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Learn representation without labels



Fundamental in the early day of deep learning for pre-training

Learn representation without labels

Cute here and add a single layer!

Pre-training without labels!



Fundamental in the early day of deep learning for pre-training

Learn representation without labels

Cute here!

Now you have a generative model



Denoising auto-encoder



Denoising auto-encoder



GANs 
Generative Adversarial Networks

The loss function is measuring how good the discriminator  
can distinguish between real and generated images!





Nvidia @NIPS 2017 





https://thispersondoesnotexist.com/image





Generating models & 
sampling

A tale of diffusion, flow, and stochastic interpolants



Density Estimation and Sampling

The ability to sample is 
fundamental in statistical 
physics, quantum 
mechanics, high energy 
physics etc …. 


• Sampling: Given a probability measure  , generate a sample .μ ∈ 𝒫(Ω) x ∼ 𝒫



• Sampling: Given a probability measure  , generate a sample .


• Density Estimation: Given data from the unknown probability measure  
calculate an estimate  of  (possibly up to a normalizing constant).

μ ∈ 𝒫(Ω) x ∼ 𝒫

{xi}n
i=1 μ ∈ 𝒫(Ω)

̂μ μ

Density Estimation and Sampling



Density Estimation and Sampling
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• (i) Density Estimation of  (Given data )


• (ii) Then Sampling from  to generate new data .

̂μ {xi}n
i=1

̂μ xnew

Generative modeling: combine density estimation and sampling



• (i) Density Estimation of  (Given data )
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̂μ {xi}n
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̂μ xnew

Generative modeling: combine density estimation and sampling

(NVIDIA group, ICLR 2018) (Song et al, 2021)
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• (i) Density Estimation of  (Given data )


• (ii) Then Sampling from  to generate new data .

̂μ {xi}n
i=1

̂μ xnew

Generative modeling: combine density estimation and sampling

Many methods over the years: 
- Kernel density estimation 
- Boltzmann machines 
- Variational auto-encoder 
- Generative adversarial networks (GANs) 
- Energy-based models 
- Normalizing flows 
- Diffusion models 
- Stochastic localisation 



GOAL: Construct an ODE or a SDE

dXt

dt
= b(Xt , t) +σ(Xt, t)Wt

such that: if  = simple base measure, then = target measure.Xt=t1 ∼ μsimple Xt=t2 ∼ μtarget

Well-suited formalism for sampling: 
- draw a sample from the simple base measure; 
- propagate it through the S/ODE; 
- get a sample from the target 

Well-suited formalism for density estimation: 
- learn the function  and/or  such that we can “fit” a target distribution to the datab(Xt , t) σ(Xt, t)



A short introduction to stochastic interpolants

I

March 14, 2023

xt = (1 − t)x0 + tx1

xt = (1 − t)x0 + tx1 + t(1 − t)z

xt = cos2(πt)(1[0, 1
2 )(t)x0 + 1( 1

2 ,1](t)x1) + t(1 − t)z

xt = (1 − t)x0 + tz

Without latent variable

With latent variable

Gaussian encoded

One-sided

[Albergo, Boffi, Vanden-Eijnden ’23]



x(t) = α(t)x0 + β(t)z

Can show: At any , density  solves the transport equation 


 


 


t ∈ [0,1] ρ(x(t))

∂tρ + ∇ ⋅ (bρ) = 0

b(x, t) = 𝔼[∂tx(t) |x(t) = x] = 𝔼[ ·α(t)x0 + ·β(t)z |x(t) = x] .

z ∼ 𝒩(0, 𝕀N)x0 ∼ P0

t = 0 t = 1


α(0) = β(1) = 1; α(1) = β(0) = 0;
∀t ∈ [0,1] : α(t) ≥ 0, ·α(t) ≤ 0, β(t) ≥ 0, ·β(t) ≥ 0

[Albergo, Boffi, Vanden-Eijnden ’23]

One-sided linear interpolant process 



Can show: At any , density  solves the transport equation 


 


 


t ∈ [0,1] ρ(x(t))

∂tρ + ∇ ⋅ (bρ) = 0

b(x, t) = 𝔼[∂tx(t) |x(t) = x] = 𝔼[ ·α(t)x0 + ·β(t)z |x(t) = x] .

