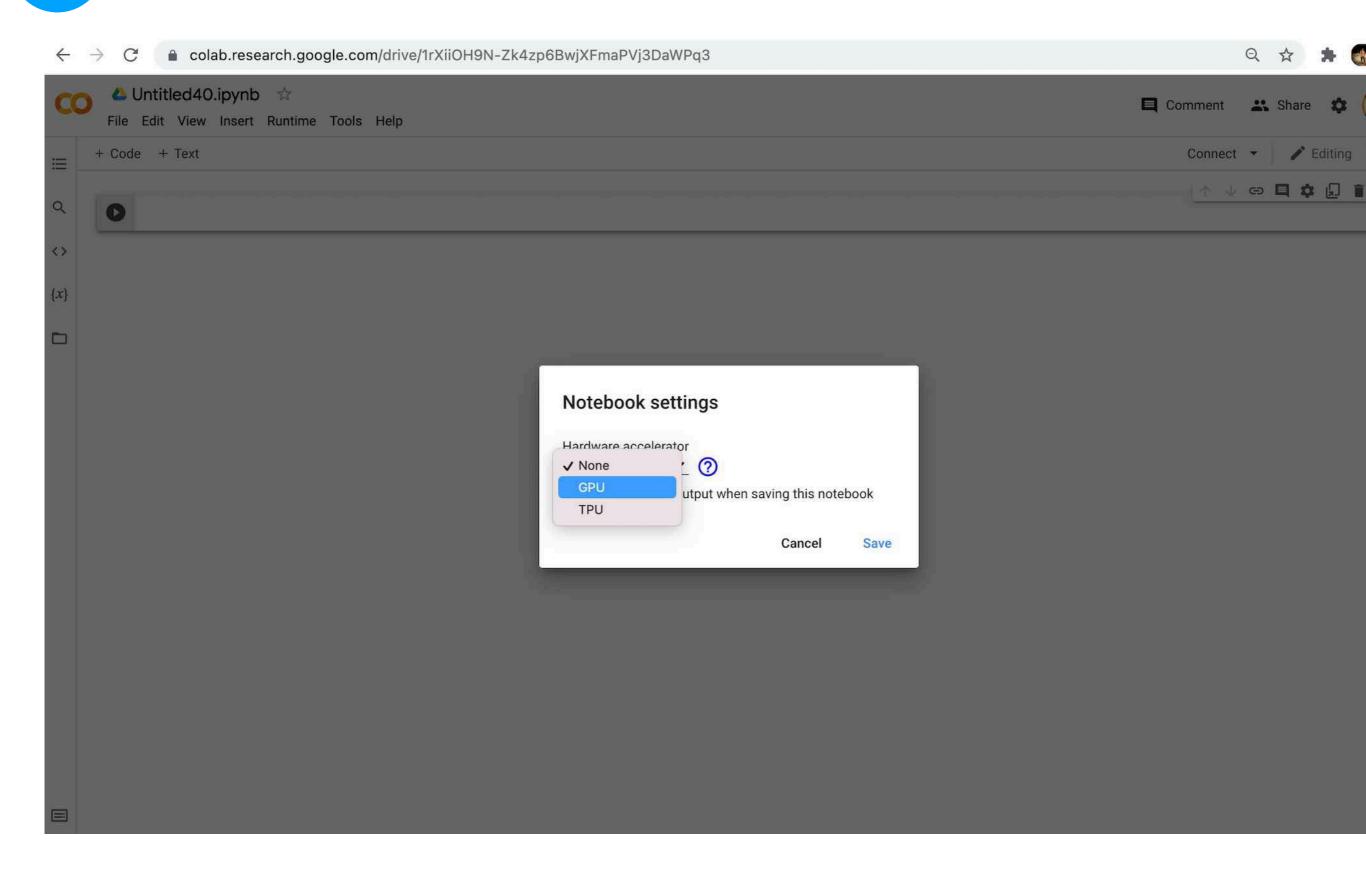
+280.56 (1,202.06%) **↑** past 5 years

Closed: 15 Nov, 05:34 GMT-5 • Disclaimer

Pre-market 303.76 -0.14 (0.046%)

NASDAQ: NVDA

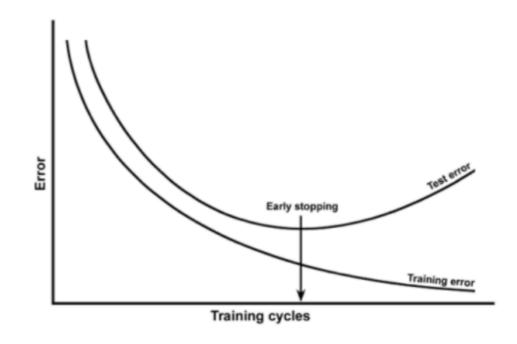




2: Regularization

Early stopping

- To avoid overfitting another popular technique is early stopping
- Monitor performance on validation set
- Training the network will decrease training error, as well validation error (although with a slower rate usually)
- Stop when validation error starts increasing
 - most likely the network starts to overfit
 - use a patience term to let it degrade for a while and then stop



Remember this?

The linear model revisited: regularisation

Replace

By

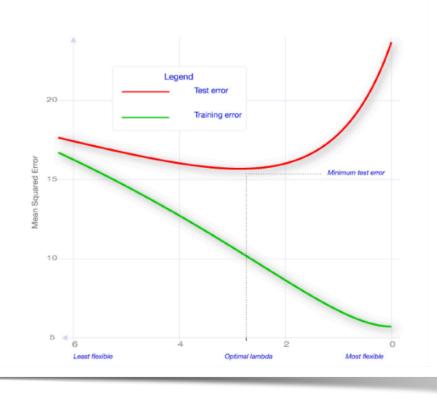
$$\hat{\theta} = \operatorname{argmin}(||\mathbf{Y} - \mathbf{A}\theta||_2^2)$$

$$\hat{\theta} = \operatorname{argmin}(||\mathbf{Y} - \mathbf{A}\theta||_2^2)$$
 $\hat{\theta} = \operatorname{argmin}(||\mathbf{Y} - \mathbf{A}\theta||_2^2) + g(\theta)$

L2-regularization aka Tikhonov regularization aka Ridge regression aka Weight decay

$$\hat{\theta} = \operatorname{argmin}(||\mathbf{Y} - \mathbf{A}\theta||_2^2) + \Gamma||\theta||_2^2$$

Find the best Γ using cross-validation



Weight Decay

= ℓ_2 regularisation = Ridge = Tikhonov

Regularization

L2 regularization:

$$\|\theta\|_{2} = (w_{1})^{2} + (w_{2})^{2} + \dots$$

New loss function to be minimized

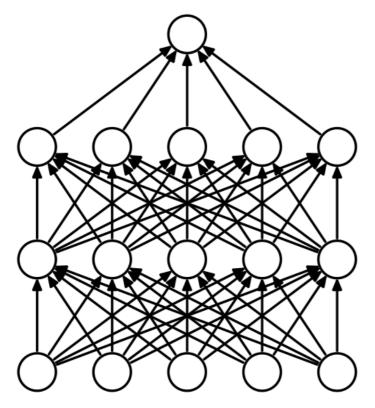
$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2 \quad \text{Gradient:} \quad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w$$

Update:
$$w^{t+1} \to w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda w^t \right)$$

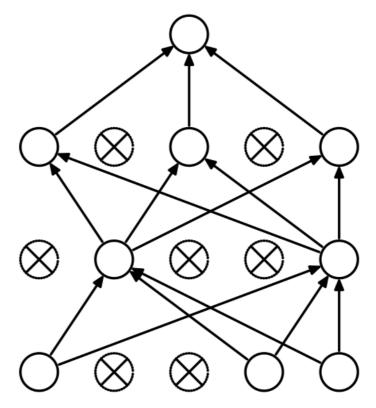
$$= (1 - \eta \lambda) w^t - \eta \frac{\partial L}{\partial w}$$
 Weight Decay

Closer to zero

Dropout



(a) Standard Neural Net



(b) After applying dropout.

Each time we load an example into a minibatch, we randomly sample a different binary mask to apply to all of the input and hidden units in the network. The mask for each unit is sampled independently from all of the others

Dropout

Journal of Machine Learning Research 15 (2014) 1929-1958

Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Nitish Srivastava Geoffrey Hinton Alex Krizhevsky Ilya Sutskever Ruslan Salakhutdinov Department of Computer Science University of Toronto 10 Kings College Road, Rm 3302 Toronto, Ontario, M5S 3G4, Canada. NITISH@CS.TORONTO.EDU HINTON@CS.TORONTO.EDU KRIZ@CS.TORONTO.EDU ILYA@CS.TORONTO.EDU RSALAKHU@CS.TORONTO.EDU

Editor: Yoshua Bengio

Abstract

Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning

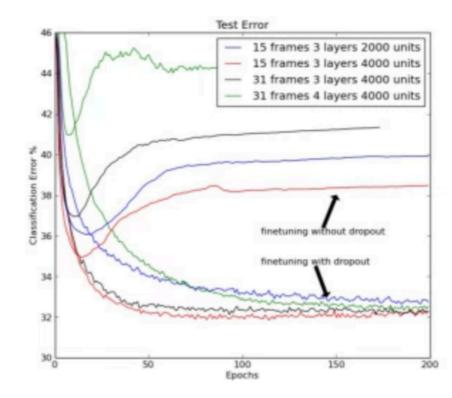
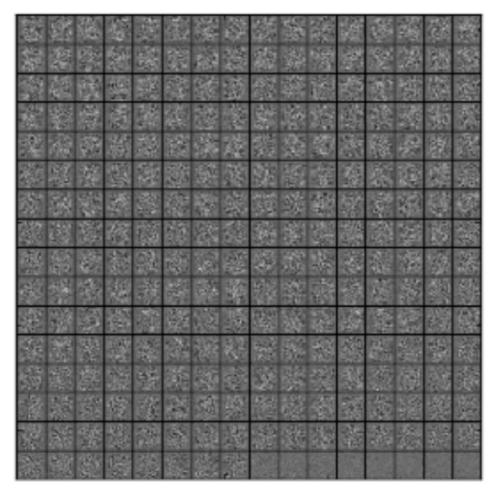
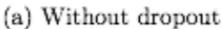


