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Mark | Perceptron

« first implementation of the perceptron algorithm

« the machine was connected to a camera that used 20x20
cadmium sulfide photocells to produce a 400-pixel image

o it recognized letter of the alphabet
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Neural Network for classification

The neuron

Inspired by neuroscience and human brain, but resemblances do not
go too far

mpuises camed
'°“°'°/°e" Y "Neural networks copy the human brain." | cringe
dendntesﬁf: \}/ J every time | read something like this the press. It is
N L wrong in multiple ways.
""’M—LT’_[: ——JFirst, neural nets are loosely *inspired* by some
?ﬂ/ <'\ meusdlaspects of the brain, just as airplanes are loosely
coll body away fofinspired by birds.

Second the Inspiration doesn't come from the human
brain. It comes from *any* animal brain: monkey, cat,
rat, mouse, bird, fish, fruit fly, aplysia sea slug, all the
way down to caenorhabditis elegans, the 1mm-long
roundworm whose brain has exactly 302 neurons.

Yann LeCun, Facebook A



"Perceptrons have been widely publicized as
‘pattern recognition' or 'learning machines' and
as such have been discussed 1n a large number of
books, journal articles, and Perceptrons
voluminous 'reports'. Most of this writing ...
is without scientific value .."

The perceptron ... has many features that attract attention: 1its
linearity, its intriguing learning theorem.

There 1s no reason to suppose that any of these virtues carry over
to the many-layered version. Nevertheless, we consider it an
important research problem to elucidate (or reject) our intuitive
judgment that the extension 1s sterile.

Marvin Minsky Seymour Papert, (1969).



2-layered networks

Input Hidden Output
layer layer laver

O

O
Wi @ W2 @ Oup
BN

O

Input #1
Input #2
Input #3

Input #4

n D
Yy = 09 (Z Wioy (Z Wiz + b’l) + b2)
i=1 j=1



Universal Approximation Theorem: Fix a continuous function o : & —+ R (activation function) and positive integers d, . The function o is not a polynomial if and only if, for every continuous function
f: RY » RY (target function), every compact subset K of RY, and every € > 0 there exists a continuous function J.: RY 5 RY (the layer output) with representation

i =Wooc0W,,
where Ws, W, are composable affine maps and © denotes component-wise composition, such that the approximation bound

=p | f(x) ~ felz)| <€

holds for any ¢ arbitrarily small (distance from f 10 f, can be infintely small).

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions

relu(x) = x if x>0 & 0 otherwise
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Why deep learning?

WE NEED TO GO DEEPER



Deep vs Shallow

One hidden layer Many hidden layer

“Input” layer
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Why deep?

(i) With the same number of nodes, one can represent more
complex function with deep networks

ab .}
L ’ . .
(ii) Many data are actually hierarchical...

t‘“”ﬁ?%

3 rﬂl ...just think of the classification of animal species!

.?“-*
'Y'H \‘”how

p’" D\-m
'."'&T '.”“'hmn

(iii) inspiration from the visual cortex (convnet, see next lecture)

2

(iv) seems to do some weird uncanny magic that somehow prevents overfiting



Feed-forward Neural networks

put layer
— 23 = g3(WsZ2)

4x1 matrix

input layer
T hidden layer 1 hidden layer 2

T1 = g1(Wixy) T = go(WaTy)

4x3 matrix 4x4 matrix

p = f(Zo) = g3(W3 g2(Wa g1 (W1Zp)))

W matrices are called the « weights »
The functions gn () are called « activation functions »




Modern neural nets

Lenet
Alexnet
Ca:t. i
INPUT C1: fomure maps e TS 1 maps 6@
L 6@28x28 82- 1. maps CS:layer pg. yyee  OUTPUT
- 120 84 10
U
T | o - . —
- N e ] J
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Convolutions Subsampiing Comvolutions  Subsamping Full connection

VGG-16




Modern neural nets



How do we minimise the empirical
risk for the neural network?



Optimization




Optimization

Follow the slope!



Minimising the cost function by gradient descent

9t+1 — O — ﬂV@(@t)

If y small enough, should converge to a (possible local) minima

1(0,.0,)

1



https://en.wikipedia.org/wiki/Gradient_descent

Gradient descent
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Feed-forward Neural networks
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How to compute the gradient efficiently?

—

hl FLn hL

A — P
' N )

0 fl — (g1 (WlfO) fn — gn(ann—l) e P= gL(WLfL—l)




Demonstration by the chain rule of derivatives
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How to compute the gradient efficiently?