[Albergo, Boffi, Vanden-Eijnden ’23]

One-sided linear interpolant process 

ρ(x, t) = ∫ dx0dzP(xo)P(z)δ(x − x(t))

∂tρ(x, t) = − 𝔼x0,z[
·x(t)δ′￼(x − x(t))]

ρ(x, t) = 𝔼x0,z[δ(x − x(t))]

b(x, t) = 𝔼[∂tx(t) |x(t) = x]

b(x, t) =
∫ dx0dzP(x0)P(z) ·x(t)δ(x − x(t))

∫ dx0dzP(x0)P(z)δ(x − x(t))

ρ(x, t)b(x, t) = 𝔼x0,z[
·x(t)δ(x − x(t))]

∇(ρ(x, t)b(x, t)) = 𝔼x0,z[
·x(t)δ′￼(x − x(t))]

x(t) = α(t)x0 + β(t)z



One-sided linear interpolant process 

x(t) = α(t)x0 + β(t)z

Can show: At any , density  solves the transport equation 
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t = 0 t = 1


α(0) = β(1) = 1; α(1) = β(0) = 0;
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1. Mechanical analogy: Each “particles” at position Xt move with velocity   


2. The current is given by . Conservation of mass imposes , or equivalently    


3. This is the same equation as before! Hence, in law, we have at all times  

4. In particular,  is distributed as   

b(Xt, t)

J = ρ(Xt, t)b(Xt, t) ∇ ⋅ J =
∂ρt

∂t
∂tρ + ∇ ⋅ (bρ) = 0

Xt = α(t)X0 + β(t)Z
X0 P0

t = 0 t = 1

dXt

dt
= b(Xt , t) , Xt=1 = z z ∼ 𝒩(0, 𝕀N)x0 ∼ P0

Backward ODE: Sampling through denoising



b(Xt, t) =
·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [X0 |Xt]

t = 0 t = 1

dXt

dt
= b(Xt , t) , Xt=1 = z z ∼ 𝒩(0, 𝕀N)x0 ∼ P0

How to compute  ? b(Xt, t)

You are given   , so the only 
problem is to estimate   

Xt
𝔼 [X0 |Xt]

Backward ODE: Sampling through denoising

b(x, t) = 𝔼[∂tx(t) |x(t) = x] = 𝔼[ ·α(t)x0 + ·β(t)z |x(t) = x] .



X0
X(t)
αt

= X0 +
β(t)
α(t)

Z ̂x 0 = ?

Gaussian denoising

Unknown signal AWGN Channel Observation Optimal denoising

b(Xt, t) =
·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [X0 |Xt]



X0
X(t)
αt

= X0 +
β(t)
α(t)

Z

Gaussian denoising

Unknown signal AWGN Channel Observation Optimal denoising

P(X0 |X(t)) =
1

P(X(t))
P(X(t) |X0)P0(X0)

Bayes Theorem MMSE estimator

̂X 0 = 𝔼 [X0 |X(t)]

, find the MMSE estimator X(t) = α(t)X0 + β(t)Z ̂X 0 = 𝔼 [X |X(t)]

b(Xt, t) =
·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [X0 |Xt]

̂x 0 = ?





dXt

dt
=

·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [x0 |x(t) = Xt]

Tilting field Target measure

Given , find the MMSE estimator x(t) = α(t)x0 + β(t)z ̂x 0 = 𝔼 [x |x(t)]

P(x |x(t) = Xt) =
1

Z(Yt)
exp ( α(t)

β(t)2
⟨Xt, x⟩ −

α(t)2

2β(t)2
∥x∥2) P0(x)

2) Posterior average estimation: It is just a Gaussian denoising problem!


Solving the backward ODE in a nutshell

1) Discretisation (Backward Euler’s method):


 


            

Xt−δ =(1 − δ
·β(t)
β(t))Xt − δ (·α(t) −

·β(t)α(t)
β(t) ) 𝔼 [x0 |x(t) = Xt]





dXt

dt
=

·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [x0 |x(t) = Xt]

Given , find the MMSE estimator x(t) = α(t)x0 + β(t)z ̂x 0 = 𝔼 [x |x(t)]
2) Posterior average estimation: It is just a Gaussian denoising problem!


Solving the backward ODE in a nutshell

1) Discretisation (Backward Euler’s method):


 


            

Xt−δ =(1 − δ
·β(t)
β(t))Xt − δ (·α(t) −

·β(t)α(t)
β(t) ) 𝔼 [x0 |x(t) = Xt]

Tilting fieldTarget measure

P(x |x(t) = xt) ∝ exp (−ℋ0 +
α(t)
β(t)2

⟨Xt, x⟩ −
α(t)2

2β(t)2
∥x∥2)



Xt−δ =(1 − δ
·β(t)
β(t))Xt − δ (·α(t) −

·β(t)α(t)
β(t) ) x̂0

Solving the backward ODE in a nutshell

Xt=1

Xt]
Xt

Xt−δ



The crux of the problem: computing the denoiser

P(x |x(t) = Xt) =
1

Z(Xt)
exp ( α(t)

