Traitement des signaux

Section d'Electricité 5ème semestre

Prof. Pascal Frossard Laboratoire de traitement de signal (LTS4) EPFL

Traitement des signaux, automne 2024 Prof. Pascal Frossard

2

Agenda 2024

• 2ème partie - Prof. Pascal Frossard

9.10	cours	Structure des systèmes linéaires		
10.10	cours / labo	Structure des systèmes linéaires		
16.10	lab	Structure des systèmes linéaires		
17.10	révision	1ère moitié du cours		
30.10	examen midterm			
31.10	cours	Filtres RIF		
6.11	cours / lab	Filtres RIF		
7.11	lab	Filtres RIF		
13.11	cours	Filtres RII		
14.11	cours / lab	Filtres RII		
20.11	lab	Filtres RII		
21.11	cours	Estimation et prédiction linéaire		
27.11	cours/lab	Estimation et prédiction linéaire		
28.11	lab	Estimation et prédiction linéaire		
4.12	cours	Analyse spectrale		
5.12	lab	Analyse spectrale		
11.12	révision	2ème moitié du cours		
12.12				
18.12	examen final	Examen sur la 2ème moitié du cours		
19.12				

Support de cours

Support du cours

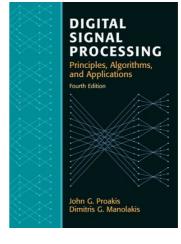
- Vos notes manuscrites

- Vidéos / transparents disponibles sur le moodle

- livre de référence conseillé : John G. Proakis and Dimitris G. Manolakis, «Digital

Signal Processing», Prentice All, 2007

· Chapitres 10, 12 et 14



Traitement des signaux, automne 2024 Prof. Pascal Frossard

4

Quelques transformées fréquentes

TABLE 3.3 Some Common z-Transform Pairs

Signal, x(n)		z-Transform, X(z)	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos \omega_0 n) u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
8	$(\sin \omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
9	$(a^n\cos\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin \omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Filtres numériques (structures)

Prof. Pascal Frossard Laboratoire de traitement de signal (LTS4) EPFL

Traitement des signaux, automne 2024 Prof. Pascal Frossard

6

Plan

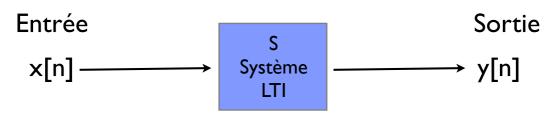
- A. Structures des filtres numériques
- B. Construction de filtres RIF
- C. Construction de filtres RII

A. Structure de filtres numériques

- Types de filtres (RIF, RII)
- · Réalisations transversales et récursives
- Implémentation par approximation de filtres idéaux

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Filtres numériques



• Les filtres forment une sous-classe des systèmes, les systèmes linéaires et invariants dans le temps (LTI)

Linéaire:
$$S[ax_1(k) + bx_2(k)] = aS[x_1(k)] + bS[x_2(k)]$$

Invariant (TI):
$$y(k) = S[x(k)] \Leftrightarrow y(k - k_0) = S[x(k - k_0)], \forall k_0 \in \mathbb{Z}$$

• Comme pour tout LTI, la réponse impulsionnelle *h(k)* caractérise de façon univoque le système

$$y(k) = \sum_{l=-\infty}^{\infty} x(l)h(k-l) = x(k) * h(k)$$

Réponse à une sinusoïde

· Considérons un système LTI excité par le signal

$$x(n) = Ae^{j\omega n}, \quad -\infty < n < \infty$$

Par convolution, la réponse du système LTI devient

$$y(n) = \sum_{k=-\infty}^{\infty} h(k) \left[A e^{j\omega(n-k)} \right] = A \left[\sum_{k=-\infty}^{\infty} h(k) e^{-j\omega k} \right] e^{j\omega n}$$

$$y(n) = AH(\omega) e^{j\omega n}$$

- La réponse du système est un signal avec la même fréquence, mais dont l'amplitude est changée par le système LTI de fonction de transfert $H(\omega)$
- Par linéarité, ceci s'étend à des signaux $\,x(n)\,$ qui sont des sommes de sinusoïdes simples

Traitement des signaux, automne 2024 Prof. Pascal Frossard

10

Exemple 1a: sinusoïde simple

• Considérons le signal d'entrée

$$x(n) = A \exp\left(\frac{j\pi n}{2}\right)$$

Considérons le système LTI caractérisé par

$$h(n) = \left(\frac{1}{2}\right)^n u(n) \qquad H(\omega) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

• On peut écrire la sortie du système

A
$$\omega = \frac{\pi}{2}$$
 on a $H\left(\frac{\pi}{2}\right) = \frac{1}{1+j\frac{1}{2}} = \frac{2}{\sqrt{5}}e^{-j26.6^{\circ}}$

$$\text{Donc} \ \ y(n) = A \left(\frac{2}{\sqrt{5}} e^{-j26.6^\circ} \right) e^{j\pi n/2} \quad \text{ou} \ \ y(n) = \frac{2}{\sqrt{5}} A e^{j(\pi n/2 - 26.6^\circ)}$$

Exemple 1b: somme de sinusoïdes

- Considérons le signal d'entrée $x(n) = 10 5\sin\frac{\pi}{2}n + 20\cos\pi n$
- Considérons le système LTI caractérisé par $H(\omega)=\frac{1}{1-\frac{1}{2}e^{-j\omega}}$
- On peut écrire la sortie du système

A
$$\omega=0$$
 on a $H(0)=\frac{1}{1-\frac{1}{2}}=2$ A $\omega=\frac{\pi}{2}$ on a $H\left(\frac{\pi}{2}\right)=\frac{1}{1+j\frac{1}{2}}=\frac{2}{\sqrt{5}}e^{-j26.6^\circ}$ A $\omega=\pi$ on a $H(\pi)=\frac{2}{3}$

Donc
$$y(n) = 20 - \frac{10}{\sqrt{5}} \sin\left(\frac{\pi}{2}n - 26.6^{\circ}\right) + \frac{40}{3}\cos\pi n$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

12

Exemple 1c: fonction de transfert

Determine the magnitude and phase of $H(\omega)$ for the three-point moving average (MA) system

$$y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$$

and plot these two functions for $0 \le \omega \le \pi$.

Solution. Since

$$h(n) = \{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\}$$

it follows that

$$H(\omega) = \frac{1}{3}(e^{j\omega} + 1 + e^{-j\omega}) = \frac{1}{3}(1 + 2\cos\omega)$$

Hence

$$|H(\omega)| = \frac{1}{3}|1 + 2\cos\omega|$$

$$\Theta(\omega) = \begin{cases} 0, & 0 \le \omega \le 2\pi/3 \\ \pi, & 2\pi/3 \le \omega < \pi \end{cases}$$

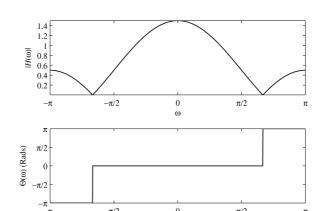
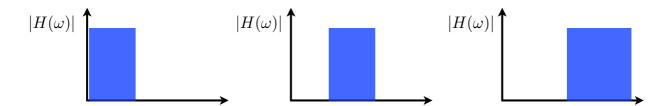


Figure 5.1.1 Magnitude and phase responses for the MA system in Example 5.1.2.

Figure de [1].

Filtrage



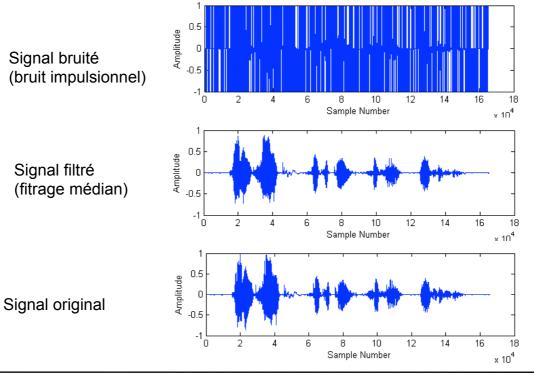
 Le filtrage consiste à modifier le contenu fréquentiel du signal par l'action multiplicative de la transformée de Fourier de la réponse impulsionnelle

$$y(k) = x(k) * h(k) \Leftrightarrow Y(\omega) = X(\omega)H(\omega)$$
$$|Y(\omega)| = |X(\omega)||H(\omega)|$$
$$\arg(Y(\omega)) = \arg(X(\omega)) + \arg(H(\omega))$$
$$S_{yy}(\omega) = |H(\omega)|^2 S_{xx}(\omega)$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

14

Illustration - débruitage



Demo from [3].

Illustration - débruitage d'image

Image bruitée

Image filtrée

Traitement des signaux, automne 2024 Prof. Pascal Frossard

16

Types de filtres numériques

- Les filtres numériques sont groupés en 2 grandes familles, selon les caractéristiques de la réponse impulsionnelle.
 - les filtres à réponse impulsionnelle finie (RIF)

$$h(k) = 0, \quad \forall k \notin [k_0, k_0 + L - 1]$$
$$|h(k)| < \infty, \quad \forall k$$

- les filtres à réponse impulsionnelle infinie (RII)

$$\exists k \ge k_0 \mid h(k) \ne 0$$
$$\sum_{k=k_0}^{\infty} |h(k)| < \infty$$

Fonction de transfert H(z)

 Les filtres numériques peuvent être caractérisés par leur fonction de transfert H(z)

$$H(z) = \frac{Y(z)}{X(z)}$$

$$y(k) = \sum_{l=-\infty}^{\infty} x(l)h(k-l) \Leftrightarrow Y(z) = X(z)H(z)$$

- En général, la fonction de transfert est une fonction rationnelle en z
 - en particulier, les systèmes caractérisés par:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

conduisent à

$$H(z) = \sum_{k=0}^{M} b_k z^{-k}$$
 Réalisations non-récursives

$$H(z) = rac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$
 Réalisations récursives

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.2-start ₁₈

Struct. des filtres numériques

- A partir de la fonction de transfert ou de la réponse impulsionnelle, on peut construire un filtre numérique sous plusieurs formes
 - le choix dépend en particulier du type du filtre (RII ou RIF)
 - le choix dépend aussi de contraintes d'implémentation (stabilité, etc)
- Filtres RIF
 - Forme directe (filtre 'tout-zéro', donné par la réponse impulsionnelle)
 - Forme en cascade (décomposition en produits de filtres de 2ème ordre)
 - Forme en treillis
 - Forme à échantillonnage de fréquence
- Filtres RII
 - Forme directe (implémentation de la structure récursive, formes I ou II)
 - Forme en cascade (décomposition en produits de filtres de 2ème ordre)
 - Forme parallèle (décomposition en somme de filtres de 2ème ordre)
 - Forme en treillis ou treillis-échelle

Forme directe de filtres

- Réalisations transversale ou non-récursive
 - toujours réalisable pour les filtres RIF
 - p. ex., pour un système causal

$$y(k) = \sum_{m=0}^{M} b_m x(k-m)$$
 $y(k) = \sum_{m=0}^{M} h(m)x(k-m)$

- Réalisation récursive (équations aux différences)
 - utilisée pour les filtres RII (et RIF)

$$\sum_{n=0}^{N} a_n y(k-n) = \sum_{m=0}^{M} b_m x(k-m)$$

- p.ex., pour un système causal, et $a_0 \neq 0$

$$y(k) = \sum_{m=0}^{M} \frac{b_m}{a_0} x(k-m) - \sum_{n=1}^{N} \frac{a_n}{a_0} y(k-n)$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

20

Structure non-récursive (directe)

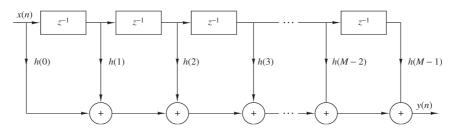


Figure 9.2.1 Direct-form realization of FIR system.

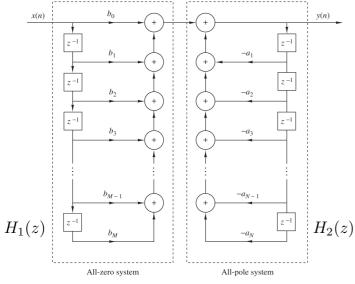
$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$

$$H(z) = \sum_{k=0}^{M-1} b_k z^{-k} = \sum_{k=0}^{M-1} h(k) z^{-k}$$

- Structure non-récursive
 - série d'éléments retard
 - les coefficients correspondent aux valeurs de la réponse impulsionnelle
 - filtre avec zéros, sans pôle

Structure récursive (directe)

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} = H_1(z) H_2(z)$$



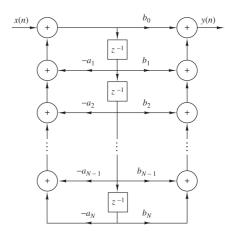


Figure 9.3.2 Direct form II realization (N = M).

(Structure canonique équivalente)

Figure 9.3.1 Direct form I realization.

Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.1-end 22

Exemple 2: filtres simples

Le moyenneur (RIF, non-récursif):

$$y(n) = \frac{1}{M+1} \sum_{m=0}^{M} x(n-m)$$

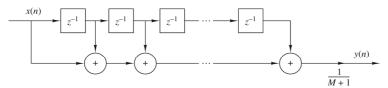
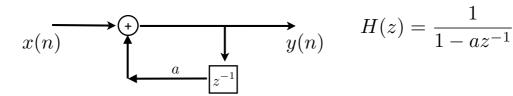


Figure 2.5.5 Nonrecursive realization of an FIR moving average system.

Figure from [1].

• L'accumulateur (RII, récursif):

$$y(n) = x(n) + ay(n-1)$$

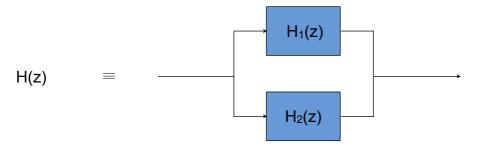


Décomposition en filtres simples

- Les filtres numériques sont souvent réalisés par une décomposition en filtres élémentaires
 - structure en série (cascade)

$$H(z) \equiv H_1(z) \longrightarrow H_2(z)$$

structure en parallèle



Traitement des signaux, automne 2024 Prof. Pascal Frossard

24

Modules: filtres du 2ème ordre

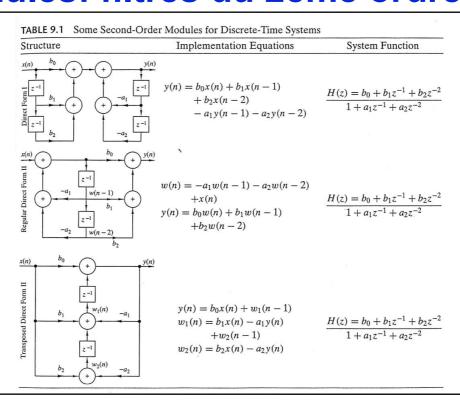


Table from [1].

Factorisation de H(z)

$$H(z) = \frac{b_0 + \sum_{m=1}^{M} b_m z^{-m}}{a_0 + \sum_{n=1}^{N} a_n z^{-n}}$$

 Par le théorème fondamental de l'algèbre on peut toujours factoriser H(z) en produits de facteurs (zéros / pôles)

$$H(z) = \frac{p_0 \prod_{m=1}^{M} (1 - z_m z^{-1})}{d_0 \prod_{n=1}^{N} (1 - p_n z^{-1})} = z^{N-M} \frac{p_0 \prod_{m=1}^{M} (z - z_m)}{d_0 \prod_{n=1}^{N} (z - p_n)}$$

- Les pôles et zéros sont donnés respectivement par $\{p_n\}$ et $\{z_m\}$
- Le système a un pôle ou zéro d'ordre |N-M| en z=0.

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Décomposition en série

• Par factorisation, on obtient une décomposition de la forme:

$$H(z) = C H_1(z) H_2(z) \dots H_K(z)$$

 C est une constante, et les autres termes représentent des systèmes qui ont des pôles ou zéros réels simples, ou en paires complexes conjuguées

$$H_i(z) = rac{b_{i0} + b_{i1}z^{-1}}{1 - a_iz^{-1}}$$
 ou $H_i(z) = rac{b_{i0} + b_{i1}z^{-1} + b_{i2}z^{-2}}{1 + a_{i1}z^{-1} + a_{i2}z^{-2}}$

Série de filtres de 2ème ordre

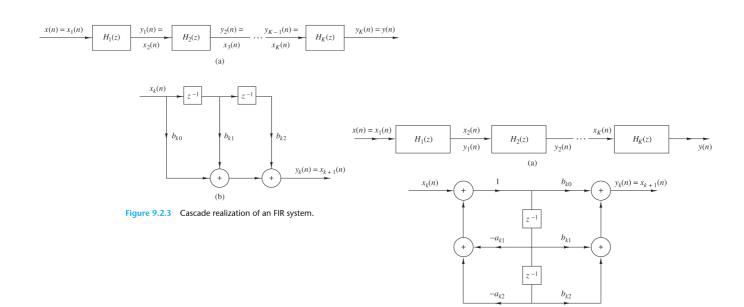


Figure 9.3.8 Cascade structure of second-order systems and a realization of each second-order section.

Figures de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

28

Exemple 3

· Considérons la fonction système suivante

$$H(z) = \frac{10(1-1/2z^{-1})(1-2/3z^{-1})(1+2z^{-1})}{(1-3/4z^{-1})(1-1/8z^{-1})[1-(1/2+j1/2)z^{-1}][1-(1/2-j1/2)z^{-1}]}$$

On peut la décomposer en

$$H_1(z) = \frac{1 - 2/3z^{-1}}{1 - 7/8z^{-1} + 3/32z^{-2}}$$

$$H_2(z) = \frac{1 + 3/2z^{-1} - z^{-2}}{1 - z^{-1} + 1/2z^{-2}}$$

• Ce qui donne

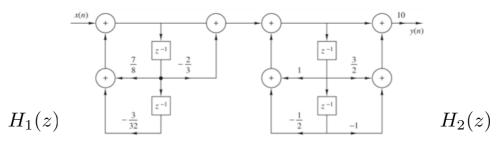


Figure de [1].