—

hl FLn hL
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Minimising the cost function by gradients descent

QH_I — 91‘ o }/]V‘% <9t’ {X}i=1,...n’ {y}izl,.,,n>

If eta small enough, converge to a (possible local) minima

Standard (or "batch") gradient descent

Compute the gradient by averaging the derivative of the loss is the entire training set

1 n
VK (6”’ {X}i=1,...n’ {Y}iz n) — ;l:Zl VZ(x;y;,0)

Batch gradient is the average gradient over all data in the training set


https://en.wikipedia.org/wiki/Gradient_descent

Gradient descent

Batch gradient d t I =
atch gradient descen Ot =0 — V% <9t» Xbiog {y}izl,...n>

for 1 1n range(nb_epochs):
params_grad = evaluate_gradient(loss_function, data, params)
params = params - learning_rate * params_grad

1_ n
VZ (0, {X}i=1,...n’ {y}i: )= ;lzzl VZ(X;, ;0

Batch gradient is the average gradient over all data in the training set



Gradient descent

Mini-batch gradient descent
1/ny) _
for i in range(nb_epochs): HH_( ) = 0" — nv‘% <9t {X}l =ny,...ny’ {y}i=n1,...n2)

np . random.shuffle(data)

for batch in get_batches(data, batch_size=50):
params_grad = evaluate_gradient(loss_function, batch, params)
params = params - learning_rate * params_grad

B _ vany
mini-batchs

{X}, 1,..b {X}z =2b+1,.

X} impit 2p

Mini-Batch gradient is the average gradient over all data in one mini-batch



Gradient descent

Stochastic gradient descent gi+(1n) _

—0' - VR (Qt, X}, {y}i>

for 1 1n range(nb_epochs):
np . random.shuffle(data)
for example 1in data:
params_grad = evaluate_gradient(loss_function, example, params)
params = params - learning_rate * params_grad

.., N Full-batoh
Xl-l-l-l- FRIERIENIEN O
1X3 L.

X2X,

v (0 (x),{},) = VL, 7, 0)

SGD gradient is the gradient for one element in the training set



Why Mini-batch gradient descent?

t+(1/my) — gt _ t
9 b) — 8 TIV% 9 ’ {X}iznl,...nz’ {y}iznl,...n

2

) The Tradeoffs of Large Scale Learning
e [he model update frequency is hi

faster and memory efficient (0

Léon Bottou Olivier Bousquet
NEC laboratories of America Google Ziirich
Princeton, NJ 08540, USA 8002 Zurich, Switzerland
. ' . leon@bottou.or olivier.bousquet@mdx.or
e Maybe? Effective noise in the dyi ’ ’ ’
Could works better than full batct Abstract

This contribution develops a theoretical framework that takes into account the
effect of approximate optimization on learning algorithms. The analysis shows

o In pra ctice' Th|S |S the Only Way distinct tradeoffs for the case of small-scale and large-scale learning problems.
: Small-scale learming problems are subject to the usual approximation-estimation
tradeoff. Large-scale learning problems are subject to a qualitatively different

networks

tradeoff involving the computational complexity of the underlying optimization
algorithms in non-trivial ways.

R



Mini-batch gradient descent

« Example of optimization progress while training a neural
network
« Showing loss over mini-batches as it goes down over time




Batch vs mini-batches

3.8}

3.6

3.4}

=—a Stochastic
——  Mini-batch
—e Batch

3.0}
2.8}

2.6

2.4}

= ' ‘l

a

&7 ’
o N7 1’

L

L

2.5

3.0

3.5 4.0




Mini-batch gradient descent

« Example of optimization progress while training a neural
network

« Epoch = one full pass of the training dataset through the
network

The effects of step size (or “leaming rate”)

loss

low learming rate

high learming rate

good leaming rate




Many mini-batch algorithms
(but we shall discuss them later)

e

- SGD

- Momentum
- NAG

- Adagrad
~  Adadelta

1.0



Using Neural nets!

Many Python Frameworks

» Pytorch & Torch
 TensorFlow
- Caffe

- Caffe? .¢ -~ PYTORCH

- Chainer s
. CNTK lensortiow

« DSSTNE

* DyNet

* Gensim Google vs. facebook
* Gluon

- Keras

» Mxnet

- Paddle

» BigDL

- RIP: Theano & Ecosystem



https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#torch
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#tensorflow
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#caffe2
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#chainer
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#cntk
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dsstne
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#dynet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gensim
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#gluon
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#keras
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#mxnet
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#paddle
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#bigdl
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch#theano

Pytorch

class NeuralNetwork(nn.Module):
def __init_ (self):

super(NeuralNetwork, self).__init_ ()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28+28, 512),
nn.RelLU(),
nn.Linear(512, 512),
nn.RelU(),
nn.Linear(512, 10),
nn.RelU()

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

Note that the backward pass (backpropgation) is done automatically by pytorch
(This is called automatic differentiation!)

No need to code back propagation is you use pytorch!



Gradient descents a gogo



How to compute the gradient efficiently?