β(t)2
⟨Xt, x⟩ −

α(t)2

2β(t)2
∥x∥2) P0(x)

Often  is not known  …P0(x)

 …. rather we are given many examples …

… in the form of a Dataset 𝒟 = {xi}n
i=1

The strategy is to learn a 
(sequence of) denoiser(s) 

 by training a neural network  
on the dataset 𝒟

̂x 0 = 𝔼 [X |X(t)]

If  is known  …P0(x)
1 2

… “just” estimate the integral…

… ̂x 0 = 𝔼 [X |X(t)]
High-dimensional integral that 

can be hard to compute 
depending on the problem 

(Optimal Bayesian Inference)



ℛ[b̂] = ∫
1

0
dt𝔼X0,Z [b̂(xt, t)2 − 2 ·xtb̂(xt, t)]

Learning from from data: many options

Learn the velocity field:

 is the unique minimiser of b(x, t)

ℛemp[b̂] = ∫
1

0
dt

1
n

n

∑
i=1

𝔼Z [b̂(x(i)
t , t)2 − 2 ·x(i)

t b̂(x(i)
t , t)]

Represent  as a neural net, and 
minimise instead  the empirical loss over 
the training sample

b(x, t)

ℛ[ ̂ηD] = ∫
1

0
dt𝔼X0,Z [∥η(xt, t) − x0∥2

2]
Learn the optimal denoiser:

 is the unique minimiser of η(xt, α, β)

Represent  as a neural net, and 
minimise instead  the empirical loss over 
the training sample

η(xt, α, β)
ℛepm[ ̂ηD] = ∫

1

0
dt

1
n

n

∑
i=1

𝔼Z [∥η(xt, t) − x0∥2
2]

Careful : do not just memorise the dataset! The choice of NN yield an implicit regularisation



But what about “score”, “SDE”, “diffusion” etc etc?

II



The score



b(Xt, t) =
·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [X0 |Xt]

t = 0 t = 1

dXt

dt
= b(Xt , t) , Xt=1 = z z ∼ 𝒩(0, 𝕀N)x0 ∼ P0

How to compute  ? b(Xt, t) A trivial function of the optimal denoiser   𝔼 [X0 |Xt] = ηα,β(Xt)

Backward ODE: Sampling through denoising



Alternative view point with the score (via Tweedie’s formula)

P(Xt) = ∫ dX0P(Xt |X0)P(X0)

P(Xt |X0) =
1

(2πβ2)d/2
e

− ∥Xt − αtX0∥2
2

2β2t

∇log P(Xt) =
∇P(Xt)
P(Xt)

= −
1
β2

t ∫ dX0(Xt − αtX0)
P(Xt |X0)P(X0)

P(Xt)
= −

1
β2

t ∫ dX0(Xt − αtX0)P(X0 |Xt)

∇log P(Xt) = −
1
β2

Xt +
αt

β2
t

𝔼[X0 |Xt]

∇P(Xt) = ∫ dX0 ∇P(Xt |X0)P(X0)

∇P(Xt) = −
1
β2

t ∫ dX0(Xt − αtX0)P(Xt |X0)P(X0)

αt𝔼[X0 |Xt] = Xt + β2
t ∇log P(Xt)



Choose your camp: Denoiser vs Score !

b(Xt, t) =
·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [X0 |Xt]

b(Xt, t) =
·α(t)
α(t)

Xt + (
·α(t)
α(t)

β(t)2 − ·β(t)β(t)2) β2

α(t)
∇log P(Xt)

Interesting interpretation as a force: if , then  


(With additional diffusion noise, leads to Langevin-type sampling)

P(Xt) ∝ e−ℋ(x) ∇log P(Xt) = − ∇ℋ = F



Choose your camp: Denoiser vs Score !

b(Xt, t) =
·β(t)
β(t)

Xt + ( ·α(t) −
·β(t)α(t)

β(t) ) 𝔼 [X0 |Xt]

b(Xt, t) =
·α(t)
α(t)

Xt + (
·α(t)
α(t)

β(t)2 − ·β(t)β(t)2) β2

α(t)
∇log P(Xt)

Interesting interpretation as a force: if , then  P(Xt) ∝ e−ℋ(x) ∇log P(Xt) = − ∇ℋ = F



ℛ[b̂] = ∫
1

0
dt𝔼X0,Z [b̂(xt, t)2 − 2 ·xtb̂(xt, t)]