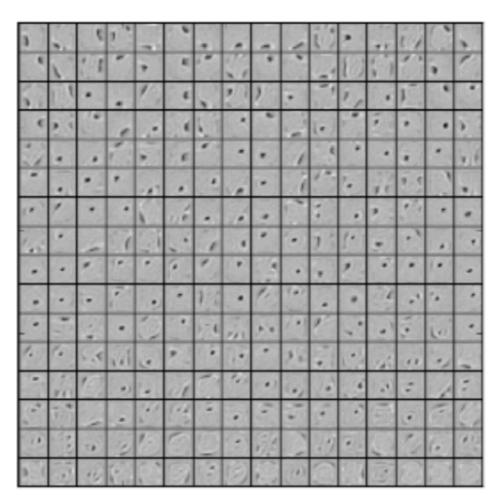
Fig. 2: The frame *classification* error rate on the core test set of the TIMIT benchmark. Comparison of standard and dropout finetuning for different network architectures. Dropout of 50% of the hidden units and 20% of the input units improves classification.

Dropout

Features learned on MNIST with one hidded layer autoencoders having 256 rectified linear units





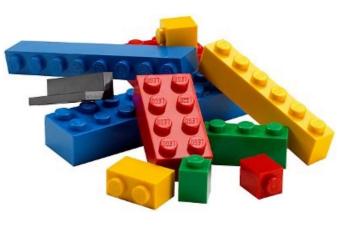


(b) Dropout with p = 0.5.

Easy to implement with pytorch: This is just another layer!

```
class Net(nn.Module):
  def __init__(self):
    super(Net,self).__init__()
self.conv1=nn.Conv2d(1,32,3,1)
    self.conv1_bn=nn.BatchNorm2d(32)
    self.conv2=nn.Conv2d(32,64,3,1)
    self.conv2_bn=nn.BatchNorm2d(64) ←
                                                              Batchnorm
    self.dropout1=nn.Dropout(0.25)
    self.fc1=nn.Linear(9216,128)
    self.fc1_bn=nn.BatchNorm1d(128)
    self.fc2=nn.Linear(128,10)
  def forward(self,x):
    x=self.conv1(x)
    x=F.relu(self.conv1_bn(x))
    x=self.conv2(x)
    x=F.relu(self.conv2_bn(x))
                                                                 Dropout
    x=F.max_pool2d(x,2)
    x=self.dropout1(x) \leftarrow
    x=torch.flatten(x,1)
    x=self.fc1(x)
    x=F.relu(self.fc1_bn(x))
    x=self.fc2(x)
    output=F.log_softmax(x,dim=1)
    return output
```


Playing Lego



```
class LeNet(Module):
       def init (self, numChannels, classes):
                # call the parent constructor
                super(LeNet, self). init ()
               # initialize first set of CONV => RELU => POOL layers
                self.conv1 = Conv2d(in channels=numChannels, out channels=20,
                       kernel size=(5, 5))
                self.relu1 = ReLU()
                self.maxpool1 = MaxPool2d(kernel size=(2, 2), stride=(2, 2))
               # initialize second set of CONV => RELU => POOL layers
                self.conv2 = Conv2d(in channels=20, out channels=50,
                        kernel size=(5, 5)
                self.relu2 = ReLU()
                self.maxpool2 = MaxPool2d(kernel size=(2, 2), stride=(2, 2))
               # initialize first (and only) set of FC => RELU layers
                self.fc1 = Linear(in features=800, out features=500)
                self.relu3 = ReLU()
                # initialize our softmax classifier
```

self.fc2 = Linear(in features=500, out features=classes)

self.logSoftmax = LogSoftmax(dim=1)

2007 NIPS Tutorial on:

Deep Belief Nets

Geoffrey Hinton
Canadian Institute for Advanced Research
&

Department of Computer Science University of Toronto

How many layers should we use and how wide should they be?

(I am indebted to Karl Rove for this slide)

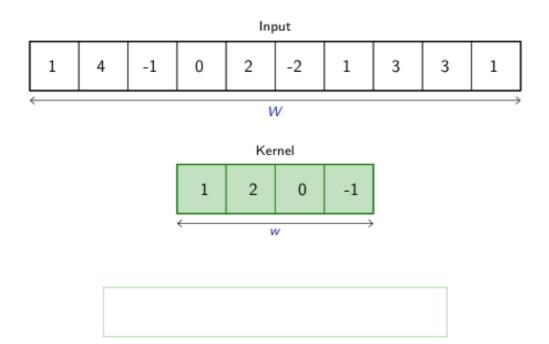
- How many lines of code should an AI program use and how long should each line be?
 - This is obviously a silly question.
- Deep belief nets give the creator a lot of freedom.
 - How best to make use of that freedom depends on the task.
 - With enough narrow layers we can model any distribution over binary vectors (Sutskever & Hinton, 2007)
- If freedom scares you, stick to convex optimization of shallow models that are obviously inadequate for doing Artificial Intelligence.

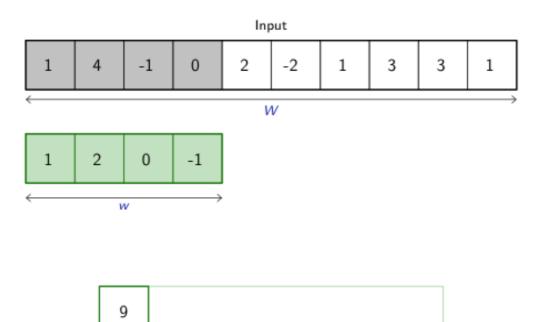
3: Special Layers

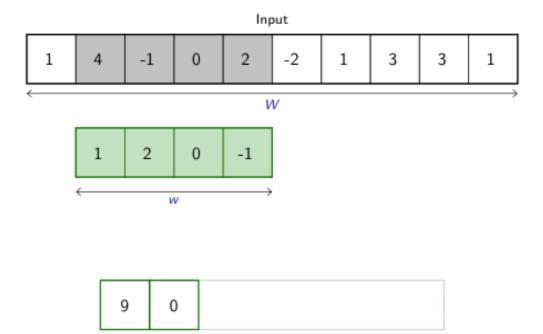
Convolutional and pooling layers

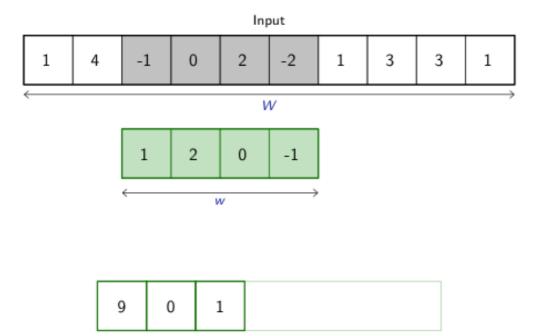
Fundamental for images & sounds!

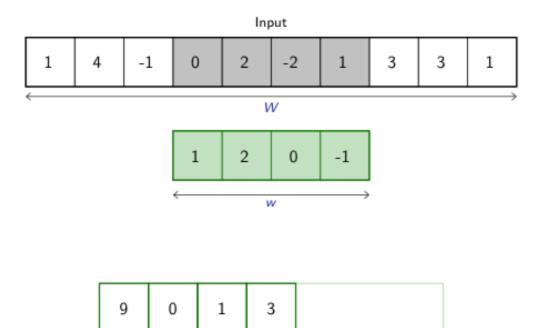
Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4) Convolutions and ReLU Convolutions and ReLU Max pooling Convolutions and ReLU Green Blue Red