H(z) en fractions partielles

• On peut obtenir une décomposition en fractions partielles où

$$H(z) = \frac{P(z)}{Q(z)} = S(z) + \frac{P_0(z)}{Q_0(z)}$$

- S(z) est un polynôme de degré M-N si M > N (ou C si M=N)
- le degré de P_0 est inférieur à celui de Q_0

$$\frac{P_0(z)}{Q_0(z)} = \sum_{i=1}^N \frac{\alpha_i}{z - p_i} \qquad \qquad \alpha_i = (z - p_i) \frac{P_0(z)}{Q_0(z)} \quad \bigg|_{z = p_i}$$

- s'il y a des pôles multiples (p.ex. un pôle d'ordre q)

$$\frac{P_0(z)}{Q_0(z)} = \sum_{i=1, i \neq k}^{N} \frac{\alpha_i}{z - p_i} + \sum_{j=1}^{q} \frac{\beta_j}{(z - p_k)^j}$$

$$\beta_j = \frac{1}{(q-j)!} \frac{\partial^{q-j}}{\partial z^{q-j}} \left[(z - p_k)^q \frac{P_0(z)}{Q_0(z)} \right] \bigg|_{z = p_k}$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

30

Décomposition en parallèle

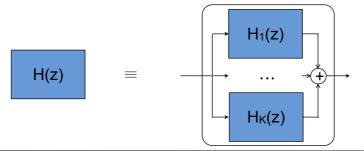
• La décomposition en fractions partielles donne

$$H(z) = S(z) + H_1(z) + H_2(z) + \dots + H_K(z)$$

• S'il n'y a que des pôles simples (ou conjugués complexes)

$$H_i(z) = \frac{b_i}{1 + a_i z^{-1}} \qquad \text{OU} \qquad H_i(z) = \frac{b_{i_0} + b_{i_1} z^{-1}}{1 + a_{i_1} z^{-1} + a_{i_2} z^{-2}}$$

• On a donc $H(z) = \sum_{k=1}^{M-N} c_k z^{-k} + \sum_{k=1}^{K_1} H_k^1(z) + \sum_{k=1}^{K_2} H_k^2(z)$



Exemple 4

· Considérons un système causal avec

$$H(z) = \frac{1}{1 - 3z^{-1} + 2z^{-2}} \qquad |z| > 2$$

- S(z) est nul. Les pôles de H(z) sont donnés par les zéros du dénominateur: $z^{-1}=1$ et $z^{-1}=1/2$
- On a donc $H(z) = \frac{1/2}{(z^{-1} 1)(z^{-1} 1/2)} = \frac{\alpha_1}{z^{-1} 1} + \frac{\alpha_2}{z^{-1} 1/2}$
- En utilisant la relation pour déterminer les coefficients

$$H(z) = \frac{1}{z^{-1} - 1} - \frac{1}{z^{-1} - 1/2} = \frac{2}{1 - 2z^{-1}} - \frac{1}{1 - z^{-1}}$$

- Comme $x(k) = a^k u(k) \leftrightarrow X(z) = \frac{1}{1 az^{-1}}, \text{ pour } |z| > |a|$
- Sa réponse impulsionnelle est

$$h(k) = (2^{k+1} - 1)u(k)$$

Traitement des signaux, automne 2024
Prof. Pascal Frossard

32

Exemple 5 - équ. série/parallèle

• Donner les réalisations en série et parallèle pour le système

$$H(z) = \frac{10(1 - 1/2z^{-1})(1 - 2/3z^{-1})(1 + 2z^{-1})}{(1 - 3/4z^{-1})(1 - 1/8z^{-1})(1 - (1/2 + j/2)z^{-1})(1 - (1/2 - j/2)z^{-1})}$$

• La réalisation en série peut s'obtenir par groupement de termes

$$H_1(z) = \frac{1 - 2/3z^{-1}}{1 - 7/8z^{-1} + 3/32z^{-2}} \qquad H_2(z) = \frac{1 + 3/2z^{-1} - z^{-2}}{1 - z^{-1} + 1/2z^{-2}} \qquad H(z) = 10H_1(z)H_2(z)$$

• La réalisation parallèle résulte de l'expansion en fractions partielles

$$H(z) = \frac{A_1}{1 - 3/4z^{-1}} + \frac{A_2}{1 - 1/8z^{-1}} + \frac{A_3}{1 - (1/2 + j/2)z^{-1}} + \frac{A_3^*}{1 - (1/2 - j/2)z^{-1}}$$

- en groupant les termes, on obtient

$$H(z) = \frac{-14.75 - 12.90z^{-1}}{1 - 7/8z^{-1} + 3/32z^{-2}} + \frac{24.50 + 26.82z^{-1}}{1 - z^{-1} + 1/2z^{-2}}$$

Exemple 5 - réalisations équivalentes

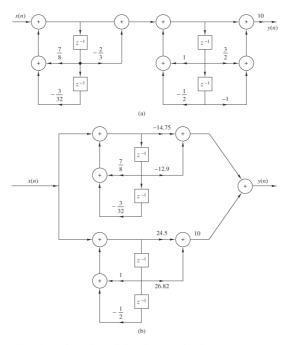


Figure 9.3.11 Cascade and parallel realizations for the system in Example 9.3.1.

Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.3-start 34

Filtres en treillis (lattice)

- Structure applicable à des filtres RIF et RII
- Structure modulaire et stable, très utilisée en pratique
- traitement de la parole
- traitement du signal en géophysique
- filtrage adaptatif
- Construction de filtres en treillis
- Structure RIF et équivalence avec la forme directe
- Structure RII tout-pôle par inversion du filtre RIF (tout-zéro)
- Filtre RII générique par intégration des structures en échelle et treillis tout-pôle

Séquences de filtres RIF

- Considérons une séquence de filtres RIF (tout-zéro):
- chaque filtre est caractérisé par

$$A_m(z) = 1 + \sum_{k=1}^m \alpha_m(k) z^{-k}$$

$$y(n) = x(n) + \sum_{k=1}^m \alpha_m(k) x(n-k)$$

$$x(n) = x(n) + \sum_{k=1}^{m} \alpha_m(k) x(n-k)$$
 (Forme directe)

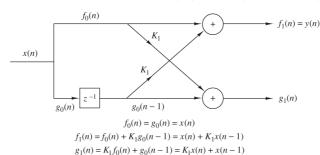
Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Filtre RIF en treillis

• Filtre du premier ordre:

$$y(n) = x(n) + \alpha_1(1)x(n-1)$$



$$K_1 = \alpha_1(1)$$
 paramètre de réflexion

• 2ème ordre: $y(n) = x(n) + \alpha_2(1)x(n-1) + \alpha_2(2)x(n-2)$

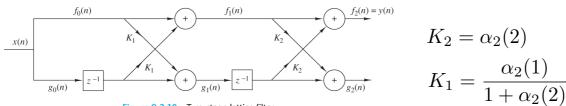
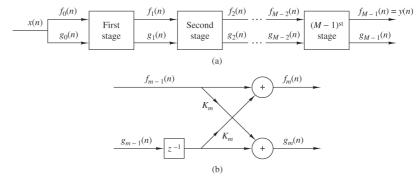


Figure 9.2.10 Two-stage lattice filter

Figures de [1].

Filtre RIF en treillis d'ordre M-1



 $\begin{cases} f_0(n) = g_0(n) = x(n) & \text{Figure 9.2.11} \quad (M-1)\text{-stage lattice filter.} \\ f_m(n) = f_{m-1}(n) + K_m g_{m-1}(n-1), \quad m=1,..,M-1 \\ g_m(n) = K_m f_{m-1}(n) + g_{m-1}(n-1), \quad m=1,..,M-1 \end{cases}$

$$y(n) = f_{M-1}(n) = \sum_{k=0}^{M-1} \alpha_{M-1}(k)x(n-k), \ \alpha_{M-1}(0) = 1$$

Equivalence avec RIF d'ordre M-1

$$H_{M-1}(z) = \frac{F_{M-1}(z)}{X(z)}$$

Figure de [1]

Traitement des signaux, automne 2024 Prof. Pascal Frossard

38

Et l'autre sortie du filtre en treillis?

- Filtre du premier ordre: $g_1(n) = K_1 x(n) + x(n-1)$ avec $K_1 = \alpha_1(1)$
- Filtre du 2ème ordre:

$$g_2(n) = K_2 f_1(n) + g_1(n-1)$$

$$= K_2 x(n) + K_1(1+K_2)x(n-1) + x(n-2)$$

$$= \alpha_2(2)x(n) + \alpha_2(1)x(n-1) + x(n-2)$$

• On remarque que les coefficients sont les mêmes que pour le filtre $A_m(z)$, mais dans l'ordre inverse:

$$g_m(n)=\sum_{k=0}^m\beta_m(k)x(n-k)$$
 avec $\beta_m(k)=\alpha_m(m-k), \ k=0,1,\dots,m$ et $\beta_m(m)=1$

Fonctions de transfert du treillis

• Première sortie:
$$A_m(z) = \frac{F_m(z)}{X(z)}$$

• Deuxième sortie (polynôme réciproque): $B_m(z) = \frac{G_m(z)}{X(z)}$

$$B_{m}(z) = \sum_{k=0}^{m} \alpha_{m}(m-k)z^{-k}$$

$$= \sum_{l=0}^{m} \alpha_{m}(l)z^{l-m} = z^{-m} \sum_{l=0}^{m} \alpha_{m}(l)z^{l}$$

$$= z^{-m} A_{m}(z^{-1})$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

40

Forme récursive en z

• On peut écrire les équations récursives du treillis dans le domaine z:

$$F_0(z) = G_0(z) = X(z)$$

$$F_m(z) = F_{m-1}(z) + K_m z^{-1} G_{m-1}(z), \quad m = 1, 2, ..., M-1$$

$$G_m(z) = K_m F_{m-1}(z) + z^{-1} G_{m-1}(z), \quad m = 1, 2, ..., M-1$$

• En divisant par X(z):

$$A_0(z) = B_0(z) = 1$$

$$A_m(z) = A_{m-1}(z) + K_m z^{-1} B_{m-1}(z), \quad m = 1, 2, ..., M - 1$$

$$B_m(z) = K_m A_{m-1}(z) + z^{-1} B_{m-1}(z), \quad m = 1, 2, ..., M - 1$$

Ou alors:

$$\begin{bmatrix} A_m(z) \\ B_m(z) \end{bmatrix} = \begin{bmatrix} 1 & K_m \\ K_m & 1 \end{bmatrix} \begin{bmatrix} A_{m-1}(z) \\ z^{-1}B_{m-1}(z) \end{bmatrix}$$

Filtre treillis tout-pôle à partir de RIF

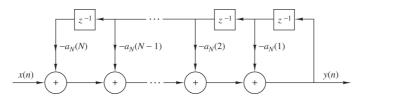


Figure 9.3.12 Direct-form realization of an all-pole system.

 $H(z) = \frac{1}{1 + \sum_{k=1}^{N} a_N(k) z^{-k}} = \frac{1}{A_N(z)}$ Système tout-pôle:

$$y(n) = -\sum_{k=1}^{N} a_N(k)y(n-k) + x(n)$$

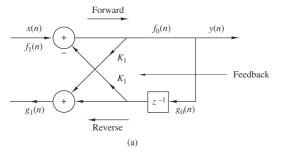
- Si on inverse entrée et sortie, on a $y(n)=x(n)+\sum_{k=1}^N a_N(k)x(n-k)$ c'est la réponse d'un filtre RIF $H(x)=A_N(x)$ c'est la réponse d'un filtre RIF $H(z)=A_N(z)$
 - le système tout-pôle peut être obtenu à partir du système RIF en inter-changeant entrée et sortie

Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

(Forme directe)

Filtre treillis tout-pôle



$$y(n) = x(n) - K_1 y(n-1)$$

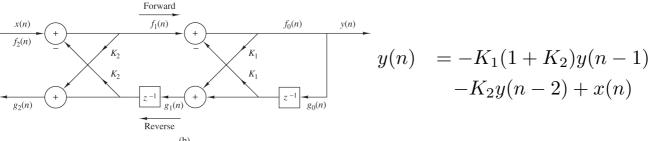


Figure 9.3.14 Single-pole and two-pole lattice system.

Stable si tous les pôles sont dans le cercle unité: $|K_m| < 1$, $\forall m$

Filtres avec pôles et zéros

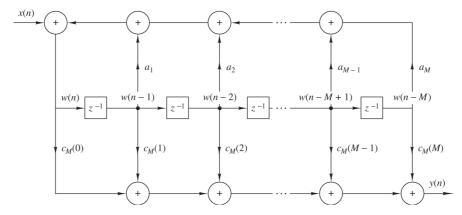


Figure 9.3.15 Direct form II realization of IIR system.

Figure de [1].

$$H(z) = \frac{\sum_{k=0}^{M} c_M(k) z^{-k}}{1 + \sum_{k=1}^{N} a_N(k) z^{-k}} = \frac{C_M(z)}{A_N(z)}$$
$$w(n) = -\sum_{k=1}^{N} a_N(k) w(n-k) + x(n) \qquad y(n) = \sum_{k=0}^{M} c_M(k) w(n-k)$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

44

Structure en treillis-échelle

- Filtre RII avec à la fois des pôles et des zéros (lattice-ladder)
 - transposition de la forme canonique

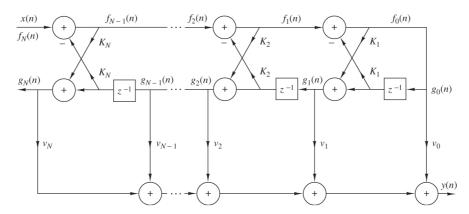


Figure 9.3.16 Lattice-ladder structure for the realization of a pole–zero system.

$$y(n) = \sum_{k=0}^M v_m g_m(n) \hspace{1cm} \\ \hspace{1cm} C_M(z) = \sum_{m=0}^M v_m B_m(z) \hspace{0.2cm} \text{dans} \hspace{0.2cm} H(z) = \frac{C_M(z)}{A_N(z)}$$

Figure de [1].

Struct. à échantillonnage de fréq.

Construction par échantillonnage de la réponse fréquentielle $H(\omega)$ à $\omega_k = \frac{2\pi}{M}(k+\alpha)$

$$H(k+\alpha) \equiv H\left(\frac{2\pi}{M}(k+\alpha)\right) = \sum_{n=0}^{M-1} h(n) e^{-j2\pi(k+\alpha)n/M}, \ k=0,1,...,M-1$$

$$h(n) = \frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha) e^{j2\pi(k+\alpha)n/M}, \ n = 0, 1, ..., M-1$$

$$H(z) = \sum_{n=0}^{M-1} \frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha) e^{j2\pi(k+\alpha)n/M} z^{-n}$$

$$H(z) = \sum_{k=0}^{M-1} H\left(k+\alpha\right) \left[\frac{1}{M} \sum_{n=0}^{M-1} \left(e^{j2\pi(k+\alpha)/M} z^{-1}\right)^n\right]$$

Forme générale:

$$H(z) = \frac{1 - z^{-M} e^{j2\pi\alpha}}{M} \sum_{k=0}^{M-1} \frac{H(k+\alpha)}{1 - e^{j2\pi(k+\alpha)/M} z^{-1}}$$

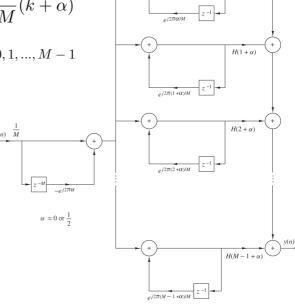


Figure de [1].

Figure 9.2.5 Frequency-sampling realization of FIR filter.

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.4-start 46

Analyse de H(z)

• La réponse d'un filtre dépend du placement des pôles et zéros dans le cercle unité

$$H(z) = b_0 \frac{\prod_{m=1}^{M} (1 - z_m z^{-1})}{\prod_{n=1}^{N} (1 - p_n z^{-1})}$$

Interprétation géométrique

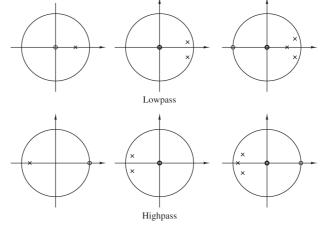
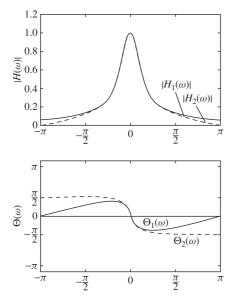


Figure 5.4.2 Pole–zero patterns for several lowpass and highpass filters.

Figure de [1].

Exemples de filtres à pôle simple



 $\begin{array}{c}
1.2 \\
1.0 \\
0.8 \\
\hline{\underbrace{\hat{s}}} \\
0.4 \\
0.2 \\
0 \\
-\pi \\
-\frac{\pi}{2} \\
0 \\
0 \\
-\frac{\pi}{2}
\end{array}$

Figure 5.4.3 Magnitude and phase response of (1) a single-pole filter and (2) a one-pole, one-zero filter; $H_1(z) = (1-a)/(1-az^{-1})$, $H_2(z) = [(1-a)/2][(1+z^{-1})/(1-az^{-1})]$ and a=0.9.

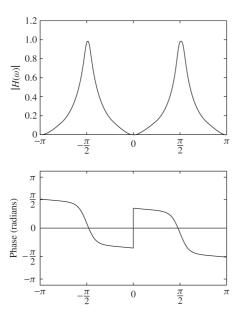
Figure 5.4.4 Magnitude and phase response of a simple highpass filter; $H(z) = [(1-a)/2][(1-z^{-1})/(1+az^{-1})]$ with a=0.9.

Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

48

Exemples de filtres simples



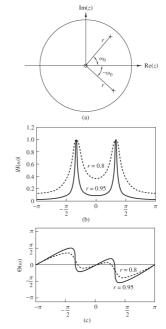
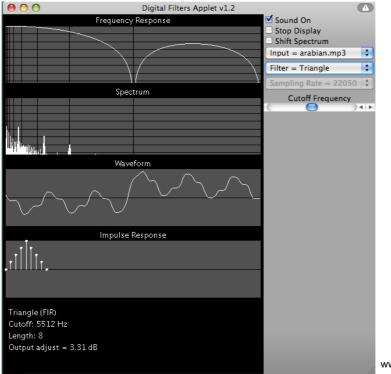


Figure 5.4.5 Magnitude and phase response of a simple bandpass filter in Example 5.4.2; $H(z)=0.15[(1-z^{-2})/(1+0.7z^{-2})].$

Figure 5.4.6 (a) Pole–zero pattern and (b) the corresponding magnitude and phase response of a digital resonator with (1) r=0.8 and (2) r=0.95.

Let's play...



www.falstad.com/dfilter/index.html

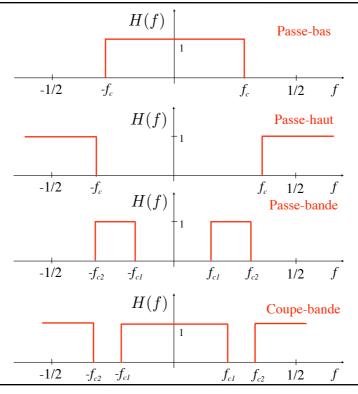
Traitement des signaux, automne 2024 Prof. Pascal Frossard

Constr. de filtres numériques

- Objectif: trouver les coefficients qui donnent une bonne approximation de la réponse désirée, sous une contrainte de causalité
 - Méthodes spécifiques aux filtres numériques
 - Méthodes d'approximation de filtres analogiques
- En général, on préfère les filtres RII
 - Oscillations plus petites dans la bande coupée
 - Implémentation avec moins de paramètres que RIF
- Filtres RIF si la réponse de phase doit être linéaire:

$$arg(H(\omega)) = \beta + \alpha \omega$$

Classification des filtres idéaux



Traitement des signaux, automne 2024 Prof. Pascal Frossard

Idéal n'est pas causal...