—

hl FLn hL

A — P
' N )

0 fl — (g1 (WlfO) fn — gn(ann—l) e P= gL(WLfL—l)




Gradient descent

Batch sradient d t I —
atch gradient descen O =0"—nVRH <‘9ta {X}izl,...n’ {y}izl,...n>

for 1 1n range(nb_epochs
params_grad = evaluate_gradient(loss_function, data, params

params = params - learning_rate * params_grad

Mini-batch gradient descent
9t+(1/nb) = 0" — }/]V% Ht’ {X}i=n1,...n2’ {y}i=n1 o

for 1 1n range(nb_epochs 182

np . random.shuffle(data
for batch in get_batches(data, batch_size=50
params_grad = evaluate_gradient(loss_function, batch, params

params = params - learning_rate * params_grad

Stochastic gradient descent
O = ' =V (92 (x}, {y},.)

for 1 1n range(nb_epochs
np . random. shuffle(data

for example 1in data
params_grad = evaluate_gradient(loss_function, example, params

params = params - learning_rate * params_grad






Gradient descent

A physics analogy

“Speed”

v = VAG')
Hl‘+1 — 9 — Vl‘+1

“Movement”



Momentum

Keep the ball rolling on the same direction

V= =

“Speed” change with the gradient of the force Momentum update

vitl = yvl 4+ y V(0
6)t+1 — O — Vt+1

actual step

-

“Movement” TS

« Effective averaging of previous directions »



Nesterov acceleration

A slightly more clever ball

= ==

Vt+1 — }/Vt i an(é’t _ }/Vt)
9t+1 — O — Vt+1

Momentum update Nesterov momentum update

—
’ ——
-
-

| —

J -

J -
J

actual step
acltual slep




Pytorch optimizer

class torch.optim.S6D(params, Ir=<object object>, momentum=0, dampening=0,
weight_decay=0, nesterov=False) |source]

Implements stochastic gradient descent (optionally with momentum).

Nesterov momentum is based on the formula from On the importance of initialization and

momentum in deep learning.

Parameters: e params (iferable) - iterable of parameters to optimize or dicts defining parameter

groups
> * Ir (foat) - learning rate

p « momentum (foal, optiona)) - momentum factor (default: 0)

* weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
« dampening (foat, optional) - dampening for momentum (default: 0)
p « nesterov (bool, optional) - enables Nesterov momentum (default; False)

Example

»>> optimizer = torch.optin. . SGD(mocdel .parameters(). 1r=8. 1, momentum=H. 9)
*»>> optimizer.zero _grad()

*»>> loss_Tn(model(input), target). backwara()

>>> optimizer.step()



Adaptive learning rates
6;t+1 — 0" — ﬂVf(Ht)

What about this guy ? /

Adagrad:

Adagrad scales y for each parameter according to the history of gradients (previous steps)

\V Gn+ € V)

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

9t+1 — Qt

Gt+1: Gt + (Vf)Q

With adagrad, one does not need to manually adapt y at each steps...

... but the problem is that eventually all update on gradients goes to zero!



Adaptive learning rates

Adagrad:

Adagrad scales y for each parameter according to the history of gradients (previous steps)

¢G}7+ - VO

G is a diagonal matrix that contains the sum of all (squared) gradient so far
When the gradient is very large, learning rate is reduced and vice-versa.

Gt+1: Gt -+ (Vf)Q

9t+1 — 6)t

RMSprop

The only difference RMSprop has with Adagrad is that the term is calculated by exponentially
decaying moving average (like we did in momentum for the gradient itself!) instead of the sum of
gradients.

Gu= G+ (1 —7)(Vf)°



RMSprop

Proposed by G. Hinton during his coursera lecture

)

Neural Networks for Machine Learning

Ratings and Rviews

Neural
Networ l“'-f“ {&) Created by: University of Toronte
Machine )
Learning o
FORONTO

‘ e . Taught by
At At a%ord the 'ew ‘




Adaptive learning rates

ADAM= Adaptive learning rate + Momentum

Adam: Adaptive Moment Estimation

Adam also keeps an exponentially decaying average of past gradients, similar to momentum

G = B2Gi1+ (1 — B2)(V[)?
My = 1Mt (1 — 51)(VS)

These are estimates of the first moment (the mean) and the second moment (the uncentered
variance) of the gradients respectively, hence the name of the method.

A~ Mt A Gt
M — G p—
1-pt T 18

t
\/G + ¢

9t+1




Pytorch

ADAM

CLASS toxch.optim.Adam(params, 1r=0.0601, betas=(0.9, 0.999), eps=1e-68,
weight_decay=0, amsgrad=False) [SOURCE]

Implements Adam algorithm.

input : y (Ir), 8, B (betas), 6, (params), f(€) (objective)
A (weight decay), amsgrad
initialize : my + 0 ( first moment), vy + 0 (second moment), %" 0

fort =1to ... do
g < Vofi(0.1)
if A 9é 0 Parameters

Gt < g + Abp_y

my < Bimy_1 + (1 — B1)ag
v By + (1 - Ba)g;
m; m,/(l - ﬂ;)
U vt/(l - B;)

« params (iterable) - iterable of parameters to optimize or dicts defining parameter groups

 Ir (float, optional) - learning rate (default: 1e-3)

» betas (Tuple[float, float], optional) - coefficients used for computing running averages of
gradient and its square (default: (0.9, 0.999))

» eps (float, optional) - term added to the denominator to improve numerical stability

if amsgrad (default: 1e-8)

v max(v", ) « weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)

O « 0,y — v/ ( VO + 5) « amsgrad (boolean, optional) - whether to use the AMSGrad variant of this algorithm
else from the paper On the Convergence of Adam and Beyond (default: False)

0y 0,y — yy/ (VT + )