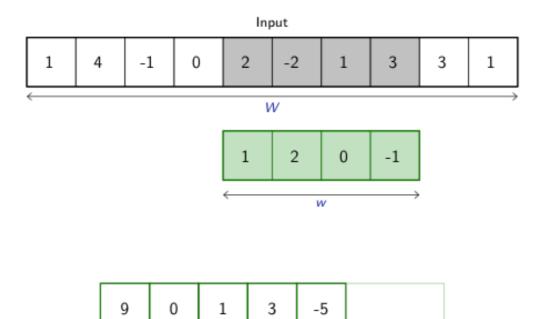


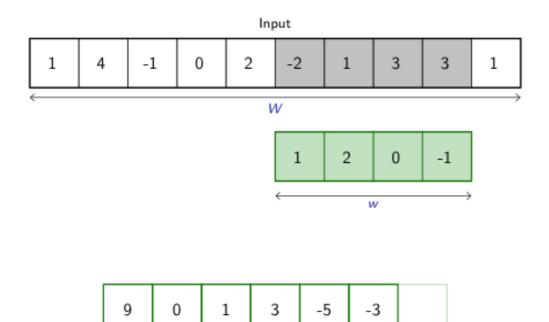




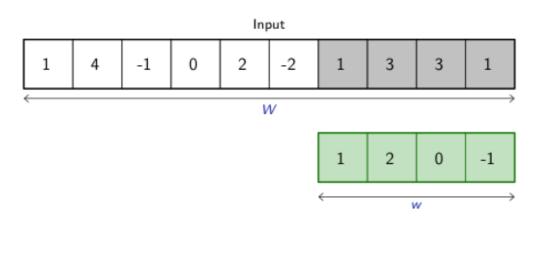








9



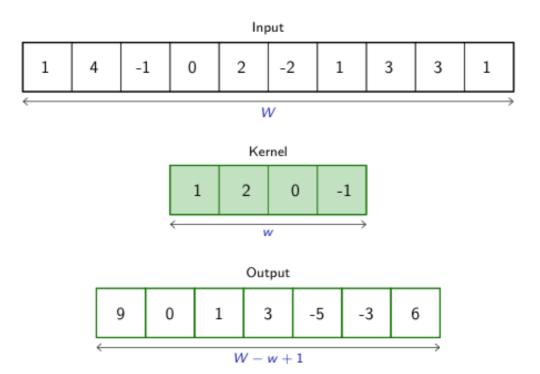
3

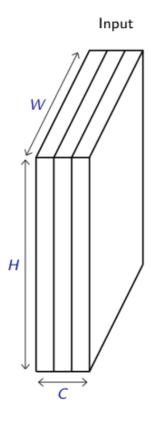
1

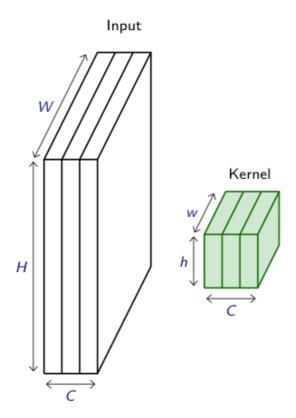
-5

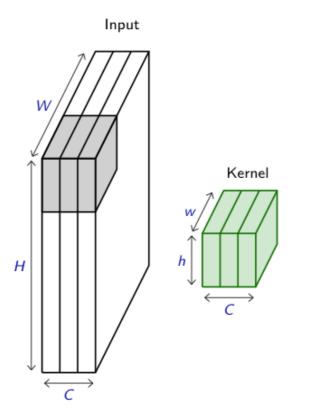
-3

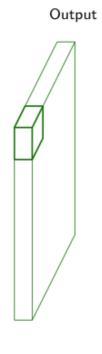
6

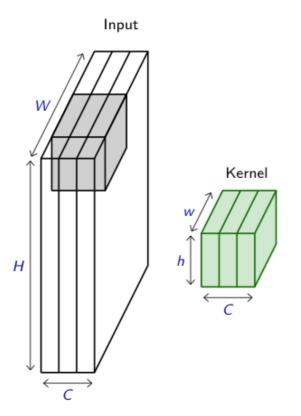


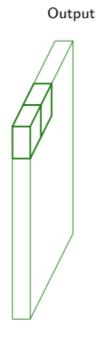


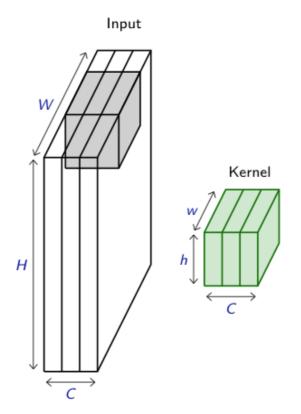


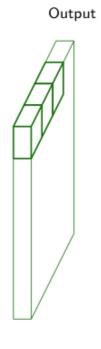


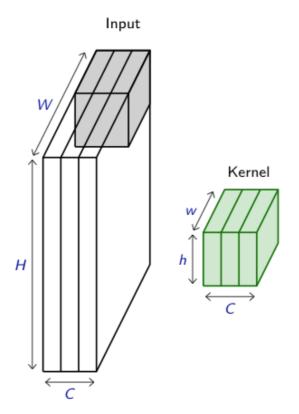


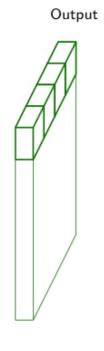


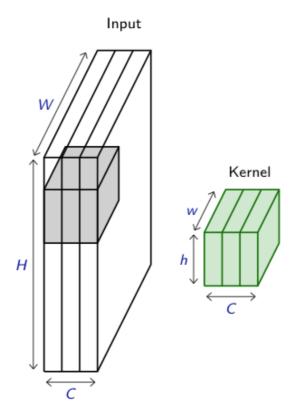


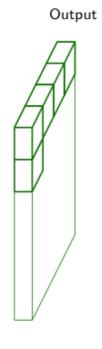


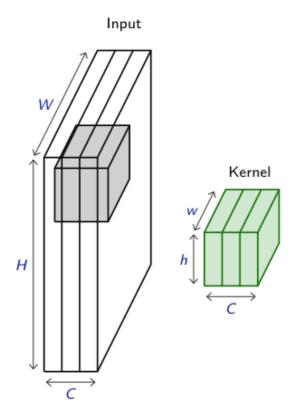


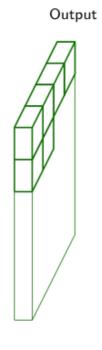


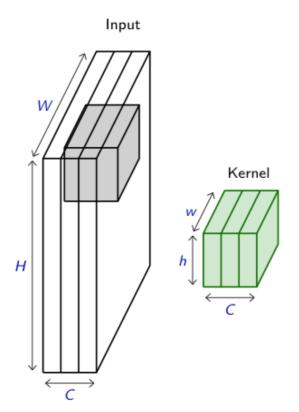


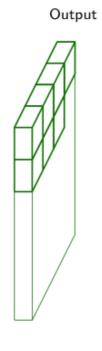


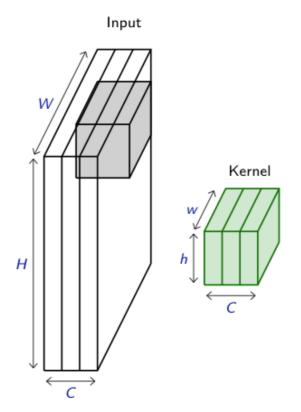


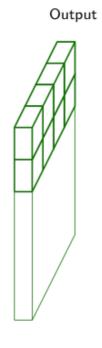


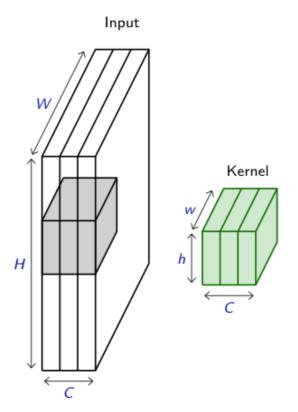


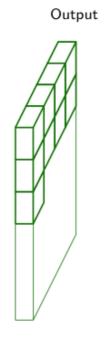


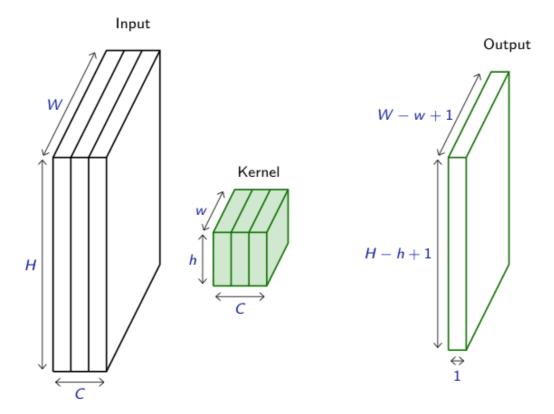


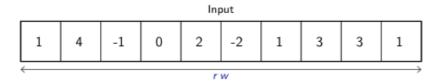


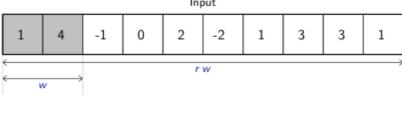


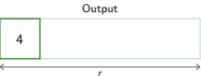


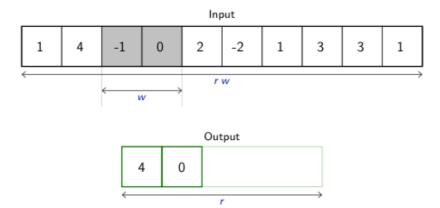


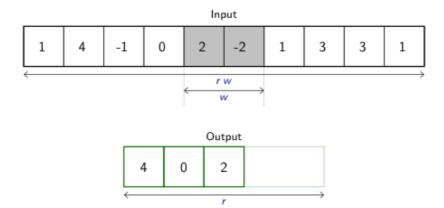


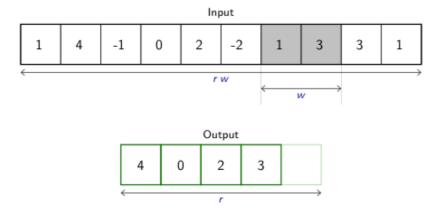


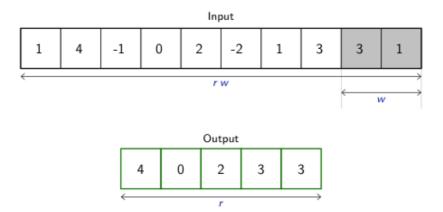


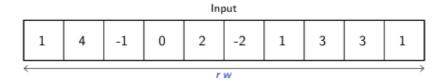


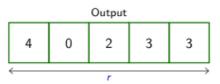


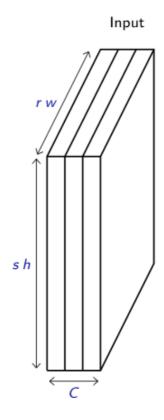


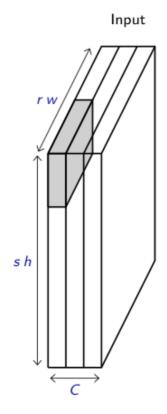


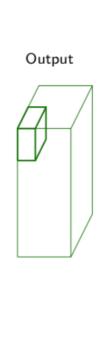


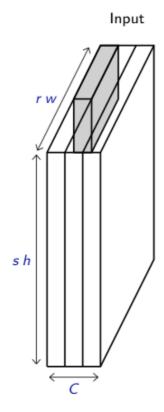


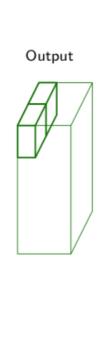


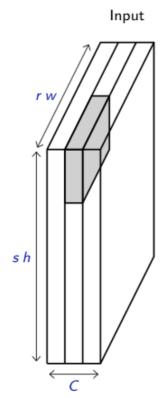


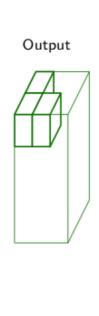