- En traitement de signal temps réel, on ne peut réaliser que des filtres causals
- Considérons le filtre passe-bas idéal:

$$H(\omega) = \begin{cases} 1, & \text{pour } |\omega| \le \omega_c \\ 0, & \text{pour } \omega_c < |\omega| \le \pi \end{cases} \quad h(n) = \begin{cases} \frac{\omega_c}{\pi}, & \text{pour } n = 0 \\ \frac{\omega_c}{\pi} \frac{\sin \omega_c n}{\omega_c n}, & \text{pour } n \ne 0 \end{cases}$$

Figure 10.1.1 Unit sample response of an ideal lowpass filter.

Ce filtre est clairement non-causal, donc non réalisable

Figure de [1].

Conditions de causalité

- Théorême de Paley-Wiener
 - Si h(k) a une énergie finie, et h(k) = 0 pour k < 0, alors

$$\int_{-\pi}^{\pi} |\ln|H(\omega)| |d\omega| < \infty$$

- A l'inverse, si $|H(\omega)|^2$ est intégrable et si l'intégrale ci-dessus est finie, alors $H(\omega)=|H(\omega)|e^{j\arg H(\omega)}$ représente un filtre causal
- La magnitude d'un filtre causal ne peut donc être identiquement nulle sur une bande de fréquence finie.
 - Un filtre idéal ne peut être causal

Traitement des signaux, automne 2024 Prof. Pascal Frossard

54

Relation entre comp. réelles et imag.

 On peut décomposer la réponse impulsionnelle en parties paire et impaire

$$h(k) = h_e(k) + h_o(k)$$

Si h(k) est causal

$$h(k) = 2h_e(k)u(k) - h_e(0)\delta(k), \ k \ge 0$$
$$h(k) = 2h_o(k)u(k) + h(0)\delta(k), \ k \ge 1$$
$$h_e(k) = h_o(k), \ k > 1$$

- Par Fourier, $h_e(k) \leftrightarrow H_R(\omega)$ et $h_o(k) \leftrightarrow H_I(\omega)$
- Donc les parties réelle et imaginaire sont inter-dépendantes, pour un système causal

- transf. de Hilbert discrète
$$H_I(\omega) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} H_R(\lambda) \cot \frac{\omega - \lambda}{2} d\lambda$$

Contraintes due à la causalité

- La condition de causalité pour les systèmes pratiques, implique:
 - la réponse fréquentielle du filtre ne peut être nulle qu'en un certain nombre fini de points
 - les transitions entre bandes passante et coupée ne peuvent pas être arbitrairement abruptes
 - les parties imaginaires et réelles de la réponse fréquentielle sont liées par la transformée de Hilbert discrète
 - l'amplitude et la phase de la réponse fréquentielle ne peuvent être choisies arbitrairement
- On se limite ici aux systèmes décrits par l'équation aux différences
 - et en particulier aux systèmes causals et physiquement réalisables

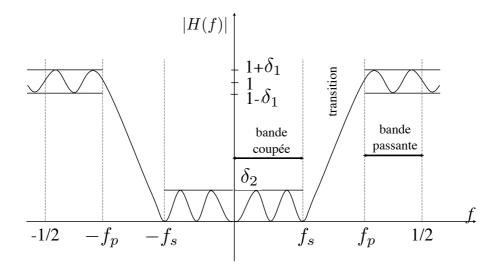
$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.4-end 56

Approximation de la réponse idéale

- Caractéristiques spécifiées dans le domaine fréquentiel
 - Caractéristiques données par un gabarit
 - Réponses d'amplitude et de phase (inter-dépendantes en pratique)



Filtres numériques (Filtres RIF)

Prof. Pascal Frossard Laboratoire de traitement de signal (LTS4) EPFL

Traitement des signaux, automne 2024 Prof. Pascal Frossard

60

Plan

- A. Structures des filtres numériques
- B. Construction de filtres RIF
- C. Construction de filtres RII

B. Filtres RIF

- Caractéristiques de filtres RIF
- Synthèse par fenêtrage
- Synthèse par échantillonnage fréquentiel

Traitement des signaux, automne 2024 Prof. Pascal Frossard

62

Caractéristiques des filtres RIF

- · Les filtres RIF sont toujours stables
 - Si les valeurs de la réponse impulsionnelle sont bornées
- Ils sont définis par les éléments de leur réponse impulsionnelle
- Ils peuvent être représentés par un polynôme de degré *M-1 en z-1 (ou en z)*
 - A partir de la réponse impulsionnelle
- Ils sont causals si leur réponse impulsionnelle h(k) est nulle pour k<0
 - Sinon, il suffit de décaler cette réponse.
- Ils peuvent être à phase linéaire

$$\arg (H(\omega)) = \beta + \alpha \omega, \ -\pi \le \omega \le \pi$$
$$\beta = 0 \ or \ \pm \pi/2 \ or - \pi$$
$$\alpha = const$$

Filtres RIF à réponse de phase nulle

- Idéalement, une phase nulle permet d'éviter la distorsion de phase
- Pour avoir une phase nulle, il faut que la partie imaginaire soit nulle

$$H(f) = \sum_{k=k_0}^{k_0+M-1} h(k)e^{-j2\pi fk}$$

$$H(f) = \sum_{k=k_0}^{k_0+M-1} h(k)\cos 2\pi fk - j\left[\sum_{k=k_0}^{k_0+M-1} h(k)\sin 2\pi fk\right]$$

- il faut que la réponse impulsionnelle soit paire

$$h(k) = h(-k)$$
, pour $|k| \le \frac{M-1}{2}$

- un tel filtre n'est par contre pas causal, donc pas réalisable

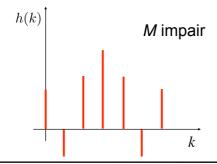
Traitement des signaux, automne 2024 Prof. Pascal Frossard

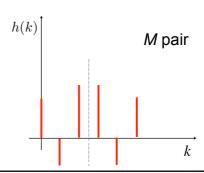
Filtres RIF à phase linéaire

 On peut rendre causal le filtre à réponse de phase nulle, par décalage de la réponse impulsionnelle

$$H'(f) = H(f)e^{-j\pi f(M-1)}$$

- la phase devient alors linéaire: $\arg(H'(f)) = -\pi(M-1)f = -rac{\omega(M-1)}{2}$
- la condition de symétrie devient h(k) = h(M-1-k)





RIF causal: symétrie/asymétrie

• Un filtre RIF causal peut être caractérisé par: $H(z) = \sum_{k=0}^{M-1} h(k)z^{-k}$

$$y(k) = \sum_{m=0}^{M-1} b_m x(k-m) = \sum_{m=0}^{M-1} h(m)x(k-m)$$

• Si le filtre est à phase linéaire

$$h(k) = \pm h(M - 1 - k), \ k = 0, 1, ..., M - 1$$

• En utilisant ces propriétés de symétrie, on peut écrire

$$z^{-(M-1)}H(z^{-1}) = \pm H(z)$$

- Les zéros de $H(z^{-1})$ sont aussi les zéros de H(z)
 - si z est un zéro, 1/z est aussi un zéro, de même que z* et 1/z* si h(n) est réelle

Traitement des signaux, automne 2024 Prof. Pascal Frossard

66

RIF causal à ph. linéaire: zéros

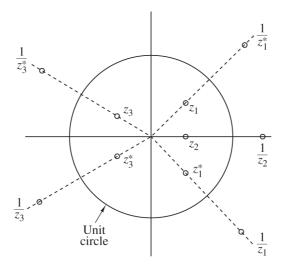


Figure 10.2.1 Symmetry of zero locations for a linear-phase FIR filter.

Construction de filtres RIF

• Filtres RIF donnés par:

$$y(n) = \sum_{k=0}^{M-1} b_k x(n-k)$$

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k) \qquad H(z) = \sum_{k=0}^{M-1} h(k)z^{-k}$$

$$H(z) = \sum_{k=0}^{M-1} h(k)z^{-k}$$

- Construction à partir de l'objectif $H_d(\omega)$
 - Synthèse par séries de Fourier
 - Approximation analytique de h(k)
 - Un fenêtrage est généralement nécessaire
 - Echantillonnage fréquentiel

$$H_d(\omega) = \sum_{n=0}^{\infty} h_d(n)e^{-j\omega n}$$

- Réalisation à partir de la réponse impulsionnelle h(k)
 - Convolution directe / TFD
 - Réalisation non-récursive ou récursive

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Synthèse par fenêtrage

- Construction par approximation de la réponse impulsionnelle
- La réponse impulsionnelle désirée est généralement infinie

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\omega) e^{j\omega n} d\omega$$

On peut la limiter en multipliant par une fenêtre rectangulaire

$$w(n) = \begin{cases} 1, & \text{pour } n = 0, 1, ..., M - 1 \\ 0, & \text{sinon.} \end{cases}$$
 $h(n) = h_d(n)w(n)$

Cela équivaut à une convolution dans le domaine fréquentiel

$$H(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\nu) W(\omega - \nu) d\nu$$
$$W(\omega) = \sum_{n=0}^{M-1} w(n) e^{-j\omega n}$$

Fenêtre rectangulaire: choix naturel

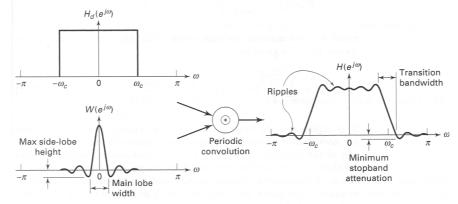


FIGURE 7.8 Windowing operation in the frequency domain

$$W(\omega) = \frac{\sin \omega M/2}{\sin \omega/2} e^{-j\omega(M-1)/2}$$

$$|W(\omega)| = \frac{|\sin (\omega M/2)|}{|\sin (\omega/2)|}, -\pi \le \omega \le \pi$$

$$(-\omega) \frac{M-1}{2} \quad \text{pour } \sin(\omega M/2) \ge 0$$

$$\arg(W(\omega)) = \begin{cases} -\omega \frac{M-1}{2}, & \text{pour } \sin(\omega M/2) \ge 0 \\ -\omega \frac{M-1}{2} + \pi, & \text{pour } \sin(\omega M/2) < 0 \end{cases}$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

70

Quelle fenêtre?

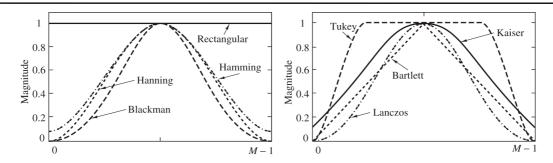


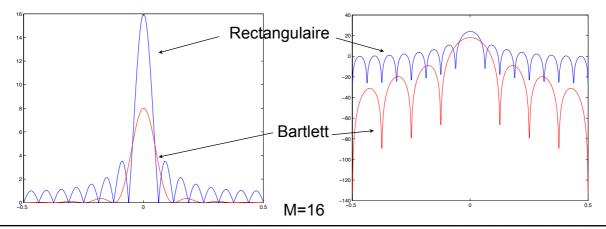
Figure 10.2.3 Shapes of several window functions.

- Le type de fenêtre influence la largeur du lobe principal, et la décroissance des lobes latéraux, dans la réponse fréquentielle
- Choix de la fenêtre
 - Compromis entre effets de Gibbs et lissage
- Choix de la taille de la fenêtre
 - On peut se baser sur la réponse impulsionnelle si elle est connue
 - On peut prendre en compte la résolution spectrale

Figure de [1].

Fenêtre triangulaire (Bartlett)

$$w_T(k) = \begin{cases} 1 - \frac{2|k|}{M}, & |k| \le M/2 \\ 0, & \text{sinon} \end{cases}$$
$$W_T(\omega) = \frac{2}{M} \left(\frac{\sin \pi \omega M/2}{\sin \pi \omega} \right)^2$$



Traitement des signaux, automne 2024 Prof. Pascal Frossard

72

Hanning et Hamming

$$w_H(k) = \left\{ egin{array}{ll} (1-lpha) + lpha\cosrac{2\pi k}{M-1} & 0 \leq k \leq M-1 \\ 0, & ext{sinon} \end{array}
ight.$$
 $lpha = 0.5 \quad ext{Hanning}$ $lpha = 0.46 \quad ext{Hamming}$

- But: atténuer les lobes secondaires
 - Superposition linéaire de trois répliques de la même fenêtre spectrale, avec un décalage de 1/M

$$w_H(k) = \frac{\alpha}{2} \left(e^{j2\pi k/M} + \frac{2(1-\alpha)}{\alpha} + e^{-j2\pi k/M} \right)$$

Et les autres...

TABLE 10.1	Window Functions for FIR Filter Design		
Name of	Time-domain sequence,		
window	$h(n), 0 \le n \le M - 1$		
Bartlett (trian	$1 - \frac{2\left n - \frac{M-1}{2}\right }{M-1}$		
Blackman	$0.42 - 0.5\cos\frac{2\pi n}{M - 1} + 0.08\cos\frac{4\pi n}{M - 1}$		
Hamming	$0.54 - 0.46\cos\frac{2\pi n}{M - 1}$		
Hanning	$\frac{1}{2}\left(1-\cos\frac{2\pi n}{M-1}\right)$		
Kaiser	$\frac{I_0 \left[\alpha \sqrt{\left(\frac{M-1}{2}\right)^2 - \left(n - \frac{M-1}{2}\right)^2} \right]}{I_0 \left[\alpha \left(\frac{M-1}{2}\right) \right]}$		
Lanczos	$\left\{\frac{\sin\left[2\pi\left(n-\frac{M-1}{2}\right)\middle/(M-1)\right]}{2\pi\left(n-\frac{M-1}{2}\right)\middle/\left(\frac{M-1}{2}\right)}\right\}^{L}, \ L>0$		
Tukey	$1, \left n - \frac{M-1}{2} \right \le \alpha \frac{M-1}{2}, \qquad 0 < \alpha < 1$ $\frac{1}{2} \left[1 + \cos \left(\frac{n - (1+a)(M-1)/2}{(1-\alpha)(M-1)/2} \pi \right) \right]$		
,	$2\left\lfloor \frac{(1-\alpha)(M-1)/2}{2} \right\rfloor$ $\alpha(M-1)/2 \le \left n - \frac{M-1}{2} \right \le \frac{M-1}{2}$		

Traitement des signaux, automne 2024 Prof. Pascal Frossard

74

Exemple: Filtre RIF passe-bas

• En tenant compte de la condition de causalité

$$H_d(\omega) = \begin{cases} 1e^{-j\omega(M-1)/2}, & \text{pour } 0 \le |\omega| \le \omega_c \\ 0, & \text{sinon.} \end{cases}$$

$$h_d(n) = \frac{\sin \omega_c(n - (M-1)/2)}{\pi(n - (M-1)/2)}, \ n \neq (M-1)/2$$

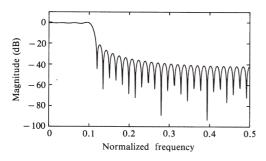
Après application d'une fenêtre rectangulaire

$$h(n) = \frac{\sin \omega_c (n - (M-1)/2)}{\pi (n - (M-1)/2)}, \quad 0 \le n \le M - 1, \quad n \ne (M-1)/2$$

Figure 10.2.7 Lowpass filter designed with a rectangular window: (a) M=61 and (b) M=101.

Figure de [1].

Même filtre avec d'autres fenêtres



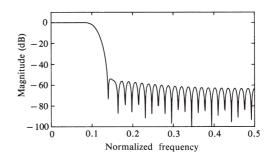
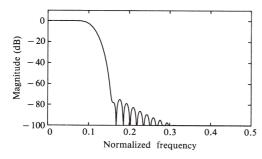


Figure 10.2.8 Lowpass FIR filter designed with rectangular window (M = 61). Figure 10.2.9 Lowpass FIR filter designed with Hamming window (M = 61).



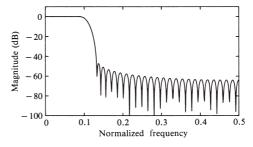


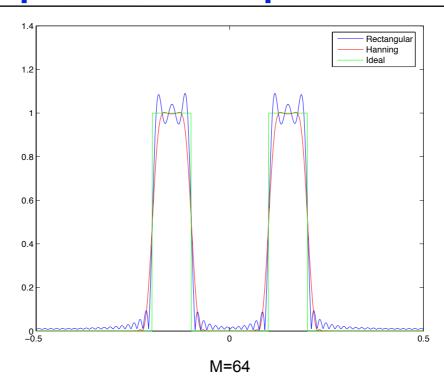
Figure 10.2.10 Lowpass FIR filter designed with Blackman window (M = 61).

Figure 10.2.11 Lowpass FIR filter designed with $\alpha=4$ Kaiser window (M = 61).Figures de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.5-end 76

Exemple: Filtre RIF passe-bande



Synth. par échantillonnage fréq.

• La réponse fréquentielle désirée $H(\omega)$ est spécifiée à plusieurs valeurs de fréquence

$$\omega_k = \frac{2\pi}{M}(k+\alpha)$$
 $k = 0, 1, ..., (M-1)/2, \ M \ odd$ $k = 0, 1, ..., M/2 - 1, \ M \ even$ $\alpha = 0 \ or \ 1/2$

 On peut obtenir la réponse impulsionnelle à partir de ses échantillons

$$H(k+\alpha) \equiv H\left(\frac{2\pi}{M}(k+\alpha)\right) = \sum_{n=0}^{M-1} h(n)e^{-j2\pi(k+\alpha)n/M}, \ k = 0, 1, ..., M-1$$
$$h(n) = \frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha)e^{j2\pi(k+\alpha)n/M}, \ n = 0, 1, ..., M-1$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

78

Filtre RIF par échantillonnage fréq.

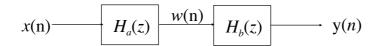
• A partir de h(n) on peut écrire: $H(z) = \sum_{n=0}^{M-1} \frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha) e^{j2\pi(k+\alpha)n/M} z^{-n}$

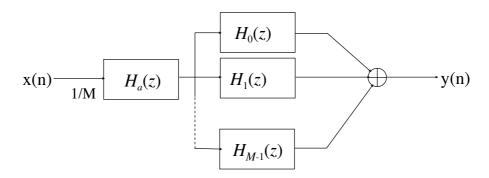
$$H(z) = \frac{1 - z^{-M} e^{j2\pi\alpha}}{M} \sum_{k=0}^{M-1} \frac{H(k+\alpha)}{1 - e^{j2\pi(k+\alpha)/M} z^{-1}}$$

- Pour réduire les lobes latéraux, il est important d'optimiser le comportement dans la bande de transition
- Réduction de complexité en utilisant les symétries
 - h(n) a des propriétés de symétrie si le filtre a une phase linéaire
 - comme $\mathit{h(n)}$ est réel, on a $H(k+\alpha) = H^*(M-k-\alpha)$
- Un échantillonnage efficace présente un grand avantage
 - La plupart des échantillons $H(k+\alpha)$ sont nuls, ou unitaires

Structure du filtre RIF par éch. fréq.

$$H(z) = \frac{1 - z^{-M} e^{j2\pi\alpha}}{M} \sum_{k=0}^{M-1} \frac{H(k+\alpha)}{1 - e^{j2\pi(k+\alpha)/M} z^{-1}}$$





Traitement des signaux, automne 2024 Prof. Pascal Frossard

80

Réalisation du filtre RIF par éch. fréq.

$$H(z) = \frac{1 - z^{-M} e^{j2\pi\alpha}}{M} \sum_{k=0}^{M-1} \frac{H(k+\alpha)}{1 - e^{j2\pi(k+\alpha)/M} z^{-1}}$$

Mise en cascade de deux filtres

$$H(z) = \frac{1}{M} H_a(z) H_b(z)$$

• Un filtre tout-zéro

$$H_a(z) = 1 - z^{-M}$$
 $w(n) = \frac{x(n) - x(n - M)}{M}$

• Un filtre tout-pôle

$$H_b(z) = \sum_{k=0}^{M-1} H(k) \frac{1}{1 - e^{j2\pi k/M} z^{-1}} = \sum_{k=0}^{M-1} H_k(z)$$

$$y_k(n) - e^{j2\pi k/M} y_k(n-1) = H(k)w(n)$$

Combinaison tout-pôle / tout-zéro

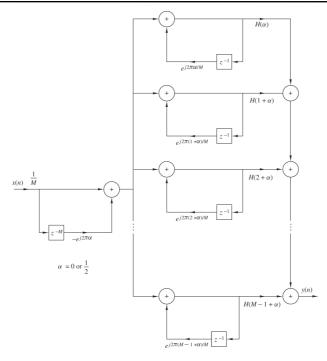


Figure de [1].