Pvtorch

CLASS torxch.optim.NAdam(params, 1r=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=6,
momentum_decay=0. 664) [SOURCE] ADAM+NeSterOV

NADAM

Implements NAdam algorithm.

input : v, (Ir), 8,, 5; (betas), 6, (params), f(8) (objective)
A (weight decay), ¥ (momentum decay)
initialize : mp « 0 ( first moment), vy « 0 ( second moment)

fort =1to ... do
gt 4—V0f¢(9¢—1)
ifA#0

gt «— Gt + /\0{-1
1 Parameters
pe < By(1 - 50.96“‘)

( 1 (t4+1)% ) * params (iterable) - iterable of parameters to optimize or dicts defining parameter groups
pes1 & Bi(1 = =0.96"*

2 * Ir (float, optional) - learning rate (default: 2e-3)
my « Bymy_y + (1 — B1)ge * betas (Tuple[float, float], optional) - coefficients used for computing running averages of gradient and
v = Bavey + (1= Ba)gi its square (default: (0.9, 0.999))
. S * eps (float, optional) - term added to the denominator to improve numerical stability (default: 1e-8)
mt*—#t4~lmt/(1_nlh) : .
i * weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
t
* momentum_decay (float, optional) - momentum momentum_decay (default: 4e-3)
+ (1= pe)ge/(1 = || i)

el
U v,/(l - ﬁé)
O « O,y —ymy/ (V0 +€)

return 6,




e
- SGD

Momentum

Ui

SGD
Momentum
NAG
Adagrad
Adadelta







In summary

Neural networks are parametric functions of the form:

b NI s
A ‘\",‘lx-;‘ <./ /”', \t'?l X;-?‘: & \\a N
— b b A -‘\ (" ‘.‘.' ‘1 Y < \/\’ —
Y=o (W.op_ (W _1(....o0 (WX + b)) + b, SOV VDS
RN AN < X
/ XN\ LA 2 >
‘—\.":: /
\ p,

They are “trained” by finding the “Weights” using gradient descent to
minimise the empirical risk. In practice, this is done using mini-batchs

Qi+/m,) — gt _ NVAR <(9¢, {X}i=n1,...n2’ {y}i=n1 n2>

1 &
VZ |9, =ij,...0° = VZ(x,,y., 0
< i {y}i=i1,---i2> iz-hz (X; ¥ 0)
l=l1
I - 1IN Many
mini-batchs

{X}i=1,...b {X}i=2b+1,...3b
XYipet, 2p



Preview of next lecture

The convnet revolution

Yoshua Bengio Geoffrey Hinton Yann LeCun

- A bag of tricks: dropout, batchnorm, etc...
- Special layers: embedding, convolutions, pooling, etc...
- Convolution Networks (CNN)



“Computer, recognise simple characters”
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“Computer, recognise images”
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CIFAR-10

60000 images, 10 classes

CIFAR-100
60000 images, 100 classes



ImageNet

From Wikipedia, the free encyclopedia

The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million'''2 images have been hand-annotated by the project to indicate
what objects are pictured and in at least one million of the images, bounding boxes are also provided.'*) ImageNet contains more than 20,000 categories!®! with a typical category, such as "balloon" or
“strawberry”, consisting of several hundred images.'?! The database of annotations of third-party image URLs is freely available directly from ImageNet, though the actual images are not owned by
ImageNet.'” Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where software programs compete to correctly
classify and detect objects and scenes. The challenge uses a "trimmed" list of one thousand non-overlapping classes.'®!
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“Computer, drive my car”




“Computer, drive my car”
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How does this works ?

Tricks.... & convnets



1: Tricks of the trade



Initialization of the weight

e Weights need to be small enough

o around origin for symmetric activation functions (tanh, sigmoid)
— stimulate activation functions near their linear regime

o larger gradients — faster training

* Weights need to be large enough

o otherwise signal is too weak for any serious learning

RELU prevent vanishing gradients
(but dead relus can exist! -> Leaky relu!)

sigmir) . tanh(x) , relu(x max((), x

sigm’(x sigm(x )1 — sigm(x)) tanh'(x) | — tanh(x)* relu’(z I



Initialization of the weight

Xavier Initialization

)
’ Nzn + Nout

N (0

glorot_uniform
glorot _uniform(seed~None)

Glorot uniform initializer, also called Xavier uniform initializer.

It draws samples from a uniform distribution within [-limit, limit) where 1imit is
sqrt(6 / (fan_in + fan out)) where fan in isthe number of input units in the weight tensor and

fan_out isthe number of output units in the weight tensor.
Arguments

o seed: A Python integer. Used to seed the random generator.

Daoatiirne



Initialization of the weight

2
Kaiming-He initialization N (0, N_-)

* Scale the incoming weight to have a O(1) variable
* The factor 2 depends on activation: ReLUs ground to O the linear activation about

half the Time -> Double weight variance for Relu to adapt

he normal
he normal(scecd=None)

He normal initializer.

