
Exercices sur la détermination des courbes couple-vitesse $(C-\Omega)$ et couple puissance $(P-\Omega)$ d'une turbine éolienne

Description

Une turbine éolienne à axe horizontal a un rayon de 38.2 m. En connaissant la courbe C_P - λ nous souhaitons déterminer la caractéristique couple-vitesse de rotation de l'arbre de la turbine $(C-\Omega)$ dans une plage de variation de vitesse du vent $3\frac{m}{s} \le U_{\infty} \le 12\frac{m}{s}$. La densité de l'air est $\rho = 1.205 \text{ kg/m}^3$.

La discrétisation de la courbe C_{P} - λ est la suivante:

λ	C_P
1	0.015
2	0.06
3	0.16
3.5	0.27
3.75	0.33
4	0.379
4.5	0.437
5	0.483
5.5	0.506
6	0.523
6.5	0.537
7	0.541
7.5	0.538
8	0.535
8.5	0.532
9	0.527
10	0.515
11	0.49
12	0.449
13	0.397
14	0.322
15	0.242

Questions

- 1. Calculer la puissance et le couple de la turbine en correspondance une vitesse du vent $U_{\infty} = 5 \frac{m}{s}$ et $\lambda = 8$
- 2. Déterminer les courbes couple-vitesse (C- Ω) et couple puissance (P- Ω) en correspondance de la plage de variation de vitesse du vent $3\frac{m}{s} \le U_{\infty} \le 12\frac{m}{s}$.

Solution

Pour chaque valeur de vitesse du vent et chaque valeur de λ il est possible d'évaluer la valeur correspondante de la vitesse de rotation de l'arbre de la turbine Ω par l'équation suivante :

$$\Omega = \frac{\lambda \cdot U_{\infty}}{R} \; ;$$

Par exemple pour la vitesse du vent $U_{\infty} = 5 \frac{m}{s}$ et $\lambda = 8$ nous avons une valeur de la vitesse de la turbine Ω :

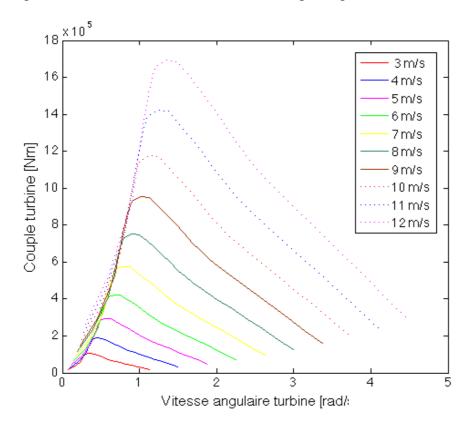
$$\Omega = \frac{8 \cdot 5 \, m/s}{38.2 \, m} = 1.047 \, rad \, / \sec$$

Dès que toutes les valeurs possibles de Ω ont étés déterminées, il est possible d'évaluer la puissance de la turbine (pour chaque valeur de la vitesse du vent U_{∞} et chaque valeur de C_P) par l'équation suivante :

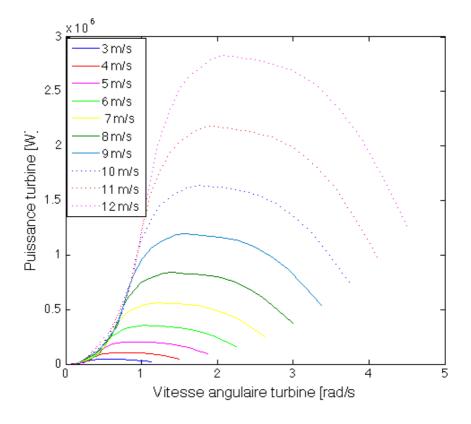
$$P = \frac{1}{2} \rho A_D U_{\infty}^3 C_P$$

Par exemple, pour $\lambda = 8$ nous, on a que C_P est égal à 0.535 (voir tableau) nous avons une valeur de puissance de:

$$P = \frac{1}{2}1.205 \, kg/m^3 \cdot \pi \cdot (38.2m)^2 \cdot (5m/s)^3 \cdot 0.535 = 0.185 \, MW$$


Le couple correspondant est calculé à l'aide de l'équation suivante :

$$C = \frac{P}{\Omega}$$


et pour le point de fonctionnement considéré donne lieu à :

$$C = \frac{0.185 \cdot 10^6 W}{1.047 \, rad/s} = 0.177 \, MNm.$$

Pour une vitesse du vent fixé e U_{∞} , on peut varier Ω (donc λ) et construire la courbe (C- Ω) et pour chaque vitesse du vent, on obtient une courbe spécifique.

On peut aussi obtenir la courbe $(P-\Omega)$ pour chaque vitesse du vent.