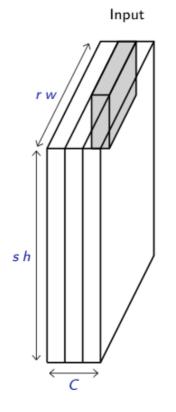


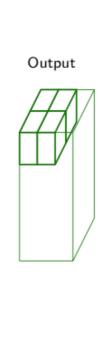


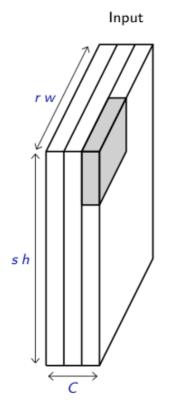


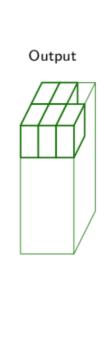


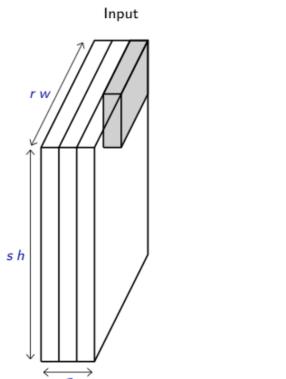




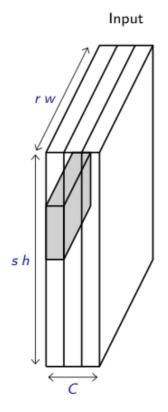


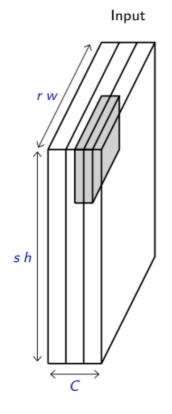


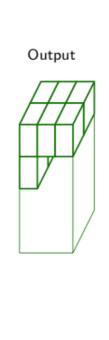


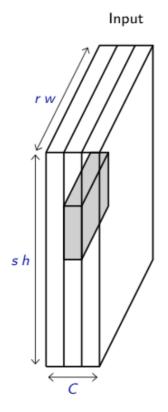


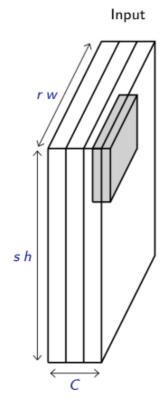


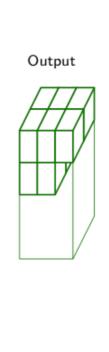


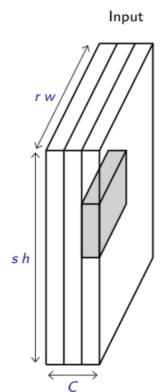


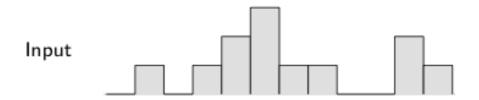


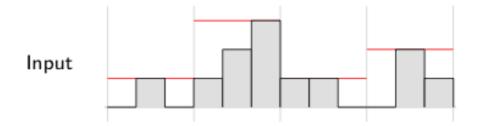


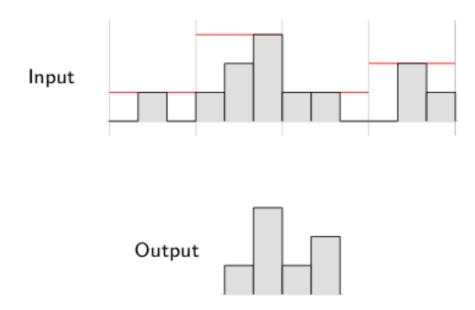


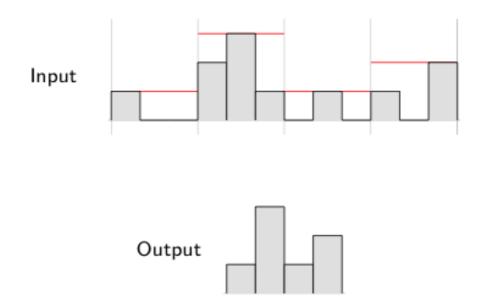




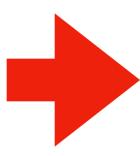








Flatten 2D->1D



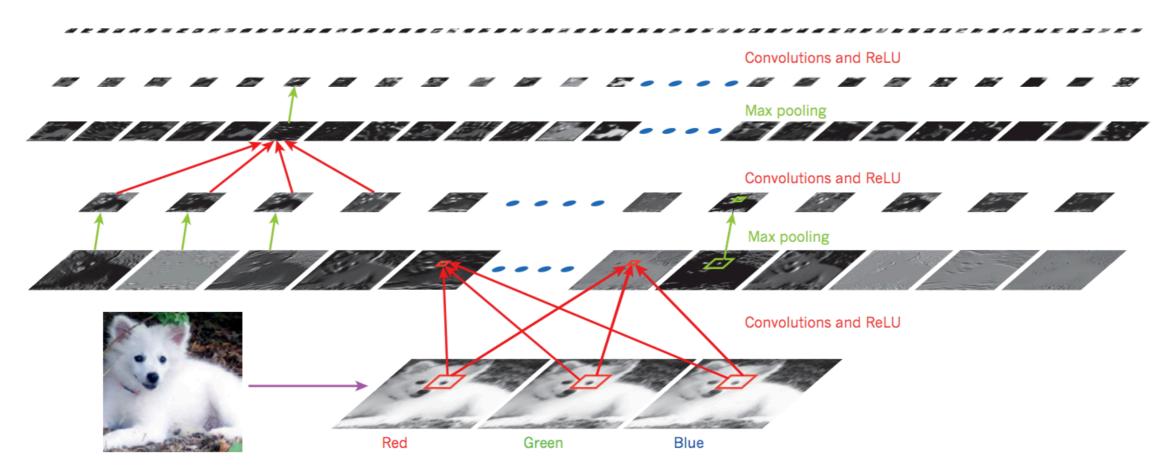
4: conv-nets

Deep learning

Yann LeCun^{1,2}, Yoshua Bengio³ & Geoffrey Hinton^{4,5}

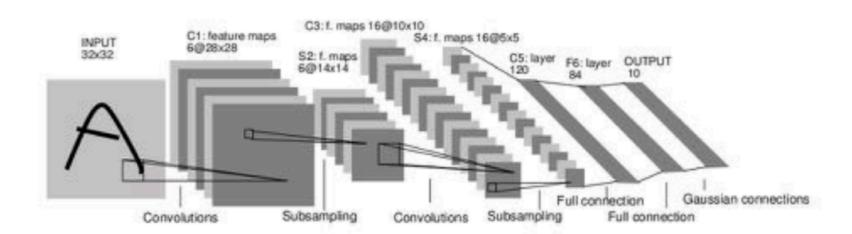
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)



ConvNet

- Neural network with specialized connectivity structure
- Stack multiple stage of feature extractors
- Higher stages compute more global, more invariant features
- Classification layer at the end



LeNet5

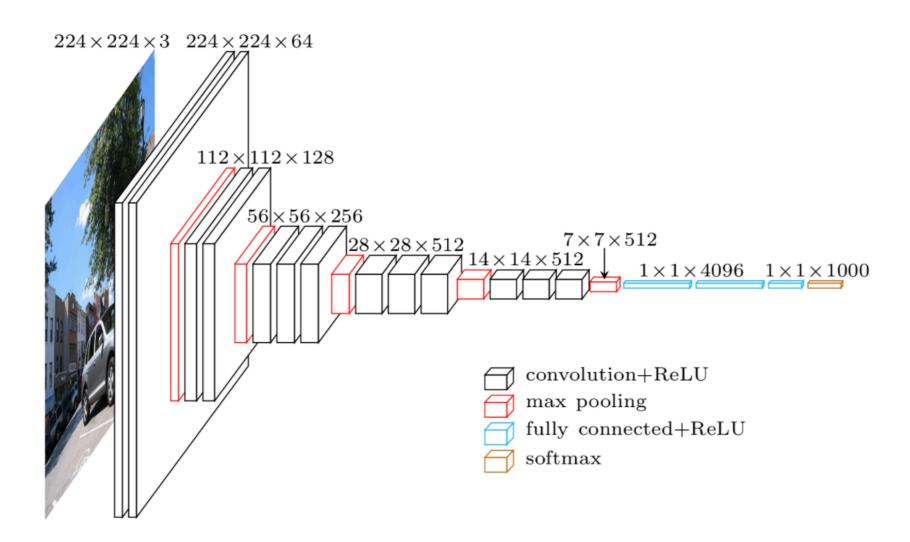
10 classes, input 1 x 28 x 28

```
(features): Sequential (
(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU (inplace)
(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)
(classifier): Sequential (
(0): Linear (400 -> 120)
(1): ReLU (inplace)
(2): Linear (120 -> 84)
(3): ReLU (inplace)
(4): Linear (84 -> 10) )
```

AlexNet

```
(features): Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(classifier): Sequential (
(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): ReLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)
```