It draws samples from a truncated normal distribution centered on Owith stddev = sqrt(2 / fan_in) where

fan_1in isthe number of input units in the weight tensor.
Arguments
¢ seed: A Python integer. Used to seed the random generator

Returns



Initialization of the weight

[ ] [ ] (] (] [ J [ J [ ] 2
Kaiming-He initialization N (0, N )
)
The same type of reasoning can be applied to other activation Functions

From torch/nn/init.py:

def calculate_gain(monlinearity, params=None):

H'»ear_.‘ns = [ "Linear”, 'convid’, ‘comvid’, ‘convid', ‘comv _transposeld’, ‘conmv _transposeld’, ‘conv_transposesd’ ]
if noalinearity ia linear fns or monlinearity == "sigmoid’:
return |
elif monlinearity == "tanh':
return 5.0 J 3
elif monlinearity == “relu’:
retura math.sqrt(2.8)
elif monlinearity == "leaky relu':
Af paran {s None:
negative slope = 0.01

elif mot isinstance(paramn, bool) and isinstance(param, int) or isinstance(paramn, float):

negative_slope » param
else:
ralse ValueError{ " negative slope {} not a valld number”.format(param))
return math.sqrt(2.0 / (1 + negative _slope ** 2))
else:
ralse ValuveError( "Unsupported nonlinearity {)".format(nonlinearity))



Weight initialization

Does it actually matter that much?



Weight initialization

Does it actually matter that much?

— [ Svtne
InBalkzation in deop learning matters a lot! In
a simple UFy Torch code for seq@seq NMT,
changng the init of embedangs from defaul
10 kaiming (Gaussian vs uniform is not
Imporiant, but rescaiing isf) and reguarzng
MOore DOCALS resuits by 2 BLELU. How 0 tune
these things?




ata pre-processing

sklearn.preprocessing.StandardScaler

class sklearn.preprocessing.StandardScaler(*, copy=True, with_mean=True, with_std=True)

o Network is Forced to fFind non-trivial correlations between inputs
o Decorrelated inputs — better optimization

e |Input variables follow a more of less Gaussian distribution

e In practice:

o compute mean and standard deviation

= per pixel: (4, 6%)
= per color channel:




Batch Normalization

from keras.layers.normalization import BatchNormalization
model = Sequential()

# think of this as the input layer

model.add(Dense(64, input_dim=16, init='uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))

model.add(Dropout(0.5))

# think of this as the hidden layer

model.add(Dense(64, init='uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))

model.add(Dropout(0.5))

# think of this as the output layer

model.add(Dense(2, init='uniform’))
model.add(BatchNormalization())
model.add(Activation(‘softmax’))

# optimiser and loss function
model.compile(loss='binary_crossentropy’, optimizer=sgd)

During training, we normalise the activations of the previous layer for each batch:

We normalise in order to maintains the mean activation close to 0 and the activation standard deviation close to 1 befo

the activation function



Batch Normalization

Input: Values of 2 over a mini-batch: B = {2, }:
Parameters to be learned: v, 3
Output: {y; — BN, g(z;)}

T
| .
B — — E T; // mini-batch mean
m
i=1
T
2 l '2 . . .
o — — E (i — uB) // mini-batch variance
m
. €, — URB
€T < f

, // normalize
\/og b€

yi < vx; + B = BN, g(2;) // scale and shift




What do you do when do not have
enough data?

You create more!



Data augmentation

e Changing the pixels without changing the label
e Train on transformed data
e Widely used

Fip Randowm. crop

Origival




Data augmentation

Horizontal flips




Data augmentation

Random crops/scales




Data augmentation

Color jitter

e randomly jitter color, brightness, contrast, etc.



Data augmentation

e Various techniques can be mixed

« Domain knowledge helps in finding new data augmentation
techniques

e Very useful for small datasets

219 ] P




Data augmentation

(a) (b) (¢) (d)

Figure I: The result of using a spatial transformer as the
first layer of a fully-connected network trained for distonted
MNIST digit classification. (a) The input to the spatial trans-
former network is an image of an MNIST dagnt that is dis
torted with random translation, scale, rotation, and clutter. (b)
The localisation network of the spatial transformer predicts a
transformation to apply to the mput image. (¢) The output
of the spatial transformer, after applying the transformation
(d) The classification prediction produced by the subsequent
fully-connected network on the output of the spatial trans-
former. The spatial transformer network (a CNN including a
spatial transformer module) is trained end-to-end with only
class labels ~ mo knowledge of the groundiruth tramsforma-
nons s given 1o the system.

Great overview of the function of a Spatial Tranfomer module

AT EICIICClLCle e
S [ T e
L S S S e
ALY & ) 1RCey 1 [
eeweEA® AL
CFICE RIS AC IS
FICEEIFIZAAC IS
CHSACHCC OO N b
CEIAETECEZN







CPU vs GPU

CPU GPU
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e more cores; each core Is slower and weaker

o great for parallel tasks
GPU (Hundreds of Cores)

« GPU:

CPU (Multiple Cores)

o Fewer cores; each core Is faster and more powerful
o useful For sequential tasks

« CPU:

CPU vs GPU




CPU vs GPU

« SP =single precision, 32 bits / 4 bytes
« DP =double precision, 64 bits / 8 bytes