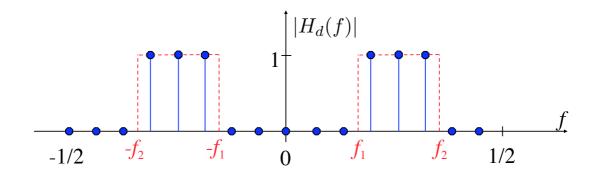
Figure 9.2.5 Frequency-sampling realization of FIR filter.

Traitement des signaux, automne 2024 Prof. Pascal Frossard

82

Exemple 6: filtre passe-bande RIF

- Réalisation récursive de filtre passe-bande
 - Durée finie, M = 16



$$H_3(z) = \frac{-1.662 (1 - z^{-1})}{1 - 0.765 z^{-1} + z^{-2}} \qquad H_5(z) = \frac{-1.112 (1 - z^{-1})}{1 + 0.765 z^{-1} + z^{-2}}$$
$$H_4(z) = \frac{1.414 (1 - z^{-1})}{1 + z^{-2}}$$

Exemple 6: filtre passe-bande RIF (2)

Le filtre tout-zéro donne

$$w(n) = 1/16 (x(n) - x(n - 16))$$

Les filtres récursifs donnent

$$y_3(n) = -1.662 (w(n) - w(n-1)) + 0.765 y_3(n-1) - y_3(n-2)$$
$$y_4(n) = 1.414 (w(n) - w(n-1)) - y_4(n-2)$$
$$y_5(n) = -1.112 (w(n) - w(n-1)) - 0.765 y_5(n-1) - y_5(n-2)$$

Finalement

$$y(n) = y_3(n) + y_4(n) + y_5(n)$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

84

Robustesse aux imprécisions

- Idéalement, les zéros et les pôles s'annulent dans la méthode par échantillonnage de fréquence
 - ils sont tous sur le cercle unité
 - en cas d'imprécision, le comportement du filtre change
- On peut ramener les pôles et zéros sur un cercle légèrement inférieur à l'unité, pour plus de robustesse
 - Le bruit dû aux imprécisions devient borné
 - Le filtre devient stable

$$H(z) = \frac{1 - r^{M} z^{-M} e^{j2\pi\alpha}}{M} \sum_{k=0}^{M-1} \frac{H(k+\alpha)}{1 - r e^{j2\pi(k+\alpha)/M} z^{-1}}$$
$$r = 1 - \epsilon$$

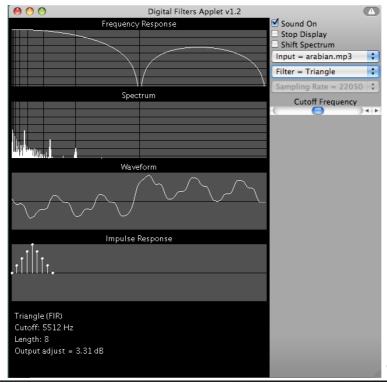
Comparaisons des méthodes

- Historiquement, le fenêtrage est la première méthode utilisée pour des filtres RIF à phase linéaire
 - Manque de contrôle précis des fréquences critiques
- Les méthodes d'échantillonnage fréquentiel sont ensuite devenues très populaires
 - Attractif quand le filtre est réalisé par DFT
 - La réponse fréquentielle est généralement 0 ou 1, sauf dans la bande de transition (multiples de $2\pi/M$)
- Méthodes d'optimisation numérique (Chebyshev) donne un contrôle total sur les spécifications
 - Diluer l'erreur d'approximation dans les bandes passante et coupée pour minimiser le lobe latéral maximal
 - Plusieurs softwares permettent de résoudre ce problème

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.6-end 86

Let's play again...



www.falstad.com/dfilter/index.html

Filtres numériques (Filtres RII)

Prof. Pascal Frossard Laboratoire de traitement de signal (LTS4) EPFL

Traitement des signaux, automne 2024 Prof. Pascal Frossard

90

Plan

- A. Structures des filtres numériques
- B. Construction de filtres RIF
- C. Construction de filtres RII

- Caractéristiques de filtres RII
- Conversion de filtres analogiques
- Réalisation de filtres RII
- Réponse de phase des filtres numériques

Traitement des signaux, automne 2024 Prof. Pascal Frossard

92

Caractéristiques de filtres RII

- Plus flexibles que les filtres RIF, mais stabilité pas garantie
- Construction de filtres RII par conversion de filtres analogiques en filtres numériques
- La construction de filtres analogiques est très bien maîtrisée:
 - Fonction de transfert: $H_a(s) = \frac{B(s)}{A(s)} = \frac{\sum_{k=0}^M \beta_k s^k}{\sum_{k=0}^N \alpha_k s^k}$
 - Réponse impulsionnelle: $H_a(s) = \int_{-\infty}^{\infty} h(t) e^{-st} dt$
 - Equations différentielles: $\sum_{k=0}^N \alpha_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^M \beta_k \frac{d^k x(t)}{dt^k}$
 - Ces trois relations conduisent à différentes méthodes pour la conversion du filtre dans le domaine numérique

Conversion s ↔ z

- Un système analogique invariant est stable si tous ses pôles ont une partie réelle négative (partie gauche du plan des s)
- La conversion doit avoir les propriétés suivantes:
 - L'axe imaginaire en s devrait correspondre au cercle unité en z
 - · Ceci conduirait à une relation directe entre la fréquence dans les 2 domaines
 - Re[s] < 0 devrait correspondre à |z| < 1
 - · Un filtre analogique stable devient ainsi un filtre numérique stable
 - La fréquence d'échantillonnage 1/T va apparaître explicitement
- On ne peut pas réaliser un filtre causal RII avec une phase linéaire
 - La symétrie introduit des pôles hors du cercle unité: il ne peut pas être stable

$$h(k) = \pm h(-k) \iff H(z) = \pm z^{-(M-1)}H(z^{-1})$$

- Le filtre RII est essentiellement caractérisé par sa réponse d'amplitude
- Si la phase doit être linéaire, on construit un filtre RIF

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Equivalence de la dérivation

· Approximation par équation aux différences

$$y(t) \longrightarrow H(s) = s \longrightarrow H(z) = \frac{y(nT) - y(nT - T)}{T} = \frac{y(n) - y(n - 1)}{T}$$

$$y(t) \longrightarrow H(s) = s \longrightarrow \frac{dy(t)}{dt}$$

$$y(n) \longrightarrow H(z) = \frac{1 - z^{-1}}{T} \longrightarrow \frac{y(n) - y(n - 1)}{T}$$

• Equivalence finalement donnée par:

$$s = \frac{1 - z^{-1}}{T}$$

$$H(z) = H_a(s)|_{s=(1-z^{-1})/T}$$

Relation entre les plans s et z

- Equivalence donnée par $s=rac{1-z^{-1}}{T}$ ou $z=rac{1}{1-sT}$
- Si on se concentre sur l'axe imaginaire du plan des s: $s=j\Omega$

$$z = \frac{1}{1 - j\Omega T} = \frac{1}{1 + \Omega^2 T^2} + j\frac{\Omega T}{1 + \Omega^2 T^2}$$

 Cela correspond à un cercle de rayon 1/2 centré en z=1/2.

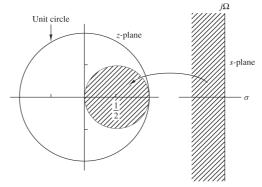


Figure 10.3.2 The mapping $s=(1-z^{-1})/T$ takes LHP in the s-plane into points inside the circle of radius $\frac{1}{2}$ and center $z=\frac{1}{2}$ in the z-plane.

Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

96

Equiv. de la dérivation: propriétés

- Les points de la partie gauche du plan de s correspondent à l'intérieur du cercle unité en z
 - Stabilité préservée
- Les pôles potentiels sont par contre confinés dans les basses fréquences
 - Méthode utilisable seulement pour la construction de filtres passe-bas ou passe-bande avec basse fréquence de coupure
- La diminution de T (= augmentation de la fréquence d'échantillonnage) entraîne une concentration de la transformée de Fourier autour de z=1

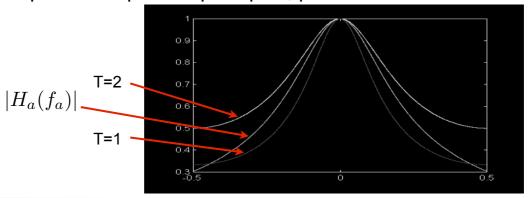
Exemple 7: filtre passe-bas

• Filtre passe-bas donné par: $H_a(s) = rac{1}{s+1}$ $H_a(f) = rac{1}{1+j2\pi f_a}$

• En appliquant la transformation:

$$H(z) = H_a(s)|_{s=(1-z^{-1})/T} = \frac{T}{1+T-z^{-1}}$$

• Si on prend une période principale, pour $z=e^{j2\pi fT}$



Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.7-end 98

Exemple 8: filtre passe-bande

Convertir le filtre analogique passe-bande $H_a(s) = \frac{1}{(s+0.1)^2+9}$

• En utilisant l'équivalence de la dérivation $H(z) = \frac{1}{(\frac{1-z^{-1}}{T} + 0.1)^2 + 9}$

$$H(z) = \frac{T^2/(1 + 0.2T + 9.01T^2)}{1 - \frac{2(1 + 0.1T)}{1 + 0.2T + 9.01T^2}z^{-1} + \frac{1}{1 + 0.2T + 9.01T^2}z^{-2}}$$

- T doit être choisi suffisamment petit pour que les pôles soient proches du cercle unité, pour que leur effet soit important
 - p.ex., si $T=0.1\,$

$$p_{1,2} = 0.91 \pm j0.27 = 0.949e^{\pm j16.5^{\circ}}$$

Equiv. de la rép. impulsionnelle

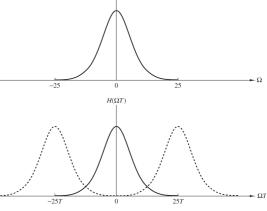
 Echantillonnage de la réponse impulsionnelle du filtre analogique

$$h(n) \equiv h_a(nT)$$

 L'échantillonnage introduit une périodicité dans le domaine fréquentiel

$$H(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} H_a \left(f - \frac{k}{T} \right)$$

 La fréquence d'échantillonnage doit être suffisamment grande pour éviter les recouvrements (aliasing)



 $H_a(\Omega T)$

Figure 10.3.3 Frequency response $H_a(\Omega)$ of the analog filter and frequency response of the corresponding digital filter with aliasing.

Traitement des signaux, automne 2024 Prof. Pascal Frossard

100

Equivalence Laplace - z

• On ne peut travailler avec h(n) directement (RII), mais plutôt H(z)

$$H_{a}(s) = \int_{-\infty}^{\infty} h_{a}(t) exp(-st) dt$$

$$h_{e}(t) = h_{a}(t) \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$H_{e}(s) = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h_{a}(t) \delta(t - kT) exp(-st) dt$$

$$= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} h_{a}(t) \delta(t - kT) exp(-st) dt$$

$$= \sum_{k=-\infty}^{\infty} h_{a}(kT) exp(-ksT) \qquad H(z)|_{z=exp(sT)} = H_{e}(s)$$

• La transformée de Laplace du signal échantillonné est la transformée en ${\it z}$ du signal numérique évaluée en $z=e^{sT}$

Conversion s ↔ z

• Si on écrit $\, s = \sigma + j \Omega \,$ et $\, z = r e^{j \omega} \,$, l'équivalence $z = e^{sT} \,$ donne

$$r = e^{\sigma T}$$
 et $\omega = \Omega T$

 $\begin{array}{ll} \bullet \ \, \mathsf{Donc} & \sigma < 0 \Rightarrow 0 < r < 1 \\ & \sigma > 0 \Rightarrow r > 1 \\ & \sigma = 0 \Rightarrow r = 1 \end{array}$

 La partie négative du plan des s devient l'intérieur du cercle unité en z

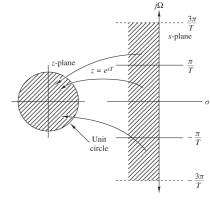


Figure 10.3.4 The mapping of $z=e^{sT}$ maps strips of width $2\pi/T$ (for $\sigma<0$) in the s-plane into points in the unit circle in the z-plane.

Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

102

Fonction avec pôles distincts

• Prenons un système caractérisé par des pôles simples

$$H_a(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k}$$
 $h_a(t) = \sum_{k=1}^{N} c_k e^{p_k t}, t \ge 0$

• Par échantillonnage de la réponse impulsionnelle analogique

$$h(n) = h_a(nT) = \sum_{k=1}^{N} c_k e^{p_k T n}$$

$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n} = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{N} c_k e^{p_k T n}\right) z^{-n} = \sum_{k=1}^{N} c_k \sum_{n=0}^{\infty} \left(e^{p_k T} z^{-1}\right)^n$$

$$H(z) = \sum_{n=0}^{N} \frac{c_k}{n!} \sum_{n=0}^{N} \frac{c_k}{n!} \sum_{n=0}^{N} \left(e^{p_k T} z^{-1}\right)^n$$

$$H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}$$

• Les pôles sont donnés par: $z_k = e^{p_k T}, \ k = 1, 2, ..., N$

Echantillonnage *h(t)*: propriétés

- Méthode par échantillonnage de la réponse impulsionnelle
 - Un pôle s_i en s correspond à un pôle $z_i = exp(s_i T)$ en z
 - Si Re[s_i] < 0, alors |z| < 1: le filtre numérique est stable
- Par la conversion z = exp(sT)
 - Une infinité de bandes horizontales (de largeur dépendante de 1/T) du plan des s est 'projetée' sur le cercle unité dans le plan des z
 - Recouvrements possibles, selon la valeur de T
 - Les filtres analogiques ne sont en pratique pas limités en fréquence, les recouvrements ne peuvent être totalement évités.
- La méthode s'applique essentiellement pour les filtres à basse fréquence de coupure
 - L'influence du recouvrement est moindre à basse fréquence

Traitement des signaux, automne 2024 Prof. Pascal Frossard

104

Exemple 9: filtre passe-bas

• Filtre passe-bas de type RC: $H_a(s) = \frac{1}{s+1/RC}$ $h_a(t) = e^{-t/RC}$

$$H_a(s) = \frac{1}{s + 1/RC}$$

$$h_a(t) = e^{-t/RC}$$

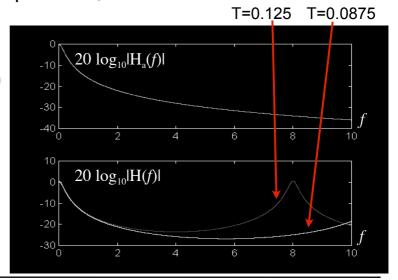
- Un pôle en -1/RC donne un pôle en $z_0 = e^{-\frac{T}{RC}}$
- Le filtrage peut être réalisé par

$$y(n) = x(n) + e^{-\frac{T}{RC}}y(n-1)$$

 Les fonctions de transfert sont:

$$H_a(f) = \frac{1}{1 + j2\pi RCf}$$

$$H(f) = \frac{1}{1 - e^{-\frac{T}{RC}}e^{-j2\pi fT}}$$



Exemple 10: passe-bande

- Convertissons le filtre analogique $H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$
- Le filtre a un zéro en s=-0.1 et deux pôles $p_k=-0.1\pm j3$
- On peut décomposer en fractions partielles

$$H(s) = \frac{1/2}{s + 0.1 - i3} + \frac{1/2}{s + 0.1 + i3}$$

Par l'équivalence de la réponse impulsionnelle

$$H(z) = \frac{1/2}{1 - e^{-0.1T}e^{j3T}z^{-1}} + \frac{1/2}{1 - e^{-0.1T}e^{-j3T}z^{-1}}$$

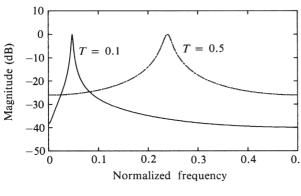
$$H(z) = \frac{1 - (e^{-0.1T}\cos 3T)z^{-1}}{1 - (2e^{-0.1T}\cos 3T)z^{-1} + e^{-0.2T}z^{-2}}$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

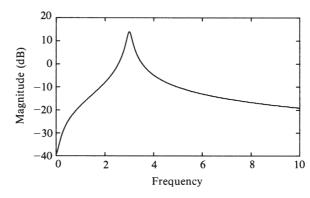
VideoDSP2.8-end 106

Exemple 10: passe-bande (2)

• Réponses fréquentielles du filtre passe-bande (résonateur)



Filtre numérique



Filtre analogique

- Le choix de T influence la fréquence de résonance
- Le recouvrement (aliasing) est plus faible pour T petit

EPFL

Equivalence de l'intégration

· Considérons l'intégration

$$y_a(t) = \int_{\alpha}^{t} x_a(u) du$$

• L'équivalent numérique est la règle trapézoïdale d'intégration

$$x_a(t)$$
 $x(n)$
 $x(n-1)$
 $y(n)$
 t
 T

$$y(n) = y(n-1) + \frac{T}{2} [x(n) + x(n-1)]$$

- $H(z) = \frac{T}{2} \frac{1+z^{-1}}{1+z^{-1}}$ • La transformée en z est
- Comme dans le plan des s, l'intégration correspond à la division par s, on a l'équivalence

uivalence
$$rac{1}{s} = rac{T}{2} rac{1+z^{-1}}{1-z^{-1}}$$
 $z = rac{1+sT/2}{1-sT/2}$

La relation d'équivalence s'appelle la transformation bilinéaire.