Learning from from data: many options

Learn the velocity field:

 is the unique minimiser of b(x, t)

ℛ[ ̂ηD] = ∫
1

0
dt𝔼X0,Z [∥η(xt, t) − x0∥2

2]
Learn the optimal denoiser:

 is the unique minimiser of η(xt, α, β)

ℛ[ ̂S] = ∫
1

0
dt𝔼X0,Z [ ̂S(xt, t)2 − 2 ·Zt

̂S(xt, t)]
Learn the optimal score:

 is the unique minimiser of S(xt)



Diffusion, Noise, and SDE



x(t) = α(t)x0 + β(t)x1 + γ(t)ξ

  More general stochastic interpolant process, and SDE

α(0) = β(1) = 1 α(1) = β(0) = γ(0) = γ(1) = 0


α(0) = β(1) = 1; α(1) = β(0) = 0;
∀t ∈ [0,1] : α(t) ≥ 0, ·α(t) ≤ 0, β(t) ≥ 0, ·β(t) ≥ 0

dXt

dt
= b(Xt , t) +σ(Xt, t)Wt



  More general stochastic interpolant process, and SDE

t =0.00 t =0.25 t =0.50 t =0.75 t =1.00

⇢0 ⇢1

t =0.00 t =0.25 t =0.50 t =0.75 t =1.00

⇢0 ⇢1

t =0.00 t =0.25 t =0.50 t =0.75 t =1.00

⇢0 ⇢1

xt = cos( 1
2 �t)x0 + sin( 1

2 �t)x1

xt = 1 � �2(t) cos( 1
2 �t)x0 + 1 � �2(t) sin( 1

2 �t)x1 + �(t)z, �(t) = 2t(1 � t)

xt = cos2(�t)(1[0, 1
2 )(t)x0 + 1( 1

2 ,1](t)x1) + sin2(�t)z

t =0.00 t =0.25 t =0.50 t =0.75 t =1.00

⇢0 ⇢1

Figure 5: The e↵ect of �(t) on ⇢(t). A visualization of how the choice of �(t) changes the density
⇢(t) of xt = ↵(t)x0 + �(t)x1 + �(t)z when ⇢0 and ⇢1 are Gaussian mixture densities with two modes
and three modes, respectively. The first row depicts �(t) = 0, which reduces to the stochastic
interpolant developed in [1]. This case forms a valid transport between ⇢0 and ⇢1, but produces
spurious intermediate modes in ⇢(t). The second row depicts the choice of �(t) =

p
2t(1 � t). In this

case, the spurious modes are partially damped by the addition of the latent variable, leading to a
simpler ⇢(t). The final row shows the Gaussian encoding-decoding, which smoothly encodes ⇢0 into
a standard normal distribution on the time interval [0, 1/2), which is then decoded into ⇢1 on the
interval (1/2, 1]. In this case, no intermediate modes form in ⇢(t): the two modes in ⇢0 collide to
form N(0, 1) at t = 1

2 , which then spreads into the three modes of ⇢1. A visualization of individual
sample trajectories from deterministic and stochastic generative models based on ODEs and SDEs
whose solutions have density ⇢(t) can be seen in Figure 8.

Linear and trigonometric interpolants. One way to ensure that (4.4) holds while maintaining
the influence of ⇢0 and ⇢1 everywhere on [0, 1] except at the endpoints is to choose

↵(t) = t, �(t) = 1 � t, �(t) =
p

2t(1 � t). (4.5)

[Michael: We should discuss whether or not to include these variance preserving constraints. In
practice, any interpolant whose time derivative has an ugly denominator performs worse than those
that don’t e.g. (1-t) and t or cos and sin.] This choice leads to the stochastic interpolant specified
in (4.1). It is also the choice that was advocated in [33], without the inclusion of the latent variable
(� = 0). Another possibility that gives more leeway is to pick any � : [0, 1] ! [0, 1] and set

↵(t) =
p

1 � �2(t) cos( 1
2⇡t), �(t) =

p
1 � �2(t) sin( 1

2⇡t). (4.6)

With � = 0, this was the choice preferred in [1]. As shown in Theorem 2.6, the presence of the
latent variable �(t)z for � 6= 0 smooths both the density ⇢(t) and the velocity b defined in (2.9)
spatially, which provides a computational advantage at sample generation time because it simplifies
the required numerical integration of (2.28), (2.29), and (2.30). Intuitively, this is because the density

25

✏
=

0.
0

trigonometric: �(t) = 0 trigonometric: �(t) =
p

2t(1 � t) encoding-decoding: �(t) = sin2(�t)