1 9 o

—— Nvidia GPU 5P

4

Theoretcal peak (GFLOPS)
i § 8 § §

< Nvidia GPU DP
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Market Summary > NVIDIA Corporation

303.90 uso

+280.56 (1,202.06%) + past 5 years

Closed: 15 Nov, 05:34 GMT-5 « Disclaimer
Pre-market 303.76 -0.14 (0.046%)

NASDAQ: NVDA

<4 Follow
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300
200
100
Y T T T T
2018 2019 2020 2021



‘. (@ oot resesnh gosghe COM: v 1UORN e LindDai ¥ maP V) X0wNPn ) “ae »@®
€ Urtithecl pymb

e A Yo et S T e

= « Cotn ¢ Tem ~ - Rty S = 7 Leny -
Nt R R
_ . P Laisand ol RN e "..O.
- - e [ R e
- e & atee 0
In
5
P ey e —
IR e A
os oy e as -






2: Regularization



Early stopping

« To avoid overfitting another popular technique is early stopping

« Monitor performance on validation set

« Training the network will decrease training error, as well validation error (although with a
slower rate usually)

« Stop when validation error starts increasing
o most likely the network starts to overfit
o use a patience term to let it degrade For a while and then stop

o~ w ey




Remember this?

The linear model revisited: regularisation

Replace &y

0 = argmin(||Y — A||?) 0 = argmin(||Y — A0||2) + g(6)

L2-regularization aka Tikhonov regularization
aka Ridge regression aka Weight decay

f = argmin(||Y — A8||2) + T'||0]|2 — /

Find the best I'
using cross-validation




Weight Decay

= ¢, regularisation = Ridge = Tikhonov

L2 regularization:

Regularization 6|, = (w, )’ +(w, ) +...

* New loss function to be minimized

oL oL

L'(0)= L(9)+A%||9”2 Gradient; <= = -4
Update: \4.?“1 - H--’, n oL — M-” - 'I($ + )LM"]
= (LA —n <=

Closer to zero



(a) Standard Neural Net (b) After applying dropout.

Each time we load an example into a minibatch, we randomly sample a different binary
mask to apply to all of the input and hidden units in the network. The mask for each unit
Is sampled independently from all of the others



Dropout

Journal of Machine Learning Research 15 (2014) 19251058 Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISHECS, TORONTO.EDU
Geoffrey Hinton HINTONTICS, TORONTO.EDU
Alex Krizhevsky KRIZEICS, TORONTO, EDU
Ilya Sutskever ILYATICS. TORONTO.EDU
Ruslan Salakhutdinov RSALAKHUCS, TORONTO.EDU
Department of Compuler Science
University of Toronto
10 Kings College Road, Rm 3302
Toronto, Ontario, M358 3G4, Canada.
- Teu! ! rror )
Editor: Yoshua Bengio 15 frames 3 ayers 2000 units
15 frames ) layers 4000 units
- 31 frames 3 layers 4000 unas ||
Abstract 31 frames 4 layers 4000 unis
Doep neural nets with a large number of parameters are very powerful machine leamning o ) "}

systemns, However, overfitting is a serious problem io such petworks. Large networks are also
show to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned™ networks. At test time,
it is easy to approximate the effect of averaging the predictions of all these thinned networks
by simply using a single unthinned network that has smaller weights. This significantly
reduces overfitting and gives major improvements over other regularization methods, We
show that dropout improves the performance of neural networks on supervised learning
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Fig. 2: The frame classification error rate on the core test set of the TIMIT benchmark. Com-
parison of standard and dropout finetuning for different network architectures. Dropout of 50%
of the hidden units and 20% of the input units improves classification.




Dropout

Features learned on MNIST with one hidded layer autoencoders
having 256 rectified linear units

{a) Without dropost



Easy to implement with pytorch:
This is just another layer!

class Net(nn.Module):
def __init__(self):
super(Net,self).__init__O
self.convl=nn.Conv2d(1,32,3,1)
self.convl_bn=nn.BatchNorm2d(32)

self.convZ2=nn.Conv2d(32,64,3,1)
self.convZ2_bn=nn.BatchNorm2d(64) <« Batchnorm

self.dropoutl=nn.Dropout(@.25)

self.fcl=nn.Linear(9216,128)
self.fcl_bn=nn.BatchNorm1d(128)

self.fc2=nn.Linear(128,10)
def forward(self,x):

x=self.convl(x)

x=F.relu(self.convl_bn(x))

x=self.conv2(x)
x=F.relu(self.convZ_bn(x))
— Dropout

x=F .max_pool2d(x,2)
x=self.dropoutl(x) <«—

x=torch. flatten(x,1)

X=self. fCl(X)
x=F.relu(self.fcl_bn(x))

x=self,fc2(x)
output=F.log_softmax(x,dim=1)
return output



Playing Lego

class LeNet(Module):
def init (self, numChannels, classes):
# call the parent constructor
super(LeNet, self). init ()

# initialize first set of CONV => RELU => POOL layers

self.convl = Conv2d(in_channels»numChannels, out channels~20,
kernel size«(5, 5))

self.relul = RelU()

self maxpooll = MaxPool2d(kernel size=(2, 2), stride=(2, 2))