Traitement des signaux, automne 2024 Prof. Pascal Frossard

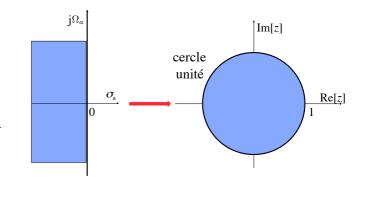
108

Transformation bilinéaire: s ↔ z

- En posant $z=re^{j\omega}$ et $s=\sigma+j\Omega$
- On obtient $s = \frac{2}{T} \frac{z - 1}{z + 1} = \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2r\cos\omega} + j \frac{2r\sin\omega}{1 + r^2 + 2r\cos\omega} \right)$
- Donc

$$\sigma = \frac{2}{T} \frac{r^2 - 1}{1 + r^2 + 2r\cos\omega} \qquad \text{et} \qquad \Omega = \frac{2}{T} \frac{2r\sin\omega}{1 + r^2 + 2r\cos\omega}$$

- $r > 1 \Rightarrow \sigma > 0$ On a $r < 1 \Rightarrow \sigma < 0$
- De plus, si $r=1 \Rightarrow \sigma=0$ $\Omega = \frac{2}{T} \frac{\sin \omega}{1 + \cos \omega} = \frac{2}{T} \tan \frac{\omega}{2}$ $\omega = 2 \arctan \frac{\Omega T}{2}$



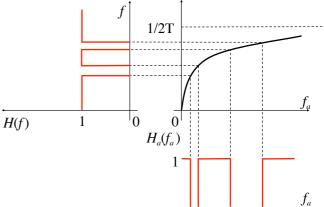
Correspondance des fréquences

 Transformée de Fourier du signal numérique en évaluant H(z) pour

$$z = e^{j2\pi fT}$$

• Avec $\omega = 2 \arctan \frac{\Omega T}{2}$ et $\Omega = 2 \pi f_a$

$$f = \frac{1}{\pi} \arctan(\pi f_a T)$$
$$f_a = \frac{1}{\pi T} \tan(\pi f)$$



La construction doit tenir compte de la distorsion!

Traitement des signaux, automne 2024 Prof. Pascal Frossard

110

Exemple 11: résonateur

- Convertissons le filtre analogique $H_a(s) = \frac{s+0.1}{(s+0.1)^2+16}$
- Le filtre analogique a une fréquence de résonance à $\,\Omega_r=4\,$
- Si on veut une fréquence de résonance numérique à $\,\omega_r=\pi/2\,$ on doit choisir $\,T=1/2\,$ selon la transformation des fréquences
- On a donc

$$s = 4\left(\frac{1 - z^{-1}}{1 + z^{-1}}\right)$$

$$H(z) = \frac{0.128 + 0.006z^{-1} - 0.122z^{-2}}{1 + 0.0006z^{-1} + 0.975z^{-2}}$$

• En négligeant le terme en z^{-1} au dénominateur, on obtient la bonne fréquence de résonance $p_{1,2}=0.987e^{\pm j\pi/2}$

Exemple 12: passe-bas

- Construisons un filtre passe-bas avec une fréquence de coupure de 0.2π à partir du filtre analogique $H(s) = \frac{\Omega_c}{s + \Omega_c}$
- Par la transformation des fréquences $~\Omega_c=2/T \tan 0.1\pi=0.65/T$
- Le filtre analogique devient $H(s) = \frac{0.65/T}{s + 0.65/T}$
- Par la transformation bilinéaire $H(z) = \frac{0.245(1+z^{-1})}{1-0.500z^{-1}}$ (Plus de T!)
- $H(\omega) = \frac{0.245(1 + e^{-j\omega})}{1 0.509e^{-j\omega}}$ • La réponse fréquentielle est - on a effectivement H(0) = 1

$$|H(0.2\pi)| = 0.707$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.10-start 112

Construction de filtres pb RII

- Spécifications du filtre numérique
- Transformations des spécifications dans le domaine analogique
 - distorsion de fréquence si usage de la transformation bilinéaire
- Construction du filtre analogique correspondant
- En général transformation bilinéaire
- Implémentation du filtre numérique résultant
- On travaille en général avec des filtres passe-bas analogiques bien connus
 - On effectue des transformations de fréquences pour obtenir passe-haut, passebande ou coupe-bande

Filtres analogiques p-b classiques

- La construction de filtres numériques RII s'effectue par conversion d'un filtre analogique (s ↔ z)
- Il reste à définir le filtre analogique qui remplit les spécifications désirées
- Le filtrage analogique est un domaine très étudié
 - Filtres de Butterworth
 - Filtres de Chebyshev
 - Filtres elliptiques
 - Filtres de Bessel

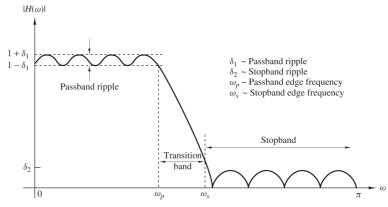


Figure 10.1.2 Magnitude characteristics of physically realizable filters.

Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

114

Filtre de Butterworth

- Filtre tout-pôle $|H(\Omega)|^2 = \frac{1}{1+(\Omega/\Omega_c)^{2N}} = \frac{1}{1+\epsilon^2(\Omega/\Omega_p)^{2N}}$
- Filtre monotone dans les bandes passante et coupée
- L'ordre du filtre est donné par

$$\frac{1}{1 + \epsilon^2 (\Omega_s / \Omega_p)^{2N}} = \delta_2^2$$

$$N = \frac{\log(\delta/\epsilon)}{\log(\Omega_s/\Omega_p)}$$

$$\delta_2 = 1/\sqrt{1+\delta^2}$$

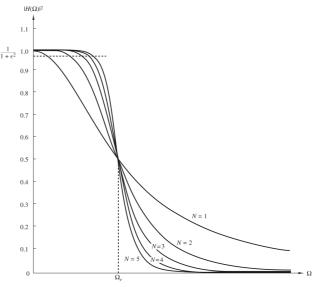


Figure 10.3.10 Frequency response of Butterworth filters.

Figure de [1].

Filtres de Chebyshev

- 2 types de filtres
 - filtre tout-pôle avec des oscillations dans la bande passante (Type I)

$$|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 T_N^2 (\Omega/\Omega_p)^{2N}}$$

- filtre avec pôles et zéros, oscillations dans la bande coupée (Type II)

$$|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 \left[T_N^2(\Omega_s/\Omega_p) / T_N^2(\Omega_s/\Omega) \right]}$$
$$T_N(x) = \begin{cases} \cos(N \cos^{-1}(x)), & \text{pour } |x| \le 1\\ \cosh(N \cosh^{-1}(x)), & \text{sinon.} \end{cases}$$

- L'ordre des filtres est donné par $N = \frac{\cosh^{-1}(\delta/\epsilon)}{\cosh^{-1}(\Omega_s/\Omega_p)}$
- Spécifications atteintes avec moins de pôles que Butterworth
 - Bande de transition plus petite pour le même nombre de pôles

Traitement des signaux, automne 2024 Prof. Pascal Frossard

116

Filtres de Chebyshev, illustration

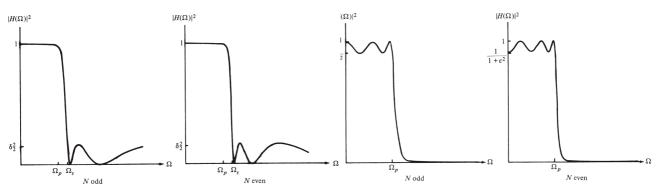


Figure 10.3.13 Type II Chebyshev filters.

Figure 10.3.11 Type I Chebyshev filter characteristic.

Filtres elliptiques

 Les filtres elliptiques (Cauer) ont un comportement 'equiripple' dans les bandes passante et coupée

$$|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 U_N(\Omega/\Omega_p)}$$

 $U_N(x)$ est la fonction elliptique (Jacobian) d'ordre N

- L'erreur d'approximation est répartie dans les deux bandes
 - Filtre d'ordre le plus petit pour des spécifications données
 - Pour un ordre donné, bande de transition la plus petite

$$N = \frac{K(\Omega_p/\Omega_s)K\left(\sqrt{1 - (\epsilon^2/\delta^2)}\right)}{K(\epsilon/\delta)K\left(\sqrt{1 - (\Omega_p/\Omega_s)^2}\right)} \qquad K(x) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - x^2 \sin^2 \theta}}$$

La réponse de phase est très non-linéaire dans la bande passante

Traitement des signaux, automne 2024 Prof. Pascal Frossard

118

Filtres elliptiques, illustration

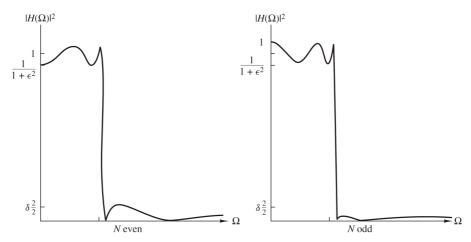


Figure 10.3.14 Magnitude-squared frequency characteristics of elliptic filters.

Filtres de Bessel

• Filtre tout-pôle

$$H(s) = \frac{1}{B_N(s)}$$

donné par les polynômes de Bessel

$$B_N(s) = (2N-1)B_{N-1}(s) + s^2B_{N-2}(s)$$

avec $B_0(s) = 1$ et $B_1(s) = s+1$

- Phase linéaire dans la bande passante
 - détruite par la conversion numérique

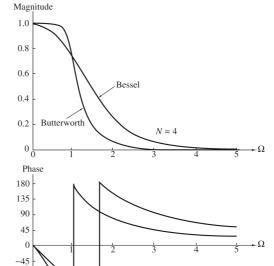


Figure 10.3.15 Magnitude and phase responses of Bessel and Butterworth filters of order N=4. Figure de [1].

Bessel

Traitement des signaux, automne 2024 Prof. Pascal Frossard

-90

-135 -180

120

Illustrations: filtre passe-bas

 Construction par transformation bilinéaire d'un filtre passe-bas avec les spécifications suivantes

$$\delta_1 = 60dB$$

$$\omega_s = 0.30\pi$$

$$\omega_p = 0.25\pi$$

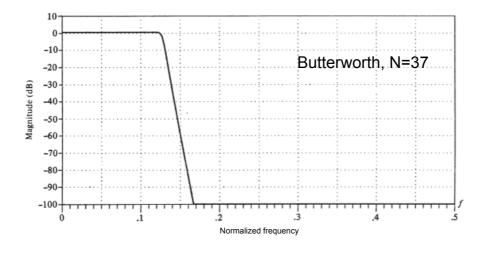
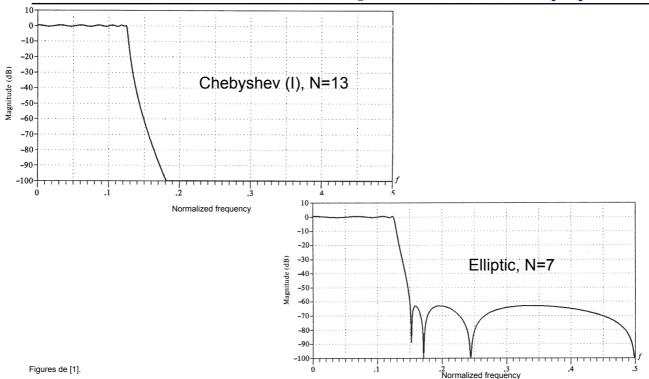


Figure de [1].

Illustrations: filtre passe-bas (2)



Réal. de filtres non passe-bas

- Réalisation de filtres passe-haut, passe-bande et coupe-bande
 - prototype passe-bas
 - transformation de fréquence
- Transformation de fréquence
 - analogique, puis conversion $s \leftrightarrow z$
 - conversion s \leftrightarrow z $\,$ pour le filtre passe-bas, puis transformation de fréquence numérique
- Les deux méthodes ne sont pas équivalentes en général
- Si la transformation bilinéaire est utilisée, elles sont équivalentes
 - dans ce cas, il n'y a pas de problème dû au recouvrement
- Pour les méthodes d'échantillonnage de h(n) et d'équivalence de la dérivation
 - filtre passe-bas numérique, puis conversion de fréquence numérique

Transformation de fréq. analogique

TABLE 10.7 Frequency Transformations for Analog Filters (Prototype Lowpass Filter Has Band Edge Frequency Ω_p)

Type of transformation	Transformation	Band edge frequencies of new filter
Lowpass	$s \longrightarrow \frac{\Omega_p}{\Omega'_p} s$	Ω_p'
Highpass	$s \longrightarrow \frac{\Omega_p \Omega_p'}{s}$	Ω_p'
Bandpass	$s \longrightarrow \Omega_p \frac{s^2 + \Omega_l \Omega_u}{s(\Omega_u - \Omega_l)}$	Ω_l,Ω_u
Bandstop	$s \longrightarrow \Omega_p \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_u \Omega_l}$	Ω_l,Ω_u

Table de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

124

Transformation de fréq. numérique

- Conversion de z^{-1} en $g(z^{-1})$
- Le cercle unité est 'invariable'

$$|g(\omega)| = 1, \ \forall \omega$$

$$g(z^{-1}) = \pm \prod_{k=1}^{n} \frac{z^{-1} - a_k}{1 - a_k z^{-1}}$$
$$|a_k| < 1$$

TABLE 10.8 Frequency Transformation for Digital Filters (Prototype Lowpass Filter Has Band Edge Frequency ω_p)

Type of		
transformation	Transformation	Parameters
Lowpass	$z^{-1} \longrightarrow \frac{z^{-1} - a}{1 - az^{-1}}$	$\omega_p' = \text{band edge frequency new filter}$ $a = \frac{\sin[(\omega_p - \omega_p')/2]}{\sin[(\omega_p + \omega_p')/2]}$
Highpass	$z^{-1} \longrightarrow -\frac{z^{-1} + a}{1 + az^{-1}}$	$\omega_p' = \text{band edge frequency new filter}$ $a = -\frac{\cos[(\omega_p + \omega_p')/2]}{\cos[(\omega_p - \omega_p')/2]}$
Bandpass	$z^{-1} \longrightarrow -\frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$	$\begin{aligned} \omega_l &= \text{lower band edge frequency} \\ \omega_u &= \text{upper band edge frequency} \\ a_1 &= 2\alpha K/(K+1) \\ a_2 &= (K-1)/(K+1) \\ \alpha &= \frac{\cos[(\omega_u + \omega_l)/2]}{\cos[(\omega_u - \omega_l)/2]} \\ K &= \cot \frac{\omega_u - \omega_l}{2} \tan \frac{\omega_p}{2} \end{aligned}$
Bandstop	$z^{-1} \longrightarrow \frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-1} - a_1 z^{-1} + 1}$	ω_l = lower band edge frequency ω_u = upper band edge frequency $a_1 = 2\alpha/(K+1)$ $a_2 = (1-K)/(1+K)$ $\alpha = \frac{\cos[(\omega_u + \omega_l)/2]}{\cos[(\omega_u - \omega_l)/2]}$ $K = \tan \frac{\omega_u - \omega_l}{2} \tan \frac{\omega_p}{2}$

Exemple 13: Conv. de fréquence

• Convertissons le filtre Butterworth passe-bas ($\omega_p = 0.2\pi$) en un filtre passe-bande entre ω_l et ω_u

$$H(z) = \frac{0.245(1+z^{-1})}{1-0.509z^{-1}}$$

• On utilise la transformation de fréquence suivante

$$z^{-1} \to -\frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$$

$$H(z) = \frac{0.245(1 - a_2)(1 - z^{-2})}{(1 + 0.509a_2) - 1.509a_1 z^{-1} + (a_2 + 0.509)z^{-2}}$$

• Si $\omega_u = 3\pi/5$ et $\omega_l = 2\pi/5$

$$H(z) = \frac{0.245(1 - z^{-2})}{1 + 0.509z^{-2}} \qquad p_k = \pm j0.713$$

Résonance à $\,\omega=\pi/2\,$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.10-end 126

Conception typique d'un filtre RII

- 1. Choix du filtre analogique (par transformation des contraintes numériques)
- 2. Détermination de l'ordre du filtre à partir des spécifications (gabarit)
- 3. Détermination du filtre passe-bas analogique avec une fréquence de coupure $\Omega_c = 1$
- 4. Transformation de fréquence (fréquence de coupure + type de filtre)
- 5. Transformation bilinéaire

Et la phase?...

- Dans le design des filtres numériques, on s'est concentré sur les caractéristiques du module de la réponse fréquentielle
- La réponse de phase est généralement donnée par les contraintes de stabilité, et de causalité
- Pour avoir un système à phase linéaire, on doit avoir un filtre RIF
 - causalité et phase linéaire implique $H(z) = \pm z^{-N} H(z^{-1})$
 - on ne peut avoir un filtre RII à phase linéaire stable, puisque les pôles seraient présents hors du cercle unité
- On peut par contre influencer la réponse de phase d'un filtre RII
 - la réponse de phase reste liée à la réponse d'amplitude pour un système causal

Traitement des signaux, automne 2024 Prof. Pascal Frossard

128

Systèmes à phase minimum

 Il y a beaucoup de systèmes qui sont équivalents dans l'amplitude de la réponse fréquentielle, et qui diffèrent dans la phase

$$|H(\omega)|^2 = H(z)H(z^{-1})|_{z=e^{j\omega}}$$

- si on remplace un zéro z_k par son inverse $1/z_k$, la réponse d'amplitude ne change pas
- on peut donc inter-changer des zéros à l'intérieur ou à l'extérieur du cercle unité
- Lorsque tous les zéros sont à l'intérieur du cercle unité: phase minimum
 - son inverse est alors aussi stable

Exemple de phases différentes (RIF)

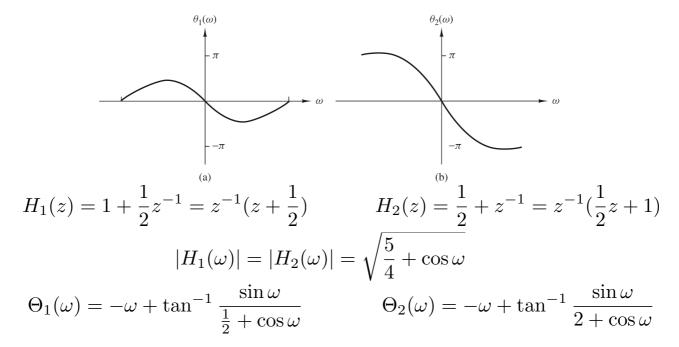


Figure de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

130

Phase minimale (RIF)

• Filtre RIF simple à phase minimale (zéro dans le cercle unité)

$$\Theta_1(\pi) - \Theta_1(0) = 0$$

Filtre RIF simple à phase maximale (zéro hors du cercle unité)

$$\Theta_2(\pi) - \Theta_2(0) = \pi$$

Par extension, pour un système RIF d'ordre M

$$H(\omega) = b_0(1 - z_1 e^{-j\omega})(1 - z_2 e^{-j\omega})...(1 - z_M e^{-j\omega})$$

- phase minimale: tous les zéros dans le cercle unité
- phase maximale: tous les zéros hors du cercle unité
- Par extension, un système RII stable a une phase minimale si tous les zéros et tous les pôles sont à l'intérieur du cercle unité

Systèmes à phase minimale

 Tout système à phase non minimale peut mener à un système à phase minimale par un filtre passe-tout

$$H(z) = H_{min}(z)H_{pt}(z)$$

• Le filtre passe-tout transfert les zéros hors du cercle unité, sans modifier la réponse fréquentielle d'amplitude

$$H(z) = \frac{B_1(z)B_2(z)}{A(z)}$$

- $B_1(z)$ ne contient que des zéros dans le cercle unité
- $B_2(z)$ ne contient que des zéros hors du cercle unité
- $B_2(z^{-1})$ ne contient que des zéros dans le cercle unité

$$H_{min} = \frac{B_1(z)B_2(z^{-1})}{A(z)}$$
 $H_{pt}(z) = \frac{B_2(z)}{B_2(z^{-1})}$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

132

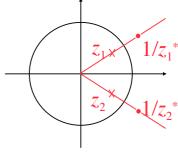
Exemple 14

· Considérons le système suivant

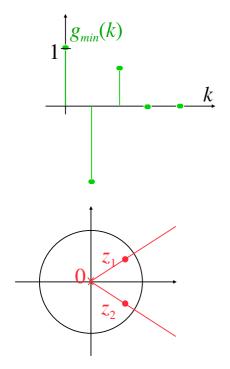
$$H_{min}(z) = 1 - 1.386z^{-1} + 0.640z^{-2}$$

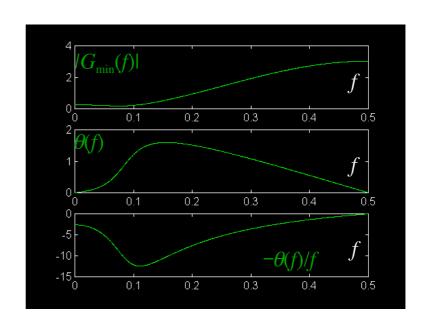
- 2 zéros en $z_1=0.8\exp(j\pi/6)$ et $z_2=0.8\exp(-j\pi/6)$
- Comme les zéros sont à l'intérieur du cercle unité: phase minimum
- On peut le transformer en un autre système à phase nonminimum par un filtre passe-tout

$$H_{pt}(z) = \frac{z^{-1} - z_1^*}{1 - z_1 z^{-1}} \frac{z^{-1} - z_2^*}{1 - z_2 z^{-1}}$$



Exemple: système à phase min.