VGG-16



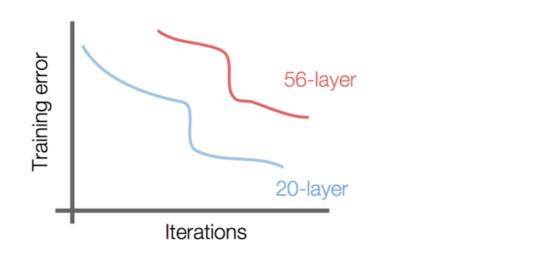
```
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(3, 224, 224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
# Add another conv layer with ReLU + GAP
model.add(Convolution2D(num_input_channels, 3, 3, activation='relu', border_mode="same"))
model.add(AveragePooling2D((14, 14)))
model.add(Flatten())
# Add the W layer
model.add(Dense(nb_classes, activation='softmax'))
```

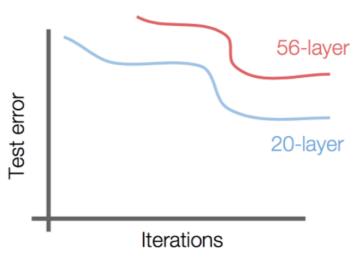
VGG-19

```
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU (inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU (inplace)
(4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(5): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU (inplace)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU (inplace)
(9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU (inplace)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU (inplace)
(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU (inplace)
(18): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU (inplace)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU (inplace)
(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(24): ReLU (inplace)
(25): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(26): ReLU (inplace)
(27): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU (inplace)
```

A saturation point

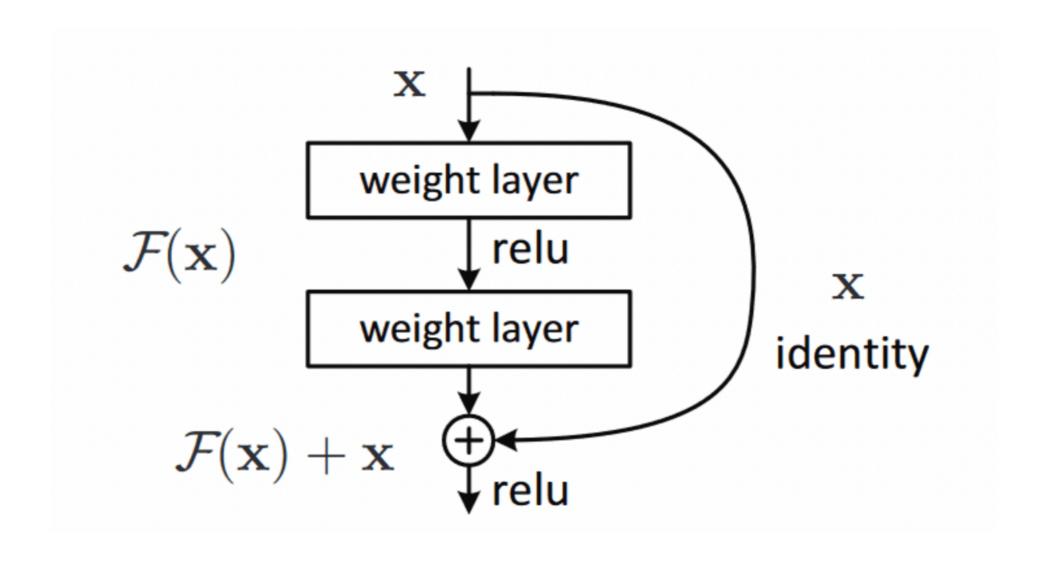
If we continue stacking more layers on a CNN:

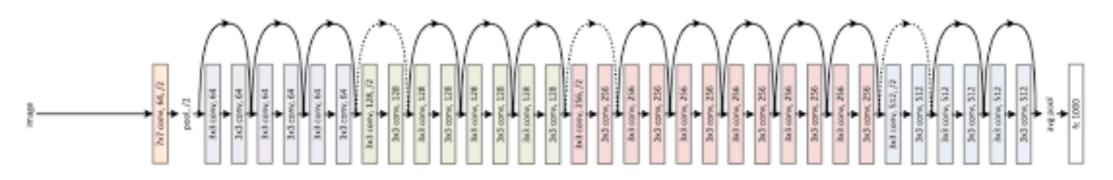




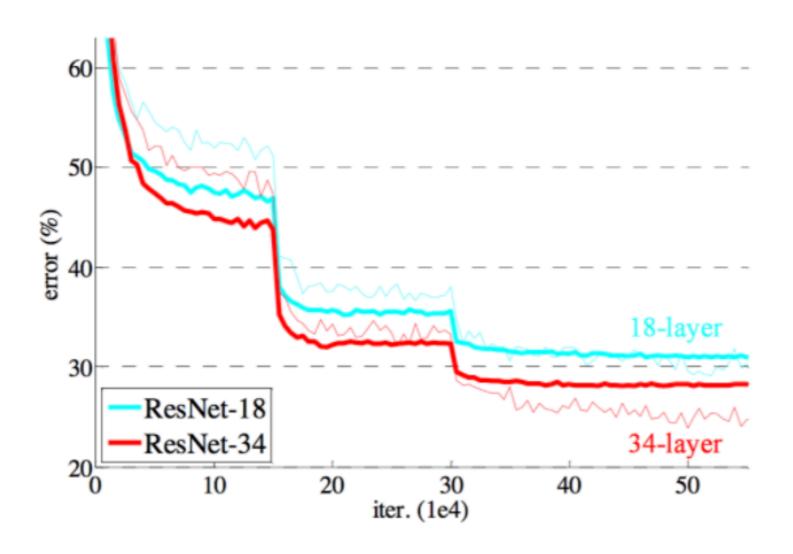
Deeper models are harder to optimize

Resnets: Skiped-connections

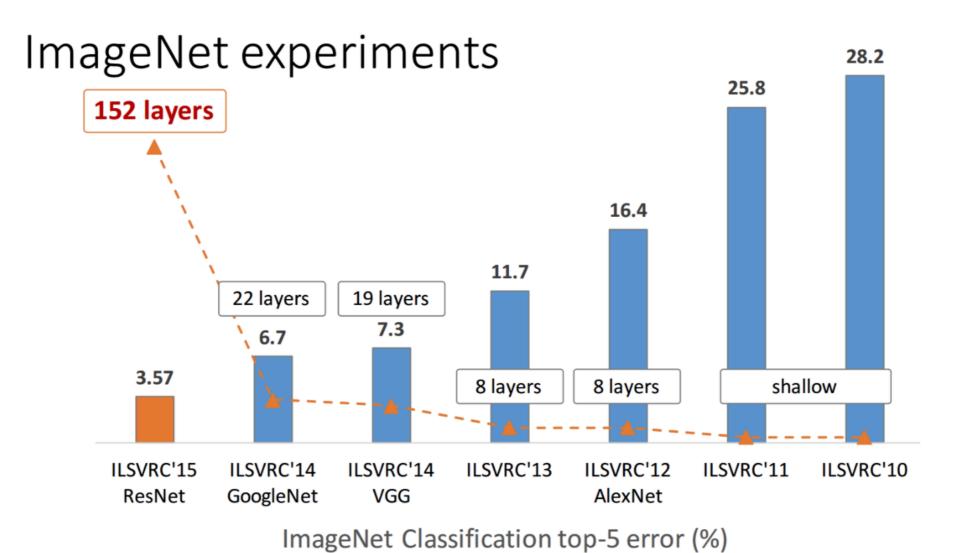




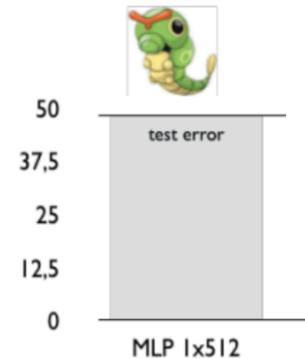
Resnets: Skiped-connections



Deeper is better

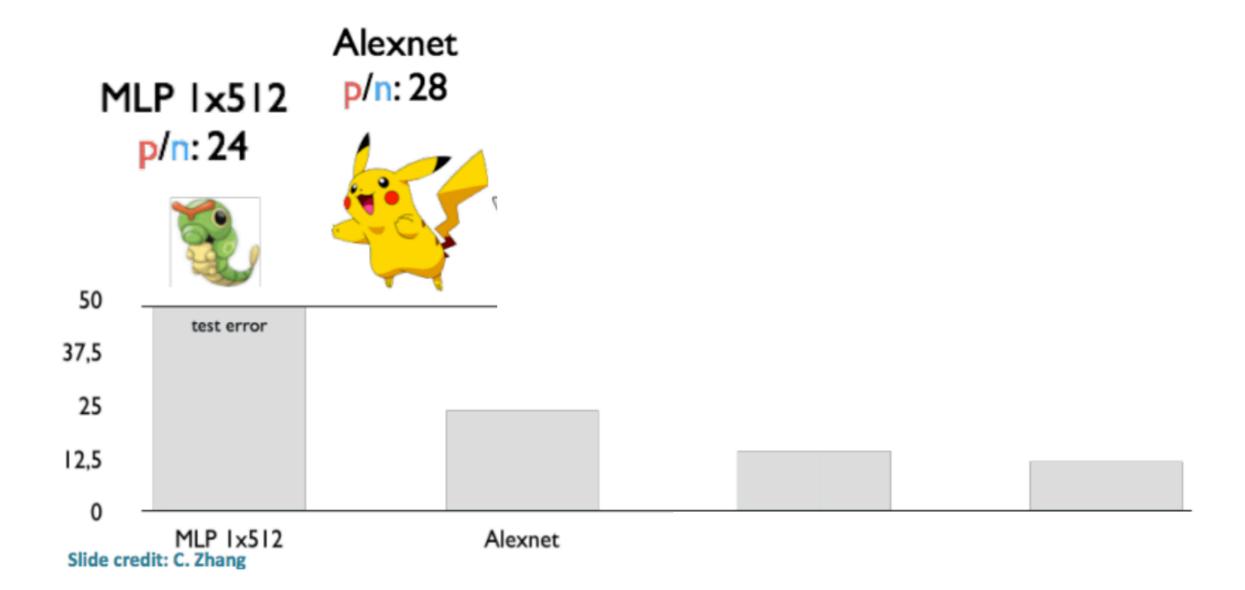


Parameter Count
Num Training Samples

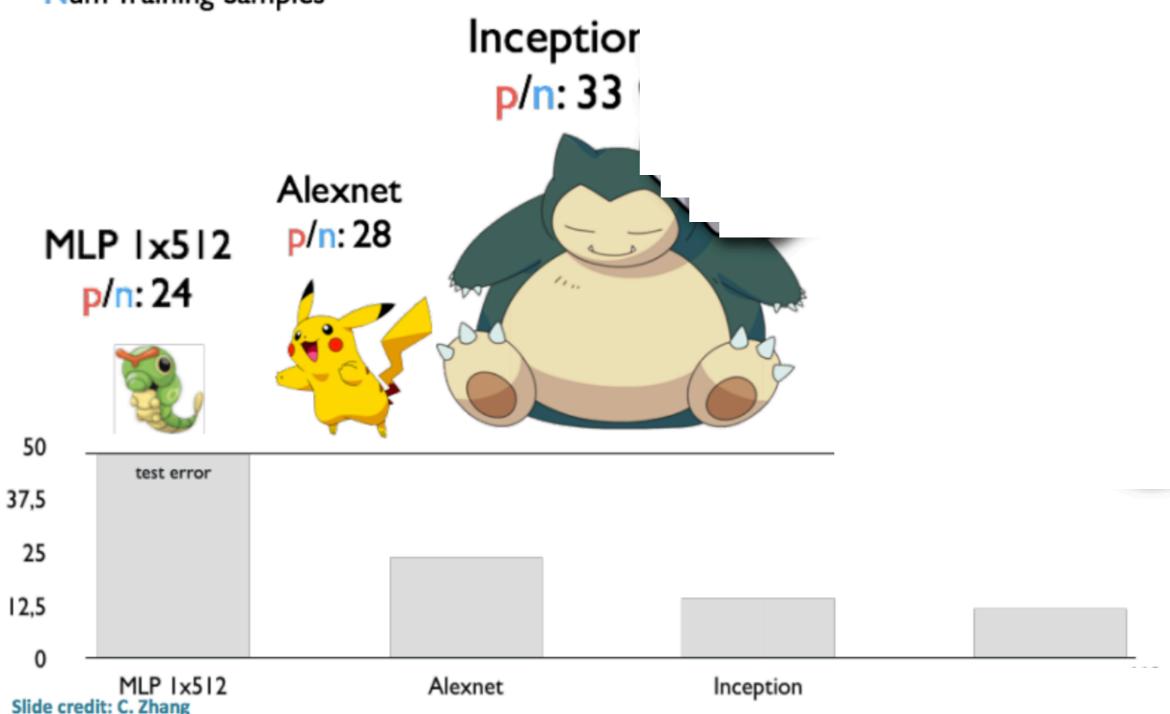


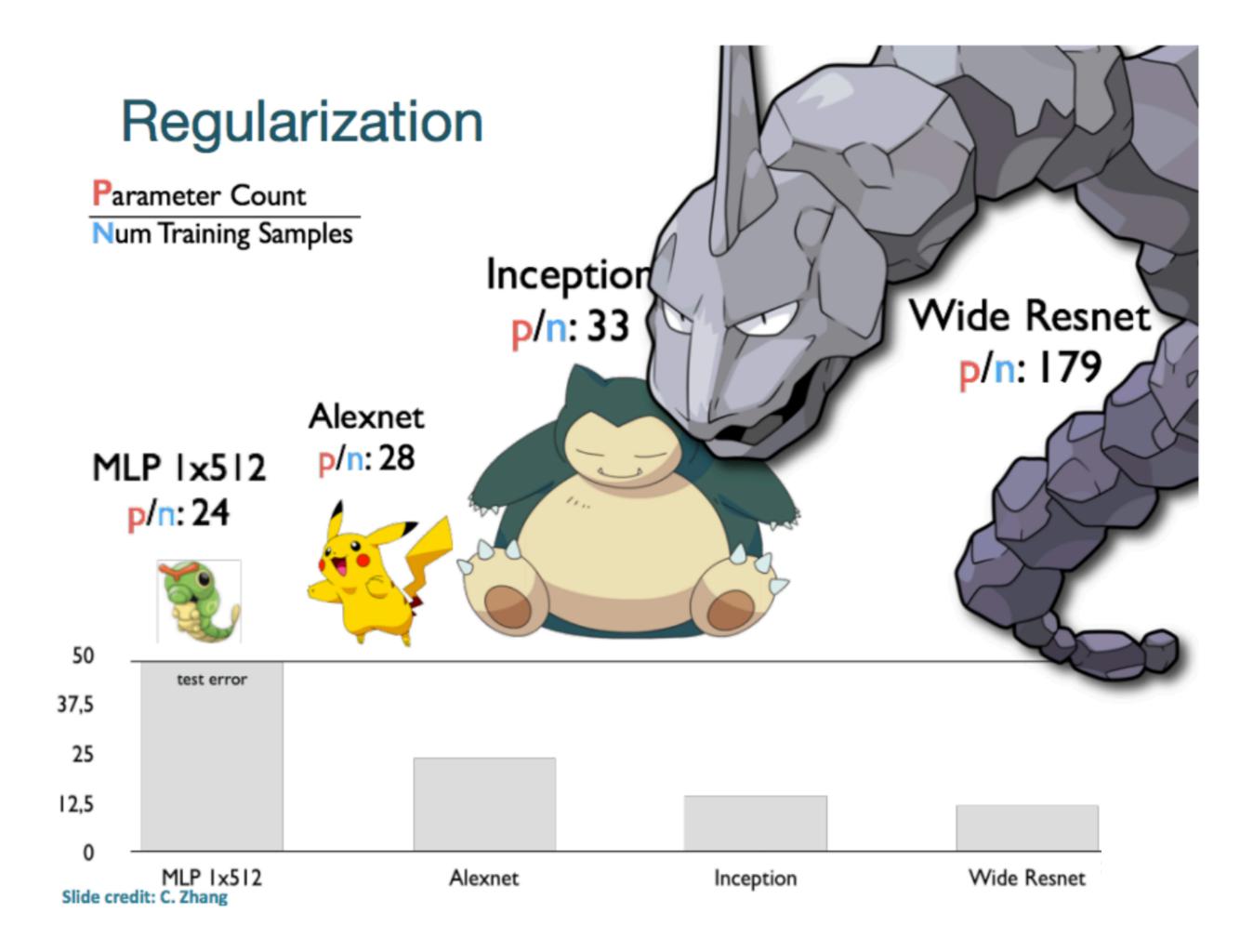
Slide credit: C. Zhang

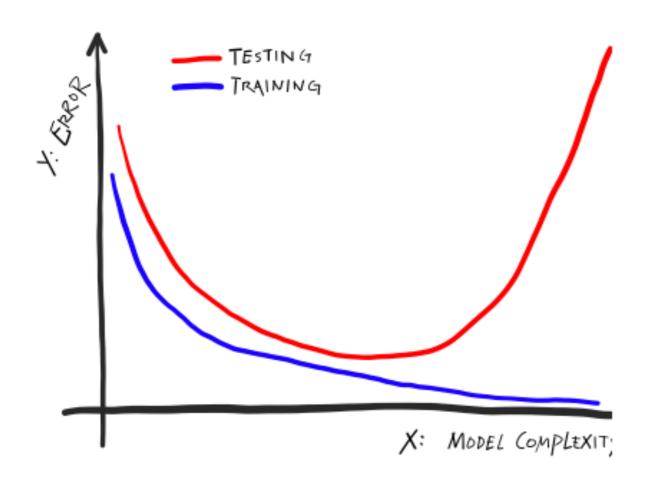
Parameter Count
Num Training Samples



Parameter Count
Num Training Samples







We learn from KNN that we should be careful and not use too many parameters....

... So how come deep learning works in the overparamterized regime?

Short answer: We do not fully understand!

Long answer: Gradient descent is magic

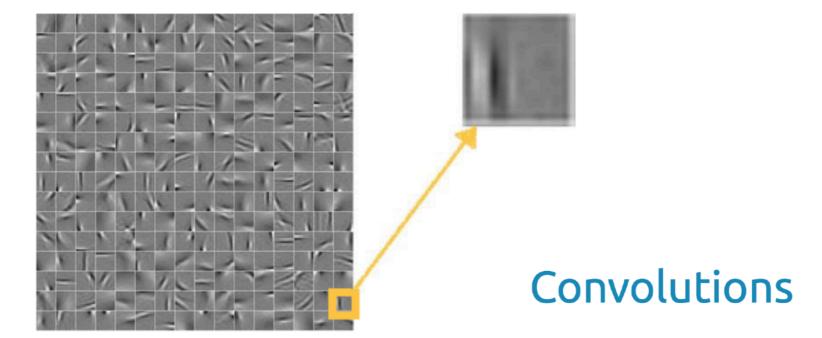
We know they are many set of weights that minimise the loss, and most of them are bad at generalisation, but gradient descent seems to be biased to go toward the "good" ones: This is called the "implicit regularisation" of gradient descent



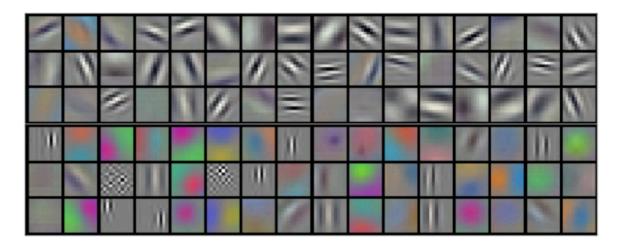
What is learned in conv-nets?