# initialize second set of CONV => RELU => POOL layers
self.conv2Z = ConvZd(in_channels=20, out_channels=50,
xernel size=(5, 5))
self.relu2 = RelU()
gself.maxpool2 = MaxPool2d(kernel size=(2, 2), stride~=(2, 2))

# initialize first (and only) set of FC => RELU layers
self.fcl = Linear(in features=800, out features=500)

self.relul = RelU()

# initialize our softmax classifier
self.fc2 = Linear(in features=500, ocut features=classes)

self.logSoftmax » LogSoftmax(dim=l)



2007 NIPS Tutorial on:

Deep Belief Nets

Geoffrey Hinton

Canadian Institute for Advanced Research

&

Department of Computer Science

University of Toronto

How many layers should we use and how

wide should they be?
(I am indebted to Karl Rove for this slide)

* How many lines of code should an Al program use and how
long should each line be?

— This is obviously a silly question.
* Deep belief nets give the creator a lot of freedom.

— How best to make use of that freedom depends on the
task.

— With enough narrow layers we can model any distribution
__over binary vectors (Sutskever & Hinton, 2007)

freedom scares you, stick to convex optnmuzatnonof“
shallow models that are obviously inadequate for doing ',
.ﬁ Artificial Intelligence. |




3: Special Layers



Convolutional and pooling layers

Fundamental for images & sounds!
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Convolution 1d
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Convolution 2d
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Max-Pooling 1d




Max-Pooling 1d




Max-Pooling 1d




Max-Pooling 1d
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Max-Pooling 1d
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Max-Pooling 2d
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Translation invariance from pooling
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Translation invariance from pooling
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4: conv-nets



REVIEW

d0i:10.1038/naturel4539

Deep learning

Yann LeCun'”, Yoshua Benglo® & Geoffrey Hinton**

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of - the -art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.
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ConvNet

« Neural network with specialized connectivity structure

» Stack multiple stage of feature extractors

» Higher stages compute more global, more invariant features
» Classification layer at the end




LeNet5

10 classes, input 1 x 28 x 28

(features): Sequential (

(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

(1): RelLU (inplace)

(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

(4): RelLU (inplace)

(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Linear (400 -> 120)
(1): ReLU (inplace)

(2): Linear (120 -> 84)
(3): RelLU (inplace)

(4): Linear (84 -> 10) )



AlexNet

(features): Sequential (

(0):

(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

(9):

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
RelLU (tnplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): RelU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (

(0):

(1):
(2):
(3):
(4):
(5):
(6):

)

Dropout (p = 0.5)
Linear (9216 -> 4096)
ReLU (inplace)
Dropout (p = 0.5)
Linear (4096 -> 4096)
ReLU (inplace)

Linear (4096 -> 1000)



VGG-16

224 x 224 x3 224 x 224 x 64

112 x 128

M x 56 x 256
xTxH12
2

f— e, 1x1x4096 1x1x1000
'’ U e ’

.

5 convolution+ ReLU
() max pooling
" fully connected+ReLU

" softmax




model = Sequential()

model.add( ZeroPadding20( (1, 1), input_shape=(3, 224, 224)))
sodel.add(Convolution20(64, 3, 3, activation=‘relu'))
model.add(ZeroPadding20((1, 1)))
sodel.add(Convolution20(64, 3, 3, activation="relu'))
sodel.add(MaxPooling20((2, 2), strides=(2, 2)))

sodel.add(ZeroPadding20((1, 1)))
sodel.add(Convolution20(128, 3, 3, activation='relu*))
sodel.add( ZeroPadding20((1, 1)))
sodel.add(Convolution20(128, 3, 3, activations'relu*))
sodel.add(MaxPooling20((2, 2), strides«(2, 2)))

model.add( ZeroPadding20((1, 1)))
sodel.add(Convolution20(2%6, 3, 3, activation='relu*))
model.add(ZeroPadding20((1, 1)))
sodel.add(Convolution20(256, 3, 3, activation='relu"))
model.add(ZeroPadding20((1, 1))
sodel.add(Convolution20(256, 3, 3, activation='relu"))
sodel.add(MaxPooling20((2, 2), strides=(2, 2)))

sodel.add(ZeroPadding20((1, 1)))
sodel.add(Convolution20(512, 3, 3, activation='relu*))
sodel.add( ZeroPadding20((1, 1)))
sodel.add(Convolution20(512, 3, 3, activations'relu*))
msodel.add( ZeroPadding20((1, 1)))
scdel.add(Convolution20(512, 3, 3, activation='relu*))
model.add(MaxPooling20((2, 2), strides=(2, 2)))

model.add(ZeroPadding20((1, 1)))
sodel.add(Convolution20(512, 3, 3, activation='relu"))
sodel.add( ZeroPadding20((1, 1)))
sodel.add(Convolution20(512, 3, 3, activation='relu"))
sodel.add(ZeroPadding20((1, 1)))
sodel.add(Convolution20(512, 3, 3, activation='relu*))

# Add another conv layer with RellU « GAP

sodel.add(Convolut 1on20(num_input_channels, 3, 3, activations‘relu’, border_modes"same"))
model.add(AveragePooling20( (14, 14)))

model.add(Flatten())