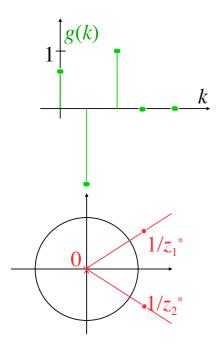


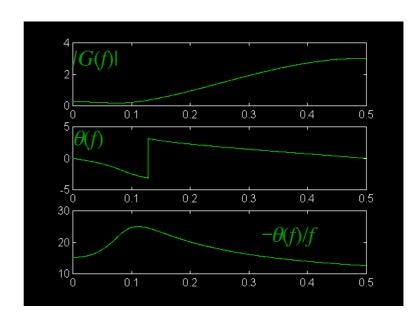


Traitement des signaux, automne 2024 Prof. Pascal Frossard

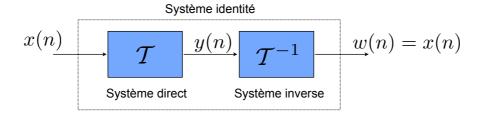
134

Exemple: système à phase non-min.





Inverse d'un filtre



$$w(n) = \mathcal{T}^{-1}[y(n)] = \mathcal{T}^{-1}\{\mathcal{T}[x(n)]\} = x(n)$$

- Un système a un inverse s'il y a une correspondance entre les signaux d'entrée et de sortie
- Pour les systèmes linéaires et invariants

$$H(z)H_I(z) = 1 \Leftrightarrow H_I(z) = \frac{1}{H(z)}$$

• Les filtres numériques à phase minimum ont un inverse stable, qui est aussi à phase minimum

Traitement des signaux, automne 2024 Prof. Pascal Frossard

136

Let's play a last time...



Résumé - filtrage

- Stabilité et causalité sont les conditions nécessaires pour un design pratique
- RIF utilisés dans les applications qui ont besoin d'une phase linéaire
 - échantillonnage de fréquence et méthodes optimales sont les meilleurs choix
- RII utilisés quand la distorsion de phase est tolérée
 - filtres elliptiques sont préférés (ordre plus faible), ou méthodes optimales
 - RII pas idéal pour filtre à phase linéaire: même mis en cascade avec un passetout pour corriger la phase, le nombre de coefficients est plus grand qu'un RIF
- Les transformations de fréquence sont utilisées seulement pour les filtres RII
 - le résultat d'une transformation de fréquence est un filtre RII

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.11-end ₁₃₈

Références

- 1. Digital Signal Processing (Proakis): chapitres 5, 9-10
- 2. Traitement numérique des signaux (Kunt): chapitre 5
- 3. Digital Signal Processing (Mitra): chapitres 8-10

Estimation et prédiction linéaire

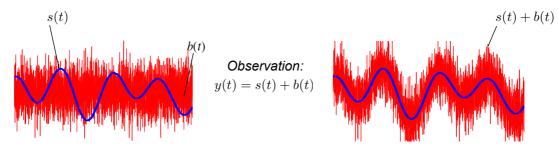
Prof. Pascal Frossard Laboratoire de traitement de signal (LTS4) FPFI

Traitement des signaux, automne 2024 Prof. Pascal Frossard

140

Estimation de signal

- Observation et interprétation de signaux perturbés par du bruit
 - Antennes, astrophysique, recherche biomédicale, compression par prédiction



- Avec un modèle statistique du signal observé
 - Méthodes du maximum de vraisemblance, ou de risque minimum, etc.
- Sans modèle à priori, on peut faire de l'estimation linéaire
 - besoin seulement de connaître ou mesurer l'auto/inter-corrélation
 - si l'observation est à statistique gaussienne, l'estimateur linéaire optimum donne la plus faible erreur quadratique moyenne (vs méthodes non-linéaires)

Plan

- · Rappel signaux aléatoires, stationnarité, ergodicité
- Processus aléatoires AR, MA, ARMA
- Filtrage linéaire de signaux aléatoires
- Estimation et prédiction par filtrage linéaire
- Filtres optimaux: filtres de Wiener

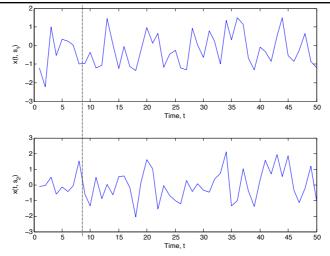
Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.12-start 142

Signaux aléatoires

- Un processus stochastique (ou aléatoire) est représenté par un signal aléatoire à temps **continu** *x*(*t*).
- Un signal aléatoire à temps **discret** *x[n]* peut se voir comme un vecteur de variables aléatoires, de dimension infinie
 - En prenant $T \to 0$, (...,x[(n-1)T],x[nT],x[(n+1)T],...) devient un signal à temps continu
- Ces signaux sont caractérisés par une densité de probabilité, et un opérateur d'espérance. Pour pouvoir travailler avec ces signaux, on fait des hypothèses d'ergodicité, et de stationnarité.
- Les signaux déterministes sont parfois considérés comme des signaux aléatoires en l'absence d'information sur leur génération.

Signaux aléatoires



- Les phénomènes physiques naturels sont souvent caractérisés en termes statistiques
 - Les réalisations possibles forment un ensemble de fonctions aléatoires $\left\{x(t,s)
 ight\}$
 - Une réalisation x(t) est une série de variables aléatoires $x(t_i), i=1,2,...,n$
 - Elle est caractérisée par une densité de probabilité jointe $p(x_{t_1}, x_{t_2}, ..., x_{t_n})$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Stationnarité

• Un processus caractérisé par $p(x_{t_1}, x_{t_2}, ..., x_{t_n})$ (densité de probabilité jointe), est dit stationnaire au sens strict si $\forall \tau, \forall n$

$$p(x_{t_1}, x_{t_2}, ..., x_{t_n}) = p(x_{t_1+\tau}, x_{t_2+\tau}, ..., x_{t_n+\tau})$$

 Dans ce cas, les propriétés statistiques du signal sont invariantes par rapport à une translation dans le temps. Elles ne dépendent pas des instants auxquels les n échantillons successifs sont considérés.

Moyennes statistiques

- Les moyennes statistiques sont calculées sur différentes réalisations du processus aléatoire
- Par exemple, l'échantillon à l'instant t_i , $X(t_i)$ est une variable aléatoire avec un densité de probabilité $p(x_{t_i})$
- Le moment d'ordre / de la variable aléatoire est donné par

$$E(X_{t_i}^l) = \int_{-\infty}^{\infty} x_{t_i}^l \ p(x_{t_i}) dx_{t_i}$$

• Si le processus est stationnaire ($p(x_{t_i}) = p(x_{t_i+\tau}), \ \forall \tau$), le moment d'ordre l est constant (indépendant du temps)

Traitement des signaux, automne 2024 Prof. Pascal Frossard

146

Autocorrélation

- Considérons 2 variables aléatoires $X_{t_i}=X(t_i),\ i=1,2$ qui correspondent à des échantillons pris à des instants différents
- · Le moment joint est défini comme

$$E[X_{t_1}, X_{t_2}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{t_1} x_{t_2} \ p(x_{t_1}, x_{t_2}) dx_{t_1} dx_{t_2}$$

Si le processus est stationnaire, la fonction d'autocorrélation est

$$\gamma_{xx}(\tau) = E[X_{t_1+\tau}, X_{t_1}] = E[X_{t_1'-\tau}, X_{t_1'}] = \gamma_{xx}(-\tau)$$

- La valeur en 0 est la puissance moyenne du signal $\ \gamma_{xx}(0) = E[X_{t_1}^2]$
- Stationnarité au sens large si

$$E[X_{t_i}] = const$$
 et $\gamma_{xx}(t_1, t_2) = \gamma_{xx}(t_1 - t_2) = \gamma_{xx}(\tau)$

147

Autocovariance

La fonction d'autocovariance est liée à l'autocorrélation

$$c_{xx}(t_1, t_2) = E\{[X_{t_1} - E(X_{t_1})][X_{t_2} - E(X_{t_2})]\}$$

= $\gamma_{xx}(t_1, t_2) - E(X_{t_1})E(X_{t_2})$

Si le processus est stationnaire, on a

$$c_{xx}(t_1, t_2) = c_{xx}(t_1 - t_2) = c_{xx}(\tau) = \gamma_{xx}(\tau) - m_x^2$$

avec $m_x = E[X_{t_i}] = const$ et $\tau = t_1 - t_2$

· On peut alors définir la variance comme

$$\sigma_x^2 = c_{xx}(0) = \gamma_{xx}(0) - m_x^2$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

148

Processus aléatoires joints

 2 processus aléatoires X(t) et Y(t) sont caractérisés statistiquement par une fonction de densité de probabilité jointe

$$p(x_{t_1}, x_{t_2}, ..., x_{t_n}, y_{t'_1}, y_{t'_2}, ..., y_{t'_m})$$

On définit alors l'intercorrélation et l'intercovariance comme

$$\gamma_{xy}(t_1, t_2) \equiv E[X_{t_1}, Y_{t_2}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{t_1} y_{t_2} \ p(x_{t_1}, y_{t_2}) dx_{t_1} dy_{t_2}$$
$$c_{xy}(t_1, t_2) = \gamma_{xy}(t_1, t_2) - E(X_{t_1}) E(Y_{t_2})$$

Caractérisation de processus joints

Si les processus sont conjointement et individuellement stationnaires

$$\gamma_{xy}(t_1, t_2) = \gamma_{xy}(\tau) = \gamma_{xy}(-\tau)$$
 et $c_{xy}(t_1, t_2) = c_{xy}(\tau)$ $\forall n, \forall m, \forall t_i, \forall t_i'$

• Si les processus sont statistiquement indépendants,

$$p(x_{t_1}, x_{t_2}, ..., x_{t_n}, y_{t'_1}, y_{t'_2}, ..., y_{t'_m}) = p(x_{t_1}, x_{t_2}, ..., x_{t_n}) \ p(y_{t'_1}, y_{t'_2}, ..., y_{t'_m})$$

Finalement, deux processus sont non-corrélés si

$$\gamma_{xy}(t_1, t_2) = E(X_{t_1})E(Y_{t_2})$$
 ou $c_{xy}(t_1, t_2) = 0$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.13-start ₁₅₀

Densité spectrale de puissance

- La transformée de Fourier n'est pas directement exploitable pour un signal aléatoire, généralement de durée et énergie infinies
- On peut obtenir la transformée $X_A(\omega)$ d'une réalisation donnée par fenêtrage $x_A(t) = rect(t/A) x(t)$
- La densité spectrale de puissance (DSP) est alors donnée par

$$\Gamma_{xx}(\omega) = \lim_{A \to \infty} \frac{1}{A} E[|X_A(\omega)|^2]$$

- Interprétation
 - l'énergie moyenne du signal par unité de temps est donnée par $P = \lim_{A \to \infty} \frac{1}{A} \int_{-A/2}^{A/2} |x(t)|^2 dt$
 - Par Parseval

$$P = \lim_{A \to \infty} \frac{1}{2\pi A} \int_{-\infty}^{\infty} |X_A(\omega)|^2 d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Gamma_{xx}(\omega) d\omega$$

Cela montre que $\int_{\omega_1}^{\omega_2} \Gamma_{xx}(\omega)/(2\pi) d\omega \ \ \text{est la contribution des fréquences} \ \ [\omega_1,\omega_2] \ \ \text{\grave{a} la puissance}$ moyenne du signal $\int_{\omega_1}^{\omega_2} \Gamma_{xx}(\omega)/(2\pi) d\omega \ \ \text{est la contribution des fréquences} \ \ [\omega_1,\omega_2] \ \ \text{\grave{a} la puissance}$

Théorême de Wiener-Khintchine

- Un calcul direct de la DSP est très laborieux!
- Pour les signaux aléatoires stationnaires au sens large, on peut heureusement utiliser le théorême de Wiener-Khintchine:

$$\Gamma_{xx}(\omega) = \int_{-\infty}^{\infty} \gamma_{xx}(t)e^{-j\omega t}dt$$

 la DSP s'obtient en calculant la transformée de Fourier de la fonction d'autocorrelation

Norbert Wiener

Aleksandr Khinchin

Traitement des signaux, automne 2024 Prof. Pascal Frossard

152

Preuve...

• Théorême de Wiener-Khintchine:

$$\Gamma_{xx}(\omega) = \int_{-\infty}^{\infty} \gamma_{xx}(t)e^{-j\omega t}dt$$

- Preuve $\frac{1}{A}E[|X_A(\omega)|^2] = \frac{1}{A}E\left[\int\int x(t)\mathrm{rect}(t/A)e^{-j\omega t}x(t')^*\mathrm{rect}(t'/A)e^{j\omega t'}dtdt'\right]$ $= \frac{1}{A}\int\int\mathrm{rect}(t/A)\mathrm{rect}(t'/A)E[x(t)x(t')^*]e^{-j\omega(t-t')}dtdt'$ $= \int\gamma_{xx}(u)e^{-j\omega u}du\int\mathrm{rect}(u/A+u')\mathrm{rect}(u')du' \quad \text{(chgt variables: } u=t-t',u'=t'/A)$ $= \int\mathrm{tri}(u/A)\gamma_{xx}(u)e^{-j\omega u}du$
 - Comme $\lim_{A \to \infty} \mathrm{tri}(u/A) = 1$ on a effectivement $\frac{1}{A} E[|X_A(\omega)|^2] = \int \gamma_{xx}(u) e^{-j\omega u} du$

Propriétés de la DSP

On a les relations suivantes pour la distribution de puissance

$$\Gamma_{xx}(\omega) = \int_{-\infty}^{\infty} \gamma_{xx}(t)e^{-j\omega t}dt \Leftrightarrow \gamma_{xx}(t) = \int_{-\infty}^{\infty} \Gamma_{xx}(\omega)e^{j\omega t}d\omega$$
$$\gamma_{xx}(0) = \int_{-\infty}^{\infty} \Gamma_{xx}(\omega)d\omega = E[X_t^2] \ge 0$$

- La DSP est toujours réelle. Si le processus aléatoire prend des valeurs réelles, elle est aussi paire.
- Par extension, on obtient la densité inter-spectrale de puissance pour deux processus aléatoires X(t) et Y(t)

$$\Gamma_{xy}(\omega) = \int_{-\infty}^{\infty} \gamma_{xy}(t) e^{-j\omega t} dt$$

- On a $\Gamma_{xy}^*(\omega)=\Gamma_{yx}(-\omega)$, et $\Gamma_{xy}(\omega)=\Gamma_{yx}(-\omega)$ pour les processus réels

Traitement des signaux, automne 2024 Prof. Pascal Frossard

154

Signaux aléatoires à temps discret

- On peut étendre les définitions précédentes aux signaux discrets
 - Généralement par échantillonnage uniforme des processus continus
 - L'échantillonnage d'un processus stationnaire forme un signal stationnaire
- On a les relations suivantes pour le processus discret X(n) et les échantillons x(n)

$$\gamma_{xx}(n,k) = E[X_n, X_k] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_n x_k \ p(x_n, x_k) dx_n dx_k$$
$$c_{xx}(n,k) = \gamma_{xx}(n,k) - E(X_n)E(X_k)$$

Processus discrets stationnaires

- · Si le processus discret est stationnaire
 - m = n k

$$\gamma_{xx}(n,k) = \gamma_{xx}(m)$$

$$c_{xx}(n,k) = c_{xx}(m) = \gamma_{xx}(m) - E(X_n)^2$$

$$\sigma^2 = c_{xx}(0) = \gamma_{xx}(0) - E(X_n)^2$$

$$E(X_n^2) = \gamma_{xx}(0)$$

Par Wiener-Khintchine

$$\Gamma_{xx}(f) = \sum_{m=-\infty}^{\infty} \gamma_{xx}(m)e^{-j2\pi fm} \Leftrightarrow \gamma_{xx}(m) = \int_{-1/2}^{1/2} \Gamma_{xx}(f)e^{j2\pi fm}df$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

156

Moyennes temp. et ergodicité

- En pratique, une seule réalisation est disponible en général
 - Cependant, nous avons caractérisé les processus aléatoires en termes de moyennes statistiques
- Comment obtenir les moyennes du processus avec une seule réalisation?
 - Condition: le processus doit être ergodique
- Définition: X(n) est ergodique si les moyennes statistiques sont égales aux moyennes temporelles (obtenues à partir d'une seule réalisation du processus)
 - Dans ce cas, on peut estimer les moyennes d'ensemble à l'aide des moyennes temporelles calculées sur une seule réalisation
 - Un signal ergodique est toujours stationnaire au sens strict (l'inverse n'est pas vrai!)