✏
=

0.
5

0.00 0.25 0.50 0.75 1.00
time

✏
=

5.
0

0.00 0.25 0.50 0.75 1.00
time

0.00 0.25 0.50 0.75 1.00
time

Figure 8: The e↵ect of ✏ on sample trajectories. A visualization of how the choice of ✏ a↵ects
the sample trajectories obtained by solving the ODE (2.28) or the forward SDE (2.29). The set-up
is the same as in Figure 5: ⇢0 and ⇢1 are taken to be the same Gaussian mixture densities as in
Figure 5, and the analytical expressions for b and s are used. In the three panels in each column the
value of � is the same, and each panel shows trajectories with di↵erent ✏. Three specific trajectories
from the same three initial conditions drawn from ⇢0 are also highlighted in white in every panel.
As ✏ increases but � stays the same, the density ⇢(t) is unchanged, but the individual trajectories
become increasingly stochastic. While all choices are equivalent with exact b and s, Theorem 2.21
shows that nonzero values of ✏ provide control on the likelihood in terms of the error in b and s when
they are approximate.

associated backward SDE for (4.26), which can then be used as a generative model. Since the solution
of (4.26) from the initial condition Zt=0 = x0 reads

Zt = x0e
�t +

p
2

Z t

0
e
�t+s

dWs, (4.27)

the law of Zt conditional on Zt=0 = x0 is given at any time t 2 [0, 1) by

Zt ⇠ N(x0e
�t

, (1 � e
�2t)). (4.28)

As a result, the time-dependent density of the OU process in (4.26) coincides with the density of the
infinite-horizon one-sided stochastic interpolant

yt = x0e
�t +

p
1 � e�2t z, x0 ⇠ ⇢0, z ⇠ N(0, Id), t 2 [0, 1). (4.29)

Infinite-horizon. The above stochastic interpolant does not satisfy a key property that we impose
in this paper – namely, the density of yt only converges to N(0, Id) as t ! 1. In SBDM, this is
handled by capping the evolution of Zt to a finite time interval [0, T ] with T < 1 and using the
backward SDE associated with (4.26) restricted to [0, T ]. However, this introduces an additional
source of error that is not present with the finite-time one-sided interpolation procedure introduced
in the previous section, because the final conditions used for the backwards SDE in SBDM are drawn
from N(0, Id) even though the density of the process (4.26) is not exactly Gaussian at time T .

30

Choice of stochastic interpolant  
fixes the connecting PDF ρ(t)

ODE and SDE sample  
the same  in different waysρ(t)

ODE gives one-to-one map; 
SDE samples  more broadly  
from any 

ρ1
x0 ∼ ρ0

Slide credit: Eric Vanden-eijden



Flow vs Diffusion vs Stochastic localization

  ⇔ Xt=1 ∼ Z Xt=0 ∼ P0

dXt

dt
= b(Xt , t) , Xt=1 = z

Flow-Based sampling

ODE-based

[Rezende and Shakir Mohamed ’15; Dinh, 
Sohl-Dickstein, and Bengio ’16; Chen, 
Rubanova, Bettencourt, and Duvenaud ’18; 
Albergo and Vanden-Eijnden ’23; Lipman, 
Chen, Ben-Hamu, Nickel, and Le ’23; …]

dXt = b(Xt, t)dt + 2ϵ(t)dZt

SDE

Diffusion-based sampling

[Sohl-Dickstein, Weiss, Maheswaranathan, 
Ganguli ’15; Ho, Jain, and Abbeel ’20; Song, 
Ermon ’19; Song, Sohl-Dickstein, Kingma, 
Kumar, Ermon, and Poole ’19 …]

  ⇔ Xt=1 ∼ Z Xt=0 ∼ P0

Stochastic localisation sampling

Xt+δt = Xt + 𝔼[X0 |Xt]δt + Z δt

SDE

  ⇔ Xt=0 = δ(X) Xt=∞ ∼ P0

[Eldan ’13; Chen and Eldan ’22; 
El Alaoui, Montanari, Sellke 
’22; Montanari Wu ’03….]

Tilting field Target measure

P(x |x(t) = Xt) =
1

Z(Yt)
exp ( α(t)

β(t)2
⟨Xt, x⟩ −

α(t)2

2β(t)2
∥x∥2) P0(x)

All leads to the 
same denoising 

problem



In practice: 
Successive denoising!



Denoising

Denoising auto-encoders



Denoising auto-encoders

Denoising



Generating images by 
Iterative denoising



Generating images by 
Iterative denoising



Generation d’image par  
“Nettoyage successif”