# Add the W layer

sodel.add(Dense(nb_classes, activation='softmax'))



VGG-19

: Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: RelLU (inplace)
: Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: RelU (inplace)
: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
: Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: RelU (inplace)
: Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: RelLU (inplace)
: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
: Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
: RelLU (inplace)

: Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
: RelU (inplace)

: Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1,
: Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1),
: RelLU (inplace)

: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: RelLU (inplace)

: MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1,
: Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
: ReLU (inplace)

padding=(1,
padding=(1,
padding=(1,
padding=(1,

1))
padding=(1,

padding=(1,
padding=(1,
padding=(1,

1))
padding=(1,

1))
1))
1))
1))

1))
1))
1))
1))

1))



A saturation point

If we continue stacking more layers on a CNN:

8 L
8 l""'
£ g
-
Iterations

Deeper models are harder to optimize



Resnets: Skiped-connections
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Deeper is better

ImageNet experiments

152 layers
A
\\
\
2 layers || 19um l I

”7 I I 8layers | 8layers | shallow
ILSVRC'15 usvnc 14 nmc 14 ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet AlexNet

ImageNet Classification top-5 error (%)



Regularization

Deep
Learning

x

Side credit: C. Dhang



Regularization

Parameter Count
Num Training Samples

MLP Ix512
pln:24

2

50
375

125

MLP Ix512
Slide credit: C. Dhang



Regularization

Parameter Count
Num Training Samples

Alexnet
MLP Ix512 p/n:28

S0
teat error
375
25
125
0
MLP I1x512 Alexnet

Shide credit: C. Dharg



Regularization

Parameter Count

Num Training Samples
Inceptior
p/n:33
Alexnet
MLP Ix512 p/n:28
pln:24 /

e

50

. ré '
& -'?-'c-;

375

125

Ix51 Alexnet eplion
Slide credi: m:s : e
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Regularization

Parameter Count

Num Training Samples
Inceptior{
oln: 33 Wide Resnet
. ' oln: 179
Alexnet
MLP Ix512 p/n:28
pln: 24 {
a5
50
375 o
25
125
’ MLP 1x512 Alexnet Inception Wide Resnet

Shide credit: C. Dharg



Regularization

Deep
Learning

x

Side credit: C. Dhang



We learn from KNN that we should be careful and not use too many parameters....

. S0 how come deep learning works in the overparamterized regime?

Short answer: we do not fully understand!

Long answer: Gradient descent is magic

We know they are many set of weights that minimise the loss, and most of them are bad
at generalisation, but gradient descent seems to be biased to go toward the “good”
ones: This is called the “implicit reqularisation” of gradient descent
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What is learned in conv-nets?




Convolutions

+ A bank of 256 Ffilters (learned from data)
« Eachfilteris 1d (it applies to a grayscale image)
» Eachfilteris 16 x 16 pixels

Convolutions

« A bank of 256 filters (learned from data)
« 3D Filters for RGB inputs




What sort of images maximise
the activity for a given neutron
in each layers?

Slide credit: Francois Chollet



https://twitter.com/fchollet

What sort of images maximise
the activity for a given neutron
in each layers?

Slide credit: Francois Chollet



https://twitter.com/fchollet

What sort of images maximise
the activity for a given neutron
in each layers?

Slide credit: Francois Chollet
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What sort of images
the activity for a give e a1

Slide credit: Francois Chollet


https://twitter.com/fchollet

What sort of images
the activity for a give
In each layer

Slide credit: Francois Chollet


https://twitter.com/fchollet

What sort of images maximise
the activity for a given neutron
in each layers?

What sort of images maximise
the activity for the final neutron

For a given category?

Let’s try with a see-snake!
(vgg-16 trainde on imagenet
With hundred categories)

Slide credit: Francois Chollet

This is a see-shake
« | am 99% positive! »



https://twitter.com/fchollet

What sort of images maximise
the activity for a given neutron
in each layers?

What sort of images maximise
the activity for the final neutron

For a given category?

Let’s try with a magpie!
(vgg-16 trainde on imagenet
With hundred categories)

Slide credit: Francois Chollet

This is a magpie
« | am 99% positive! »



https://twitter.com/fchollet

Computer Vision is Easy:
Transfer Learning

(state of art result in few minutes)

Transfer Learning with CNNs
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1. Train on
ImageNet

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

.e. swap the Softmax
layer at the end

I;;;nzm:

owe A1
el

{11

FC A0
P40
G300

3. If you have medium sized
dataset. “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain dbigger portion of the
network, or even all of nt

L




Computer Vision is Easy:
Transfer Learning

(state of art result in few minutes)

Probability for cat

Probability for dog




In summary

Convolutional neural nets are the state of there art for images

Cl 1. maps 168210x10
INPUY L e mige S4: 1 maps 1655

Full connection GaUsSIan connectons
Convolutions Subsampling Convolutions  Subsamphng Full connecton

They are made by adding Convolution and pooling.
Regularization (dropout, batch norm) also help.
This allows to solve almost any supervised vision problem:
all computer vision is now using convents