Ergodicité de la moyenne

 Pour un processus stationnaire X(n), les moyennes statistiques et temporelles sont données resp. par

$$m_x = E[X_n]$$
 et $\hat{m}_x = \frac{1}{2N+1} \sum_{n=-N}^{N} x(n)$

- \hat{m}_x est une estimation statistique calculée sur une seule réalisation
 - Son espérance calculée sur toutes les réalisations du processus devient

$$E[\hat{m}_x] = \frac{1}{2N+1} \sum_{n=-N}^{N} E[x(n)] = \frac{1}{2N+1} \sum_{n=-N}^{N} m_x = m_x$$

- C'est un estimateur non biaisé.
- La variance de l'estimateur est donnée par

$$var(\hat{m}_x) = E(|\hat{m}_x|^2) - |m_x|^2$$

- si la variance tend vers 0 quand N devient très grand, l'estimation \hat{m}_x converge avec une probabilité 1 vers la moyenne statistique m_x

Traitement des signaux, automne 2024 Prof. Pascal Frossard

158

Var. de l'estimation de la moyenne

$$E(|\hat{m}_x|^2) = \frac{1}{(2N+1)^2} \sum_{n=-N}^{N} \sum_{k=-N}^{N} E[x^*(n)x(k)] = \frac{1}{(2N+1)^2} \sum_{n=-N}^{N} \sum_{k=-N}^{N} \gamma_{xx}(k-n)$$

$$= \frac{1}{2N+1} \sum_{m=-2N}^{2N} \left(1 - \frac{|m|}{2N+1}\right) \gamma_{xx}(m)$$

$$\operatorname{var}(\hat{m}_x) = \frac{1}{2N+1} \sum_{m=-2N}^{2N} \left(1 - \frac{|m|}{2N+1}\right) \gamma_{xx}(m) - |m_x|^2$$

$$= \frac{1}{2N+1} \sum_{m=-2N}^{2N} \left(1 - \frac{|m|}{2N+1}\right) c_{xx}(m)$$

• Les moyennes statistiques et temporelles sont égales si

$$\lim_{N\to\infty}\frac{1}{2N+1}\sum_{m=-2N}^{2N}\left(1-\frac{|m|}{2N+1}\right)c_{xx}(m)=0\qquad\text{ou}\qquad\sum_{m=-\infty}^{\infty}|c_{xx}(m)|<\infty$$
 - on a alors
$$m_x=\lim_{N\to\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}x(n)$$

Ergodicité de la corrélation

On peut aussi calculer une estimation de la corrélation

$$r_{xx}(m) = \frac{1}{2N+1} \sum_{n=-N}^{N} x^*(n)x(n+m)$$

• L'estimateur est à nouveau non biaisé, puisque

$$E[r_{xx}(m)] = \frac{1}{2N+1} \sum_{n=-N}^{N} E[x^*(n)x(n+m)] = \frac{1}{2N+1} \sum_{n=-N}^{N} \gamma_{xx}(m) = \gamma_{xx}(m)$$

La variance de l'estimation est donnée par

$$var(r_{xx}(m)) = E(|r_{xx}(m)|^2) - |\gamma_{xx}(m)|^2$$

- Si la variance tend vers 0 pour *N* très grand, l'estimation converge avec une probabilité 1 vers l'autocorrélation statistique

Traitement des signaux, automne 2024 Prof. Pascal Frossard

160

Var. de l'estimation de corrélation

$$E(|r_{xx}(m)|^{2}) = \frac{1}{(2N+1)^{2}} \sum_{n=-N}^{N} \sum_{k=-N}^{N} E[x^{*}(n)x(n+m)x(k)x^{*}(k+m)]$$

$$= \frac{1}{(2N+1)^{2}} \sum_{n=-N}^{N} \sum_{k=-N}^{N} \gamma_{vv}^{m}(n-k) \quad \text{avec } v_{m}(n) = x^{*}(n)x(n+m)$$

$$= \frac{1}{2N+1} \sum_{n=-2N}^{2N} \left(1 - \frac{|n|}{2N+1}\right) \gamma_{vv}^{m}(n)$$

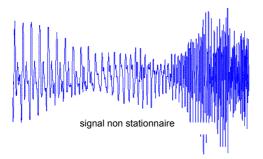
$$\operatorname{var}(r_{xx}(m)) = \frac{1}{2N+1} \sum_{n=-2N}^{2N} \left(1 - \frac{|n|}{2N+1}\right) \gamma_{vv}^{m}(n) - |\gamma_{xx}(m)|^{2}$$

• La condition pour que le processus soit ergodique en terme de corrélation est donc $\operatorname{var}(r_{xx}(m)) \to 0 \text{ as } N \to \infty$. On a alors

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} E[x^*(n)x(n+m)] = \gamma_{xx}(m)$$

Illustrations: stationnarité, ergodicité

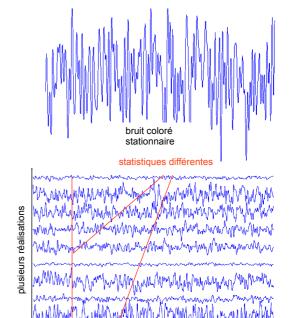
Stationnarité



Ergodicité

$$x(t) = a \ x_0(t)$$

- $x_0(t)$ est un processus ergodique
- a: variable aléatoire (indép. de $x_0(t)$)
- x(t): signal stationnaire non ergodique



Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.14-start 162

Réponse de systèmes linéaires

$$y(k) = \sum_{l=-\infty}^{\infty} h(l)x(k-l)$$

- Signal aléatoire \emph{x} , donné par m_x , $\ \gamma_{xx}$ et $\ \Gamma_{xx}$
- La moyenne du signal de sortie est donnée par

$$m_y = E[y(k)] = \sum_{l=-\infty}^{\infty} h(l)E[x(k-l)] = m_x \sum_{l=-\infty}^{\infty} h(l)$$

Rép. de systèmes linéaires

• Fonction d'autocorrélation du signal de sortie:

$$\begin{split} \gamma_{yy}(k) &= E[y(l)y(l+k)] = E\left[\sum_{u=-\infty}^{\infty} h(u)x(l-u)\sum_{v=-\infty}^{\infty} h(v)x(l+k-v)\right] \\ &= \sum_{u=-\infty}^{\infty} h(u)\sum_{v=-\infty}^{\infty} h(v)E[x(l-u)x(l+k-v)] \\ \text{stationnarité de x(k)} &= \sum_{u=-\infty}^{\infty} h(u)\sum_{m=-\infty}^{\infty} h(u+m)\gamma_{xx}(k-m) = \sum_{m=-\infty}^{\infty} \gamma_{xx}(k-m)\sum_{u=-\infty}^{\infty} h(u)h(u+m) \\ &= \sum_{m=-\infty}^{\infty} \gamma_{xx}(k-m)\gamma_{hh}(m) \end{split}$$

• Densité spectrale de puissance $\Gamma_{yy}(z) = H(z)H(1/z)\Gamma_{xx}(z)$

$$\Gamma_{yy}(f) = H(f)H^*(f) \Gamma_{xx}(f) = |H(f)|^2 \Gamma_{xx}(f)$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

164

Signal intéressant: bruit blanc

 Un bruit blanc est l'idéalisation mathématique d'un signal stationnaire à moyenne nulle dont la DSP est constante

$$\Gamma_{xx}(\omega) = N_0 \Leftrightarrow \gamma_{xx}(t) = N_0 \ \delta(t)$$

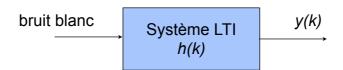
- Un tel signal a une puissance moyenne finie, et ses échantillons sont décorrélés.
- On peut générer toutes sortes de bruits colorés par filtrage de bruit blanc
- Dans le cas discret, un bruit blanc b(n) est un signal à moyenne nulle, stationnaire et caractérisé par l'indépendance des échantillons

$$\gamma_{bb}(n) = \begin{cases} 0 & n \neq 0 \\ N_0 & n = 0 \end{cases}$$

- La DSP reste constante:

$$\Gamma_{bb}(\omega) = N_0$$

Syst. linéaires et bruit blanc



• La fonction d'autocorrélation de y dépend de la variance du bruit blanc

$$\gamma_{yy}(k) = \sum_{m=-\infty}^{\infty} \gamma_{bb}(k-m) \ \gamma_{hh}(m) = \sum_{m=-\infty}^{\infty} \sigma_b^2 \delta(k-m) \ \gamma_{hh}(m)$$
$$= \sigma_b^2 \gamma_{hh}(k) = \sigma_b^2 \sum_{m=-\infty}^{\infty} h(m) \ h(m+k)$$

La densité spectrale de puissance est alors simplement donnée par

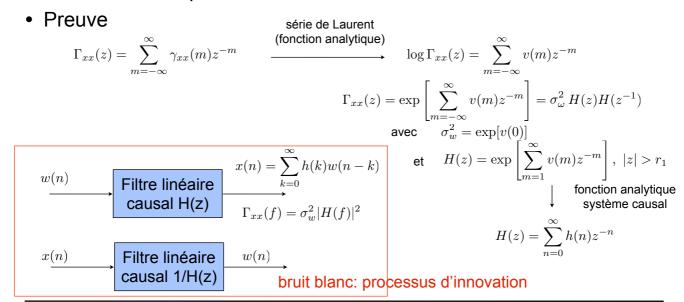
$$\Gamma_{yy}(f) = |H(f)|^2 \sigma_b^2$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

166

Représentation de l'innovation

 Un processus stationnaire au sens large {x(n)} peut être représenté comme la sortie d'un système linéaire causal et invertible excité par un bruit blanc.



Processus stationnaires par filtrage

• On considère les processus stationnaires $\{x(k)\}$ ayant une DSP rationnelle $R(x)R(x^{-1})$

$$\Gamma_{xx}(z) = \sigma_w^2 \frac{B(z)B(z^{-1})}{A(z)A(z^{-1})}$$

• Par la représentation de l'innovation, ces processus peuvent être générés par un bruit blanc $\{w(k)\}$, filtré par H(z)

$$H(z) = \frac{B(z)}{A(z)} = \frac{\sum_{k=0}^{q} b_k z^{-k}}{1 + \sum_{k=1}^{p} a_k z^{-k}}$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Processus particuliers

Processus AR (auto-régressif)

$$x(n) + \sum_{k=1}^{p} a_k x(n-k) = w(n)$$

$$H(z) = 1/A(z)$$

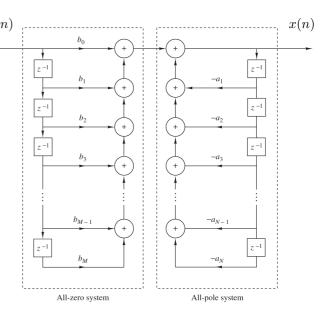
Processus MA (moyenne glissante)

$$x(n) = \sum_{k=0}^{q} b_k w(n-k)$$
$$H(z) = B(z)$$

Processus ARMA (AR + MA)

$$x(n) + \sum_{k=1}^{p} a_k x(n-k) = \sum_{k=0}^{q} b_k w(n-k)$$

$$H(z) = B(z)/A(z)$$



Réalisation ARMA

Figure de [1].

Calcul de l'autocorrélation

- On peut obtenir l'autocorrélation à partir des paramètres du filtre qui génère le signal aléatoire à partir d'un bruit blanc
- Pour un processus ARMA (quand $\Gamma_{xx}(z)$ est rationnelle):

$$\begin{split} E[x(n)x^*(n-m)] &= -\sum_{k=1}^p a_k E[x(n-k)x^*(n-m)] + \sum_{k=0}^q b_k E[w(n-k)x^*(n-m)] \\ \gamma_{xx}(m) &= -\sum_{k=1}^p a_k \gamma_{xx}(m-k) + \sum_{k=0}^q b_k \gamma_{wx}(m-k) \\ \gamma_{wx}(m) &= E[x^*(n)w(n+m)] = E\left[\sum_{k=0}^\infty h(k)w^*(n-k)w(n+m)\right] \stackrel{\text{bruit blanc}}{=} \sigma_w^2 h(-m) \\ \gamma_{xx}(m) &= \begin{cases} -\sum_{k=1}^p a_k \gamma_{xx}(m-k) & m > q \\ -\sum_{k=1}^p a_k \gamma_{xx}(m-k) + \sigma_w^2 \sum_{k=0}^{q-m} b_{k+m} h(k) & 0 \le m \le q \\ \gamma_{xx}^*(-m) & m < 0 \end{cases} \end{split}$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.14-end 170

Equations de Yule-Walker

ARMA:

$$\gamma_{xx}(m) = \begin{cases} -\sum_{k=1}^{p} a_k \gamma_{xx}(m-k) & m > q \\ -\sum_{k=1}^{p} a_k \gamma_{xx}(m-k) + \sigma_w^2 \sum_{k=0}^{q-m} b_{k+m} h(k) & 0 \le m \le q \\ \gamma_{xx}^*(-m) & m < 0 \end{cases}$$

 On peut aussi obtenir la fonction d'autocorrélation pour un processus AR

$$\gamma_{xx}(m) = \left\{ \begin{array}{ll} -\sum_{k=1}^p a_k \gamma_{xx}(m-k) & m>0 \\ -\sum_{k=1}^p a_k \gamma_{xx}(m-k) + \sigma_w^2 & m=0 \\ \gamma_{xx}^*(-m) & m<0 \end{array} \right. \qquad \text{\'equations de Yule-Walker}$$

• ... et MA

$$\gamma_{xx}(m) = \begin{cases} 0 & m > q \\ \sigma_w^2 \sum_{k=0}^q b_{k+m} b_k & 0 \le m \le q \\ \gamma_{xx}^*(-m) & m < 0 \end{cases}$$

Prédiction linéaire et filtrage

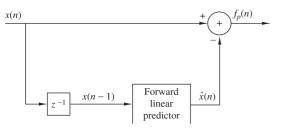


Figure 12.3.1 Forward linear prediction.

 $f_n(n)$

Figure 12.3.2 Prediction-error filter

 On veut prédire la valeur du processus aléatoire x(n) à partir de ses valeurs passées

$$\hat{x}(n) = -\sum_{k=1}^p a_p(k) x(n-k)$$
 Coefficients de prédiction

Erreur:
$$e(n) = f_p(n) = x(n) - \hat{x}(n)$$

$$f_p(n) = x(n) + \sum_{k=1}^p a_p(k)x(n-k)$$

Cela correspond à un filtre RIF

$$A_p(z) = \sum_{k=0}^{p} a_p(k) z^{-k}$$
 avec $a_p(0) = 1$

Figures de [1]

Traitement des signaux, automne 2024 Prof. Pascal Frossard

Erreur de prédiction minimale

• L'erreur quadratique moyenne s'écrit comme:

$$\mathcal{E}_{p}^{f} = E[|f_{p}(n)|^{2}]$$

$$= \gamma_{xx}(0) + 2\mathcal{R}\left[\sum_{l=1}^{p} a_{p}^{*}(l)\gamma_{xx}(l)\right] + \sum_{k=1}^{p} \sum_{l=1}^{p} a_{p}^{*}(l)a_{p}(k)\gamma_{xx}(l-k)$$

La minimisation de cette fonction quadratique des coefficients donne

$$\gamma_{xx}(l) = -\sum_{k=1}^{p} a_p(k)\gamma_{xx}(l-k), \quad l = 1, 2, ..., p$$

Equations normales

L'erreur minimale est donc:

$$\min[\mathcal{E}_p^f] \equiv E_p^f = \gamma_{xx}(0) + \sum_{k=1}^p a_p(k)\gamma_{xx}(-k)$$

Processus AR vs prédiction linéaire

$$\gamma_{xx}(m) = \begin{cases} -\sum_{k=1}^p a_k \gamma_{xx}(m-k) & m>0 \\ -\sum_{k=1}^p a_k \gamma_{xx}(m-k) + \sigma_w^2 & m=0 \\ \gamma_{xx}^*(-m) & m<0 \end{cases}$$
 Equations de Yule-Walker

Equations normales

$$\gamma_{xx}(l) = -\sum_{k=1}^{p} a_p(k)\gamma_{xx}(l-k), \quad l = 1, 2, ..., p$$

- Il y a une correspondance entre les coefficients des 2 systèmes
 - si $\mathit{x(n)}$ est un processus AR, les coefficients de prédiction sont les $\{a_k\}$
 - l'erreur minimale du prédicteur est équivalente à la variance σ_w^2 du bruit blanc (séquence d'innovation)
 - le filtre de prédiction est en fait l'équivalent du filtre qui génère le bruit blanc à partir d'un processus stationnaire AR

Traitement des signaux, automne 2024 Prof. Pascal Frossard

174

Solutions des équations normales

• Les équations normales augmentées prennent la forme $~ {f \Gamma}_p {f a}_p = {f e}_p$

- avec

$$\boldsymbol{\Gamma}_{p} = \left[\begin{array}{cccc} \gamma_{xx}(0) & \gamma_{xx}^{*}(1) & \dots & \gamma_{xx}^{*}(p) \\ \gamma_{xx}(1) & \gamma_{xx}(0) & \dots & \gamma_{xx}^{*}(p-1) \\ \vdots & & & & \\ \gamma_{xx}(p) & \gamma_{xx}(p-1) & \dots & \gamma_{xx}(0) \end{array} \right] \qquad \textit{Matrice Toeplitz!}$$

 Solution par des méthodes récursives, comme l'algorithme de Levinson-Durbin (ou l'algorithme de Schur)

LD:
$$a_m(k) = a_{m-1}(k) + a_m(m)a_{m-1}^*(m-k), \quad k = 1, 2, ..., m-1 \quad m = 1, 2, ..., p$$

Levinson-Durbin

- Algorithme efficace pour résoudre les équations normales, en utilisant les propriétés de la matrice Γ_p qui est Toeplitz
- En combinant les équations normales, on peut écrire

$$\begin{bmatrix} \gamma_{xx}(0) & \gamma_{xx}(1) & \dots & \gamma_{xx}(p) \\ \gamma_{xx}(1) & \gamma_{xx}(0) & \dots & \gamma_{xx}(p-1) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{xx}(p) & \gamma_{xx}(p-1) & \dots & \gamma_{xx}(0) \end{bmatrix} \begin{bmatrix} 1 \\ -a_p(1) \\ \vdots \\ -a_p(p) \end{bmatrix} = \begin{bmatrix} E_p^f \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\Gamma_{\mathbf{p}} \qquad \mathbf{a}_{\mathbf{p}} \qquad \mathbf{e}_{\mathbf{p}}$$

 On établit une relation de récurrence, en calculant la solution pour un filtre d'ordre i, à partir de celle pour un filtre d'ordre (i-1)

Signes de coefficients inversés par rapport aux relations précédentes - sans perte de généralité

Traitement des signaux, automne 2024 Prof. Pascal Frossard

176

Récurrence dans Levinson-Durbin

• Solution pour le filtre d'ordre (i-1)

$$\begin{bmatrix} \gamma_{xx}(0) & \gamma_{xx}(1) & \dots & \gamma_{xx}(i-1) \\ \gamma_{xx}(1) & \gamma_{xx}(0) & \dots & \gamma_{xx}(i-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{xx}(i-1) & \gamma_{xx}(i-2) & \dots & \gamma_{xx}(0) \end{bmatrix} \begin{bmatrix} 1 \\ -a_{i-1}(1) \\ \vdots \\ -a_{i-1}(i-1) \end{bmatrix} = \begin{bmatrix} E_{i-1}^f \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• On peut augmenter le système

$$\begin{bmatrix} \gamma_{xx}(0) & \gamma_{xx}(1) & \dots & \gamma_{xx}(i) \\ \gamma_{xx}(1) & \gamma_{xx}(0) & \dots & \gamma_{xx}(i-1) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{xx}(i) & \gamma_{xx}(i-1) & \dots & \gamma_{xx}(0) \end{bmatrix} \begin{bmatrix} 1 \\ -a_{i-1}(1) \\ \vdots \\ -a_{i-1}(i-1) \\ 0 \end{bmatrix} = \begin{bmatrix} E_{i-1}^f \\ 0 \\ \vdots \\ 0 \\ \lambda_{i-1} \end{bmatrix}$$

- avec
$$\lambda_{i-1} = \gamma_{xx}(i) - \sum_{k=1}^{i-1} a_{i-1}(k) \gamma_{xx}(i-k)$$

Astuce...