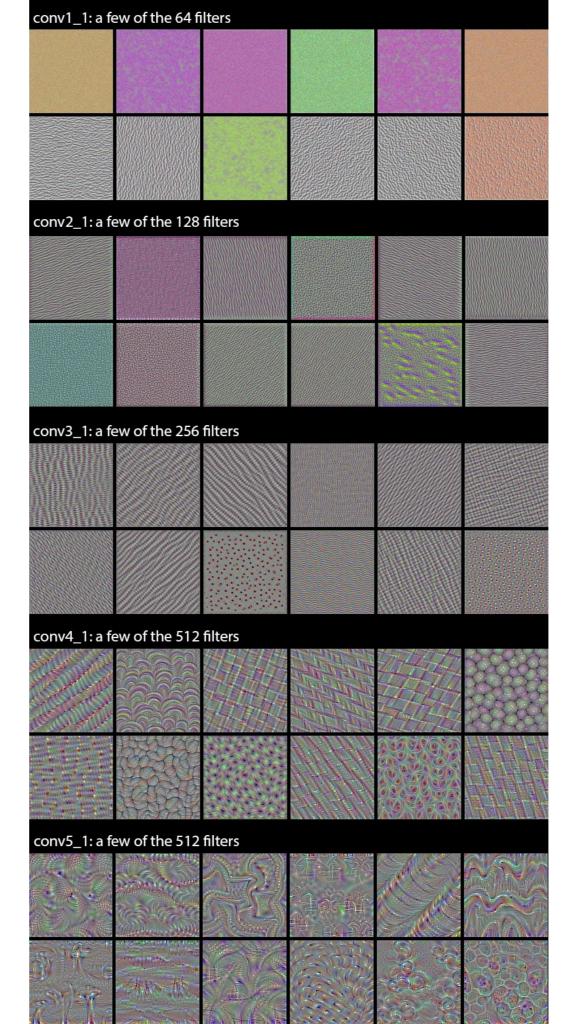
Convolutions

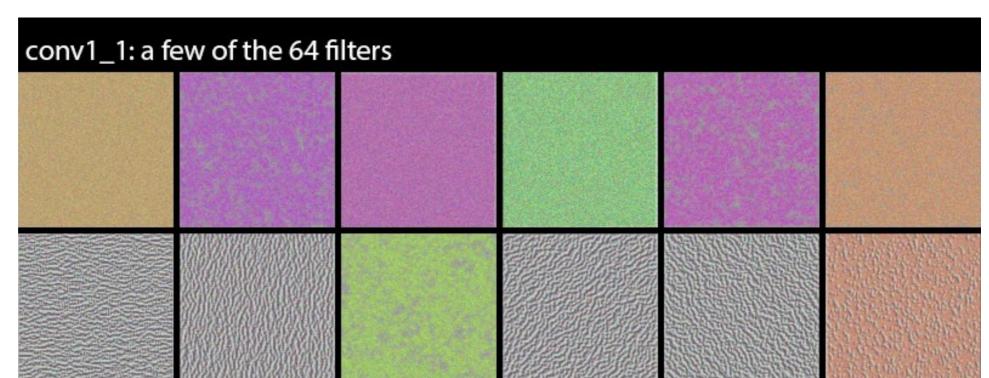
- A bank of 256 filters (learned from data)
- Each filter is 1d (it applies to a grayscale image)
- Each filter is 16 x 16 pixels

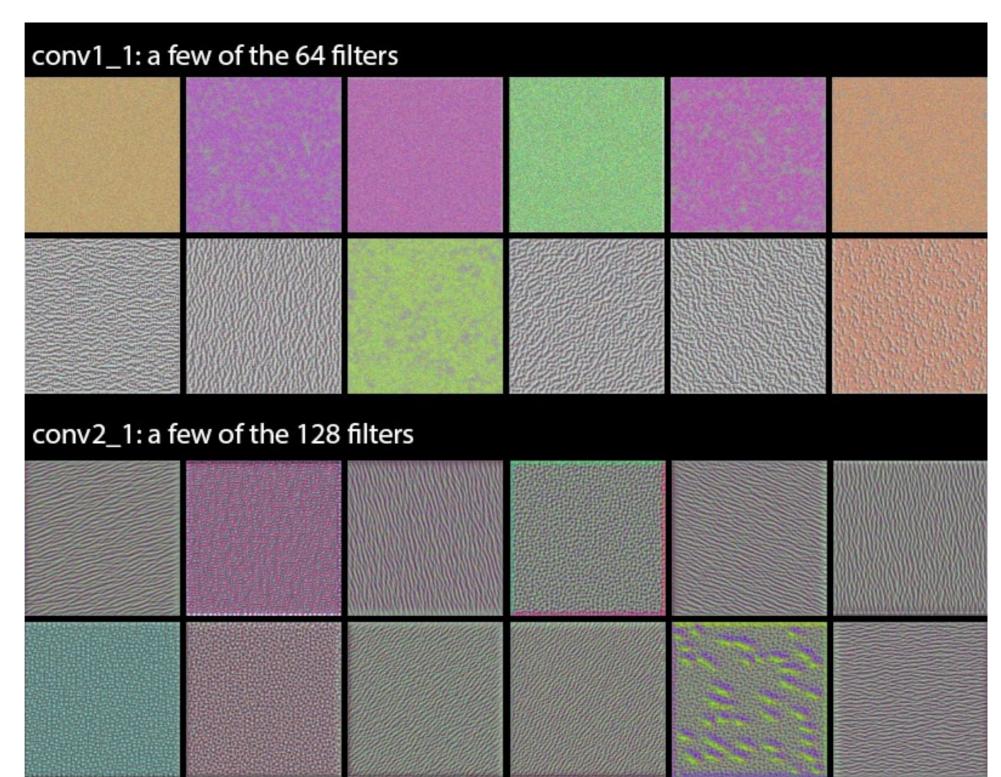


- A bank of 256 filters (learned from data)
- 3D filters for RGB inputs

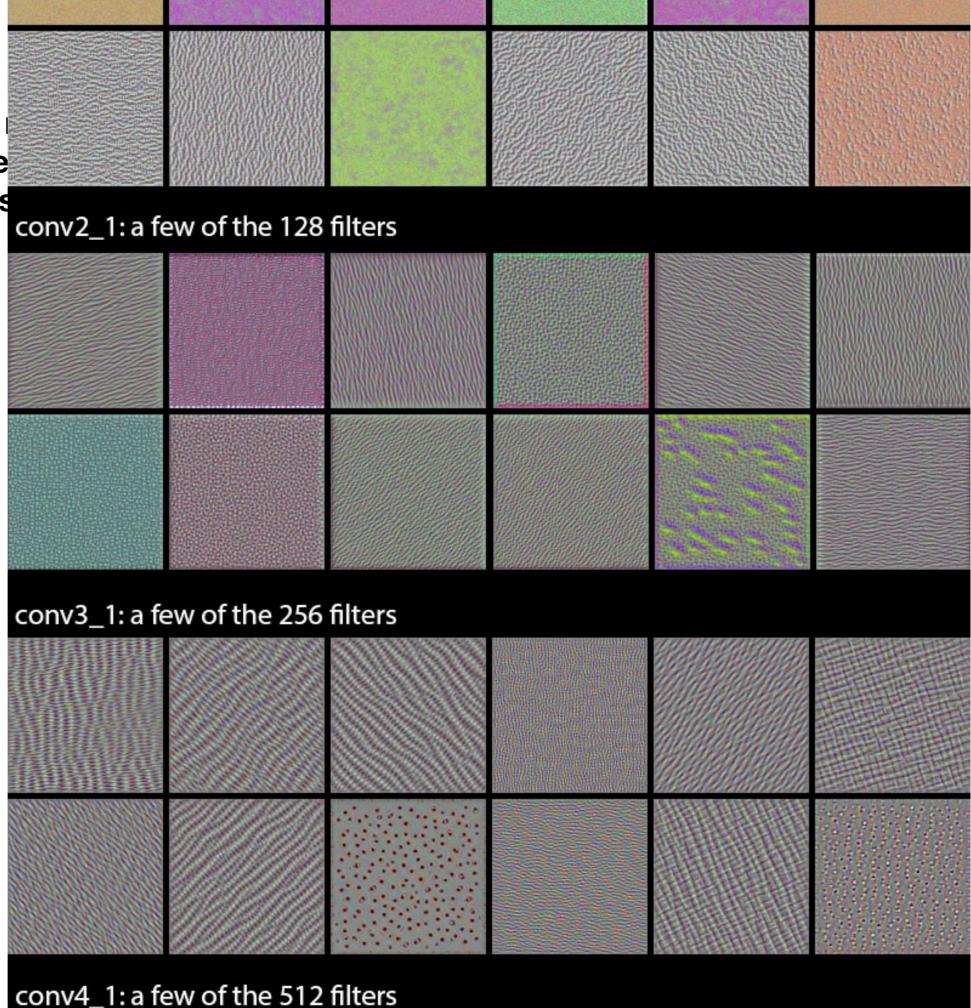




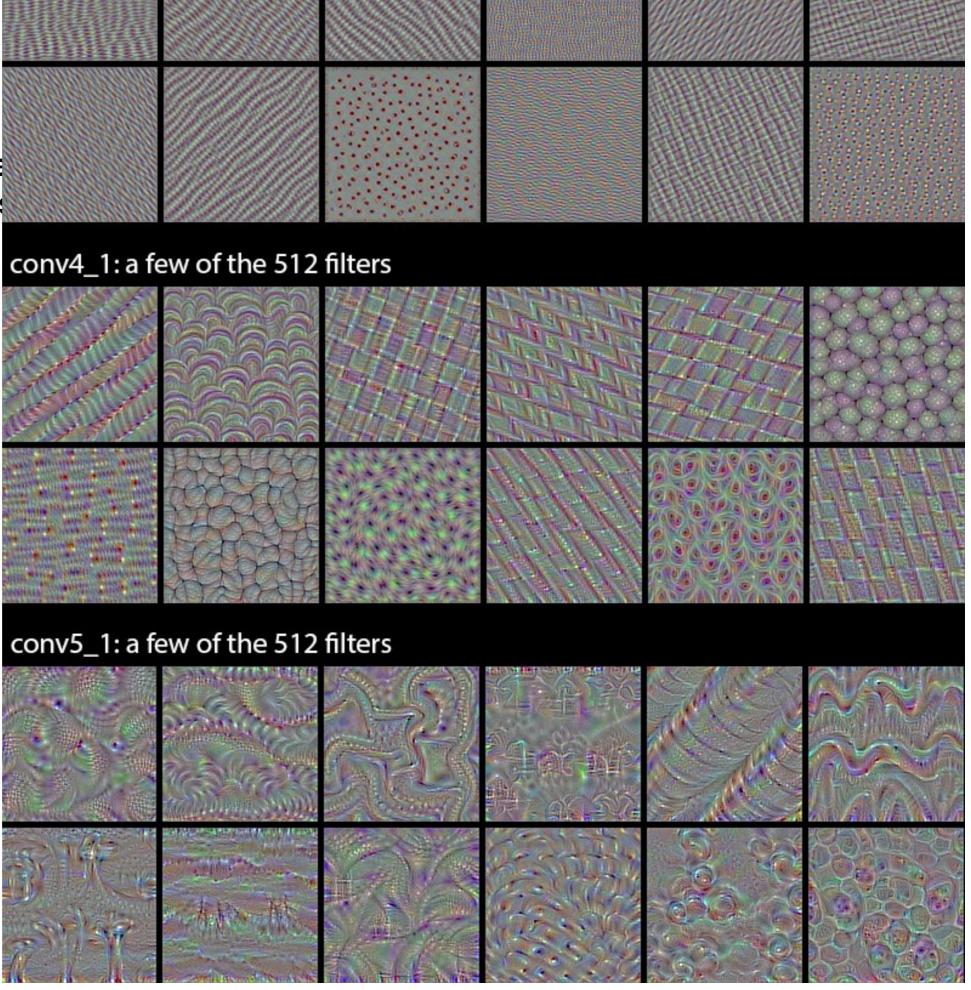




What sort of images the activity for a give in each layers



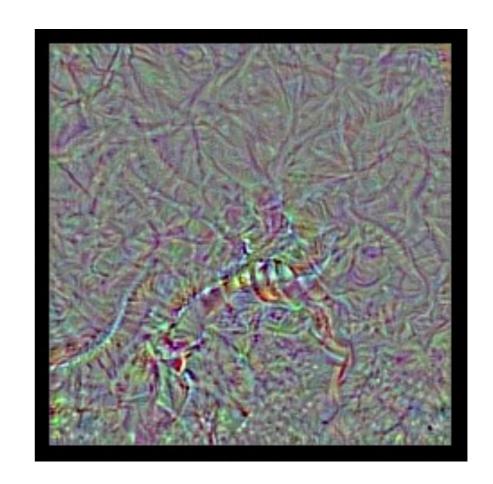
What sort of images the activity for a give conv3_1: a few of the 256 filters in each layers conv4_1: a few of the 512 filters conv5_1: a few of the 512 filters What sort of images the activity for a give in each layer:



What sort of images maximise the activity for the final neutron For a given category?

Let's try with a see-snake! (vgg-16 trainde on imagenet With hundred categories)

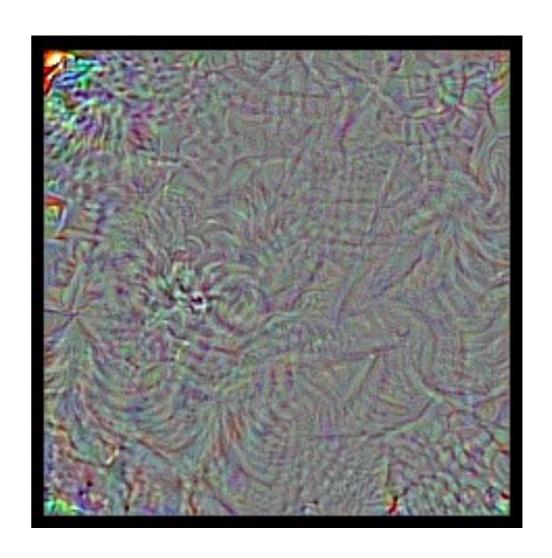
This is a see-snake « I am 99% positive! »



What sort of images maximise the activity for the final neutron For a given category?

Let's try with a magpie! (vgg-16 trainde on imagenet With hundred categories)

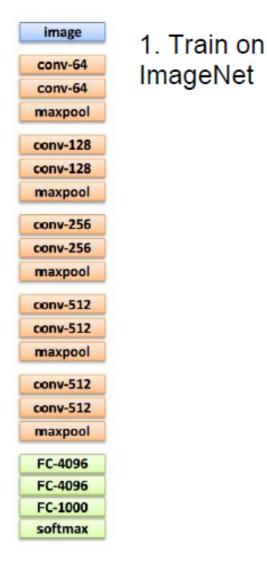
This is a magpie « I am 99% positive! »



Computer Vision is Easy: Transfer Learning

(state of art result in few minutes)

Transfer Learning with CNNs



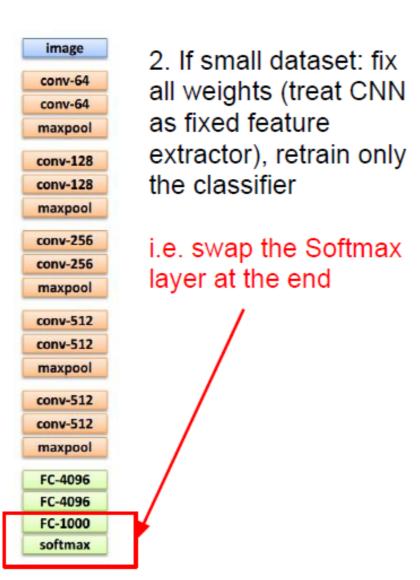


image 3. If you have medium sized dataset, "finetune" instead: conv-64 conv-64 use the old weights as maxpool initialization, train the full conv-128 network or only some of the conv-128 higher layers maxpool conv-256 conv-256 retrain bigger portion of the maxpool network, or even all of it. conv-512 conv-512 maxpool conv-512 conv-512 maxpool

FC-4096

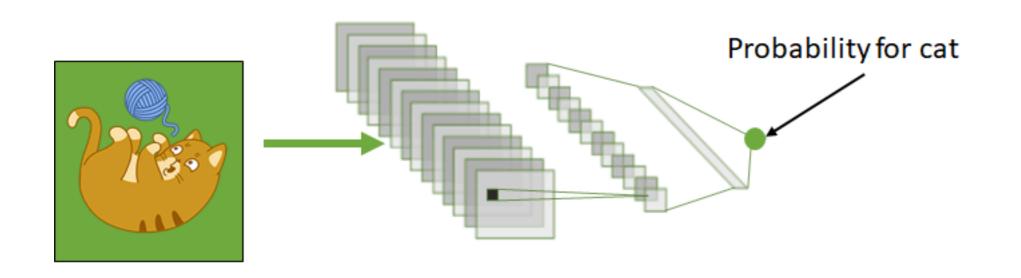
FC-4096

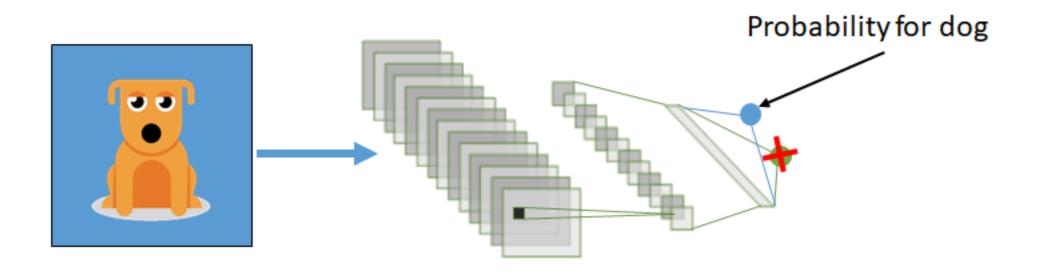
FC-1000

softmax

Computer Vision is Easy: Transfer Learning

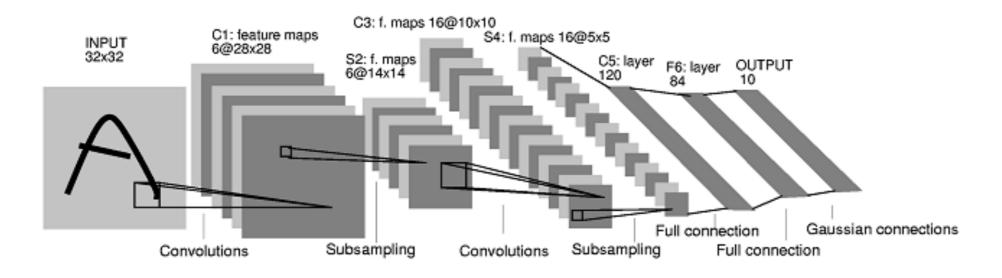
(state of art result in few minutes)





In summary

Convolutional neural nets are the state of there art for images (NB: Well, Vision Transformer are just as good actually)



They are made by adding Convolution and pooling.

Regularization (dropout, batch norm) also help.

This allows to solve almost any supervised vision problem:

all computer vision is now using convents