- La dernière relation n'est pas sous la forme idéale $~\Gamma_{\mathbf{p}} a_{\mathbf{p}} = e_{\mathbf{p}}$
- Mais, grâce aux propriétés Toeplitz, on peut écrire

$$\begin{bmatrix} \gamma_{xx}(0) & \gamma_{xx}(1) & \dots & \gamma_{xx}(i) \\ \gamma_{xx}(1) & \gamma_{xx}(0) & \dots & \gamma_{xx}(i-1) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{xx}(i) & \gamma_{xx}(i-1) & \dots & \gamma_{xx}(0) \end{bmatrix} \begin{bmatrix} 0 \\ -a_{i-1}(i-1) \\ \vdots \\ -a_{i-1}(1) \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda_{i-1} \\ 0 \\ \vdots \\ 0 \\ E_{i-1}^f \end{bmatrix}$$

ullet En combinant les 2 dernières relations, on se rapproche de $\Gamma_{\mathbf{p}}\mathbf{a}_{\mathbf{p}}=\mathbf{e}_{\mathbf{p}}$

$$\Gamma_{\mathbf{i}} \begin{bmatrix} 1 \\ -a_{i-1}(1) \\ \vdots \\ -a_{i-1}(i-1) \\ 0 \end{bmatrix} - k_i \begin{bmatrix} 0 \\ -a_{i-1}(i-1) \\ \vdots \\ -a_{i-1}(1) \\ 1 \end{bmatrix} = \begin{bmatrix} E_{i-1}^f \\ 0 \\ \vdots \\ 0 \\ \lambda_{i-1} \end{bmatrix} - k_i \begin{bmatrix} \lambda_{i-1} \\ 0 \\ \vdots \\ 0 \\ E_{i-1}^f \end{bmatrix} \end{bmatrix}$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

178

Finalement

• Pour obtenir une forme $\Gamma_{\bf p} a_{\bf p} = e_{\bf p}$ il ne faut qu'une seule valeur non nulle dans le terme de droite, donc:

$$k_i = \frac{\lambda_{i-1}}{E_{i-1}^f} = \frac{\gamma_{xx}(i) - \sum_{k=1}^{i-1} a_{i-1}(k)\gamma_{xx}(i-k)}{E_{i-1}^f} \qquad E_i^f = E_{i-1}^f - k_i\lambda_{i-1} = E_{i-1}^f(1 - k_i^2)$$

• Avec ce choix, le vecteur de coefficients pour le filtre d'ordre i devient

$$\begin{bmatrix} 1 \\ -a_{i}(1) \\ \vdots \\ -a_{i}(i-1) \\ -a_{i}(i) \end{bmatrix} = \begin{bmatrix} 1 \\ -a_{i-1}(1) \\ \vdots \\ -a_{i-1}(i-1) \\ 0 \end{bmatrix} - k_{i} \begin{bmatrix} 0 \\ -a_{i-1}(i-1) \\ \vdots \\ -a_{i-1}(1) \\ 1 \end{bmatrix}$$

On obtient donc les relations de récurrence suivantes

$$a_i(j) = a_{i-1}(j) - k_i a_{i-1}(i-j), \quad j = 1, 2, ..., i-1$$
 et $a_i(i) = k_i$

L'algorithme de Levinson-Durbin

$$E_0^f = \gamma_{xx}(0)$$
For $i = 1, 2, ...p$

$$k_i = \frac{\gamma_{xx}(i) - \sum_{k=1}^{i-1} a_{i-1}(k)\gamma_{xx}(i-k)}{E_{i-1}^f}$$

$$a_i(i) = k_i$$
if $i > 1$ then for $j = 1, 2, ..., i-1$

$$a_i(j) = a_{i-1}(j) - k_i a_{i-1}(i-j)$$
end
$$E_i^f = (1 - k_i^2)E_{i-1}^f$$
end
$$a(j) = a_p(j) \quad j = 1, 2, ..., M$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

VideoDSP2.16-start 180

Filtrage de signaux bruités

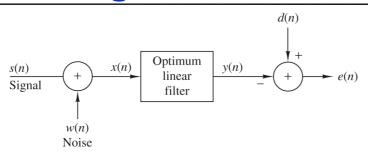
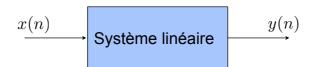


Figure 12.7.1 Model for linear estimation problem.

- But: retrouver le signal d dans le signal bruité: x(n) = s(n) + w(n)
- Méthode: construire un filtre linéaire h tel que sa sortie y soit aussi proche que possible de d
 - Filtrage: d(n) = s(n)
 - Prédiction: d(n) = s(n+D), D > 0
 - Erreur: e(n) = d(n) y(n)
- Hypothèses: s, w et d sont stationnaires au sens large et à moyenne nulle.

Figure de [1].

Estimation linéaire



 L'estimation linéaire à partir de x peut être représentée par un filtre linéaire qui agit sur le signal x

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k)$$

- les échantillons de la réponse impulsionnelle représentent les coefficients de l'estimateur linéaire
- L'erreur d'estimation est donnée par

$$e(n) = d(n) - y(n)$$

- on cherche généralement à minimiser l'erreur quadratique moyenne $\,E[|e(n)|^2]\,$
- filtrage optimal obtenu par les filtres de Wiener (RIF, RII)

Traitement des signaux, automne 2024 Prof. Pascal Frossard

182

Principe d'orthogonalité

- Estimation linéaire de y en fonction de x: y = Ax + B
- L'erreur quadratique est: $e = E[(\mathbf{d} (A\mathbf{x} + B))^2]$
- · L'erreur est minimale quand

principe d'orthogonalité

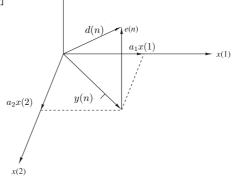
$$\frac{\partial e}{\partial A} = E[2(\mathbf{d} - (A\mathbf{x} + B))(-\mathbf{x})] = 0 \Rightarrow \underbrace{E[(\mathbf{d} - (A\mathbf{x} + B))\mathbf{x}] = 0}$$

$$E[(\mathbf{d} - \mathbf{y})\mathbf{x}] = 0 \Rightarrow E[\mathbf{d}\mathbf{x}] = E[\mathbf{y}\mathbf{x}]$$

- L'interprétation géométrique
 - L'erreur e(n) est minimale lorsque le vecteur est perpendiculaire au plan des données x(n)

$$MMSE = E[e^{2}(n)]$$

= $E[e(n)(d^{*}(n) - y^{*}(n))]$
= $E[e(n)d^{*}(n)]$



Equations de Wiener-Hopf

• Si la longueur du filtre linéaire est limitée à M, la sortie du filtre est

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$

• L'erreur quadratique moyenne s'écrit alors

$$\mathcal{E} = E[|e(n)|^2] = E\left[\left| d(n) - \sum_{k=0}^{M-1} h(k)x(n-k) \right|^2 \right]$$

- L'erreur minimale (au sens de l'erreur quadratique moyenne minimale) est orthogonale au signal, E[(d-y)x]=0
- La minimisation de l'erreur quadratique conduit à un système d'équations

$$\sum_{k=0}^{M-1} h(k)\gamma_{xx}(l-k) = \gamma_{dx}(l), \quad l = 0, 1, ..., M-1.$$

- Ce sont les équations de Wiener-Hopf, ou équations normales

Traitement des signaux, automne 2024 Prof. Pascal Frossard

184

Filtres de Wiener RIF

- Lorsque le filtre a une longueur M, on peut ré-écrire les équations comme $\Gamma_M \mathbf{h}_M = \gamma_d$
 - avec Γ_M une matrice Toeplitz où $\Gamma_{lk}=\gamma_{xx}(l-k)$
- Le filtre (de Wiener) optimum est donc donné par

$$\mathbf{h}_{opt} = \mathbf{\Gamma}_M^{-1} \gamma_d$$

• L'erreur minimale est donnée par $MMSE = E[e(n)d^*(n)]$

$$MMSE_M = \min_{\mathbf{h}_M} \mathcal{E}_M = \sigma_d^2 - \sum_{k=0}^{M-1} h_{opt}(k) \gamma_{dx}^*(k) = \sigma_d^2 - \gamma_d^{*t} \mathbf{\Gamma}_M^{-1} \gamma_d$$

 Solutions par méthodes exploitant les propriétés de symétrie de la matrice (Toeplitz) de corrélation (Levinson-Durbin)

Filtrage et prédiction par Wiener

• En pratique, le bruit et le signal sont généralement non corrélés

$$\gamma_{xx}(k) = \gamma_{ss}(k) + \gamma_{ww}(k)$$

- Filtrage: d(n) = s(n)
 - si le signal et le bruit sont non corrélés: $\gamma_{dx}(k)=\gamma_{ss}(k)$
 - les équations normales deviennent alors

$$\sum_{k=0}^{M-1} h(k) [\gamma_{ss}(l-k) + \gamma_{ww}(l-k)] = \gamma_{ss}(l), \quad l = 0, 1, ..., M-1.$$

- Prédiction: d(n) = s(n+D), D > 0
 - si le signal et le bruit sont non corrélés: $\gamma_{dx}(k)=\gamma_{ss}(k+D)$
 - on a donc

$$\sum_{k=0}^{M-1} h(k)(\gamma_{ss}(l-k) + \gamma_{ww}(l-k)) = \gamma_{ss}(l+D), \quad l = 0, 1, ..., M-1.$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

186

Exemple 10: filtrage RIF

- Considérons un signal x(n) = s(n) + w(n) où s(n) = 0.6s(n-1) + v(n) et $\{v(n)\}$ et $\{w(n)\}$ sont des bruits blancs de variance $\sigma_v^2 = 0.64$ et $\sigma_w^2 = 1$ respectivement. On veut un filtre de Wiener de longueur M = 2 pour estimer $\{s(n)\}$.
 - Comme $\{s(n)\}$ est en fait la sortie d'un filtre à un pôle, excité par un bruit blanc, on a la DSP

$$\Gamma_{ss}(f) = \sigma_v^2 |H(f)|^2 = \frac{0.64}{|1 - 0.6e^{-j2\pi f}|^2} = \frac{0.64}{1.36 - 1.2\cos 2\pi f} \Rightarrow \gamma_{ss}(m) = (0.6)^{|m|}$$

- On a donc les équations de Wiener-Hopf

$$2 h(0) + 0.6 h(1) = 1$$

 $0.6 h(0) + 2 h(1) = 0.6$

- Les coefficients du filtre sont donc h(0) = 0.451 et h(1) = 0.165
- L'erreur quadratique (minimum) est donc

$$MMSE_2 = 1 - h(0)\gamma_{ss}(0) - h(1)\gamma_{ss}(1) = 0.45$$

Filtres de Wiener RII

• On peut avoir un filtre de Wiener à réponse impulsionnelle infinie

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

• Il faut trouver les coefficients qui minimisent l'erreur quadratique

$$\mathcal{E}_{\infty} = E[|e(n)|^2] = E\left[\left|d(n) - \sum_{k=0}^{\infty} h(k)x(n-k)\right|^2\right]$$

- Ce qui donne les équations de Wiener-Hopf

$$\sum_{k=0}^{\infty} h(k)\gamma_{xx}(l-k) = \gamma_{dx}(l), \quad l \ge 0.$$

- Et l'erreur minimale suivante

$$MMSE_{\infty} = \min_{\mathbf{h}_M} \mathcal{E}_{\infty} = \sigma_d^2 - \sum_{k=0}^{\infty} h_{opt}(k) \gamma_{dx}^*(k)$$

 Par contre, on ne peut pas résoudre les équations directement par la transformée en z (les équations ne sont définies que pour l ≥ 0)

Traitement des signaux, automne 2024 Prof. Pascal Frossard

188

Calcul du filtre de Wiener RII

• On peut utiliser un processus d'innovation $\{i(n)\}$

$$\Gamma_{xx}(z) = \sigma_i^2 G(z) G(z^{-1})$$

• Le filtre de Wiener peut alors être représenté par la mise en cascade d'un filtre 1/G(z), et d'un filtre Q(z)

$$y(n) = \sum_{k=0}^{\infty} q(k)i(n-k)$$
 Filtre de Wiener, H(z)
$$\underbrace{x(n)}$$
 1/G(z)
$$\underbrace{i(n)}$$
 Q(z)

Les équations de Wiener-Hopf deviennent

$$\sum_{k=0}^{\infty} q(k)\gamma_{ii}(l-k) = \gamma_{di}(l), \quad l \ge 0.$$

• Puisque $\{i(n)\}$ est un bruit blanc, on a $\gamma_{ii}(l-k)=0$ sauf si l=k

$$q(l) = \frac{\gamma_{di}(l)}{\gamma_{ii}(0)} = \frac{\gamma_{di}(l)}{\sigma_i^2}, \quad l \ge 0$$

Calcul du filtre de Wiener RII (2)

$$Q(z) = \sum_{k=0}^{\infty} q(k)z^{-k} = \frac{1}{\sigma_i^2} \sum_{k=0}^{\infty} \gamma_{di}(k)z^{-k} = \frac{1}{\sigma_i^2} [\Gamma_{di}(z)]_+$$

On pose

$$1/G(z) \equiv V(z) = \sum_{k=0}^{\infty} v(k)z^{-k}$$

On a donc

$$\Gamma_{di}(z) = \sum_{k=-\infty}^{\infty} \gamma_{di}(k) z^{-k} = \sum_{k=-\infty}^{\infty} E[d(n)i^{*}(n-k)] z^{-k}
= \sum_{k=-\infty}^{\infty} \left[\sum_{m=0}^{\infty} v(m) E[d(n)x^{*}(n-m-k)] \right] z^{-k} = \sum_{k=-\infty}^{\infty} \left[\sum_{m=0}^{\infty} v(m) \gamma_{dx}(k+m) \right] z^{-k}
= \sum_{m=0}^{\infty} v(m) \sum_{k=-\infty}^{\infty} \gamma_{dx}(k+m) z^{-k} = \sum_{m=0}^{\infty} v(m) z^{m} \sum_{k=-\infty}^{\infty} \gamma_{dx}(k) z^{-k}
\Gamma_{di}(z) = V(z^{-1}) \Gamma_{dx}(z) = \frac{\Gamma_{dx}(z)}{G(z^{-1})}$$

• Et finalement:

$$H_{opt}(z) = \frac{Q(z)}{G(z)} = \frac{1}{\sigma_i^2 G(z)} \left[\frac{\Gamma_{dx}(z)}{G(z^{-1})} \right]_+$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

190

Exemple 11: filtrage RII

- Considérons un signal x(n)=s(n)+w(n) où s(n)=0.6s(n-1)+v(n) et $\{v(n)\}$ et $\{w(n)\}$ sont des bruits blancs de variance $\sigma_v^2=0.64$ et $\sigma_w^2=1$ respectivement. On veut un filtre de Wiener RII pour estimer $\{s(n)\}.$
 - On factorise d'abord la DSP

$$\Gamma_{xx}(z) = \Gamma_{ss}(z) + 1 = \frac{1.8(1 - 1/3z^{-1})(1 - 1/3z)}{(1 - 0.6z^{-1})(1 - 0.6z)}$$

D'où

$$\sigma_i^2 = 1.8$$

$$\sigma_i^2 = 1.8 \qquad \qquad \text{et} \qquad \quad G(z) = \frac{1 - 1/3z^{-1}}{1 - 0.6z^{-1}}$$

Ensuite

$$\Gamma_{dx}(z) = \Gamma_{ss}(z) = \frac{0.64}{(1 - 0.6z^{-1})(1 - 0.6z)}$$

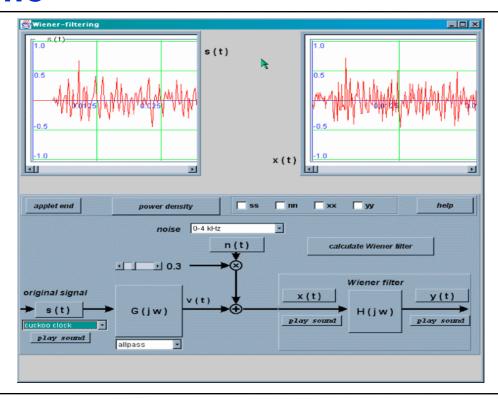
Εt

$$\left[\frac{\Gamma_{dx}(z)}{G(z^{-1})}\right]_{+} = \left[\frac{0.64}{(1-0.6z^{-1})(1-1/3z)}\right]_{+} = \left[\frac{0.8}{1-0.6z^{-1}} + \frac{0.266z}{1-1/3z}\right]_{+} = \frac{0.8}{1-0.6z^{-1}}$$

Finalement

$$H_{opt}(z) = \frac{1}{1.8} \frac{1 - 0.6z^{-1}}{1 - 1/3z^{-1}} \frac{0.8}{1 - 0.6z^{-1}} = \frac{4/9}{1 - 1/3z^{-1}} \qquad \text{ou} \qquad h_{opt}(n) = \frac{4}{9} \left(\frac{1}{3}\right)^n, \quad n \geq 0$$

Demo



Traitement des signaux, automne 2024 Prof. Pascal Frossard

400

Résumé

- Estimation et prédiction linéaires peuvent être réalisées par filtrage
- Processus stationnaires particuliers: AR, MA, ARMA
 - Génération par filtrage de bruit blanc
- Prédiction linéaire optimale en résolvant les équations normales
- Les filtres de Wiener RIF ou RII sont optimaux pour l'estimation au sens de l'erreur quadratique moyenne
 - nécessitent la connaissance de fonctions d'auto/inter-corrélation
 - généralisation aux systèmes dynamiques: filtres de Kalman

References

- 1. Digital Signal Processing (Proakis): chapitre 12
- 2. Traitement numérique des signaux (Kunt): chapitre 7
- 3. Fundamentals of Statistical Signal Processing, Estimation Theory (S.M. Kay): chapitres 12-14

