Analyse spectrale numérique (Chapitre 8)

Prof. Pascal Frossard Laboratoire de traitement de signal (LTS4) EPFL

Traitement des signaux, automne 2024 Prof. Pascal Frossard

196

Plan

- · Analyse spectrale pour caractériser les signaux aléatoires
 - Estimation de la fonction de corrélation: analyse du comportement temporel
 - Estimation de la DSP: analyse des composantes fréquentielles
 - Mais: distorsion due à la durée finie des observations
- Méthodes non-paramétriques
 - Lissage et moyennage pour une meilleure description fréquentielle
- Méthodes paramétriques
 - Utilisation de connaissances à priori ou d'un modèle de signal

Analyse spectrale

- On cherche à caractériser ou analyser des signaux aléatoires
- Les signaux aléatoires sont rarement à énergie finie
 - Les transformations classiques (p.ex. Fourier) ne sont pas applicables
- On utilise alors plutôt des outils d'analyse et d'estimation
 - Détermination des propriétés statistiques des signaux aléatoires
 - Estimation des fonctions de corrélation
 - Représentation fréquentielle de signaux aléatoires, après fenêtrage
- Applications possibles
 - Calcul des propriétés statistiques d'un signal inconnu
 - Découverte de composantes spectrales dans un signal bruité
 - Domaines d'applications: géophysique, biomédical, systèmes de communication, etc.

Traitement des signaux, automne 2024 Prof. Pascal Frossard

198

Que cherche-t-on?

- Généralement on calcule les statistiques de 1er et 2ème ordre seulement, c'est-à-dire la moyenne et la variance
 - On calcule essentiellement des énergies ou des puissances physiques
 - Les bruits physiques sont souvent Gaussiens (donc caractérisés par stat. d'ordre 2)
 - Les calculs d'optimisation donnent des formes linéaires: joli!
 - L'estimation de paramètres linéaires par minimisation de moindres carrés est optimale pour les processus Gaussiens.
- · L'analyse des signaux aléatoires utilise généralement soit
 - l'estimation de l'autocorrélation ou de l'intercorrélation
 - l'estimation de la densité spectrale de puissance

Représentation spectrale d'un signal

 Pour un signal déterministe (à énergie finie) on a (Wiener-Khintchine)

$$r_{xx}(k)=\sum_{n=-\infty}^{\infty}x^*(n)x(n+k)$$
 $S_{xx}(f)=\sum_{k=-\infty}^{\infty}r_{xx}(k)e^{-j2\pi fk}$ méthode 1

 On peut donc calculer la DSE par la méthode indirecte (par le calcul de la fonction d'autocorrélation), ou directement

$$S_{xx}(f)=|X(f)|^2=\left|\sum_{n=-\infty}^{\infty}x(n)e^{-j2\pi fn}
ight|^2$$
 méthode 2

- En pratique, on ne calcule qu'avec un nombre fini d'échantillons
 - La limitation de la durée est équivalente à un fenêtrage, et à un lissage du spectre $\begin{cases} x(n) & 0 < n < N-1 \end{cases}$

$$\tilde{x}(n) = x(n) \ w(n) = \begin{cases} x(n) & 0 \le n \le N-1 \\ 0 & otherwise \end{cases}$$

$$\tilde{X}(f) = X(f) * W(f) = \int_{-1/2}^{1/2} X(\alpha)W(f - \alpha)d\alpha$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

200

Distorsion de la DSE

 Le limitation de la durée d'observation introduit des erreurs d'approximation dans le calcul du spectre

$$S_{\tilde{x}\tilde{x}}(f) = |\tilde{X}(f)|^2 = \left| \sum_{n=0}^{N-1} \tilde{x}(n)e^{-j2\pi fn} \right|^2$$

• Si le spectre est calculé par la TFD, on obtient une version approximative du spectre discret $S_{xx}\left(\frac{k}{N}\right)$

$$\tilde{X}(k) = \sum_{n=0}^{N-1} \tilde{x}(n)e^{-j2\pi kn/N} \qquad \left| \tilde{X}(k) \right|^2 = S_{\tilde{x}\tilde{x}}(f)|_{f=k/N} = S_{\tilde{x}\tilde{x}}\left(\frac{k}{N}\right)$$

$$S_{\tilde{x}\tilde{x}}\left(\frac{k}{N}\right) = \left|\sum_{n=0}^{N-1} \tilde{x}(n)e^{-j2\pi kn/N}\right|^2$$

Illustration: Effet de la fenêtre

- Détermination du spectre d'un signal multiplié par une fenêtre
- Spectre original:

$$X(f) = \begin{cases} 1, & |f| \le 0.1 \\ 0, & \text{otherwise.} \end{cases}$$

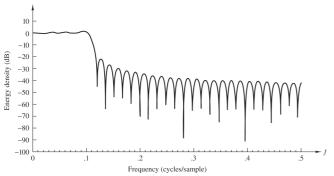


Figure 14.1.1 Spectrum obtained by convolving an M=61 rectangular window with the ideal lowpass spectrum in Example 14.1.1.

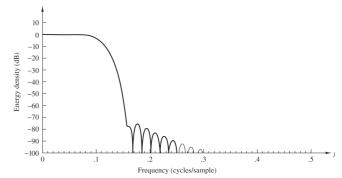


Figure 14.1.2 Spectrum obtained by convolving an M=61 Blackman window with the ideal lowpass spectrum in Example 14.1.1.

Figures de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

202

Elargissement du spectre

- Elargissement du spectre dépendant de la taille de la fenêtre
 - Problème pour distinguer des composantes fréquentielles proches
- La largeur de la fenêtre (fréquentielle) doit être plus petite que la résolution recherchée Δf
- Le choix de la fenêtre est un compromis entre lissage et fuites d'énergie

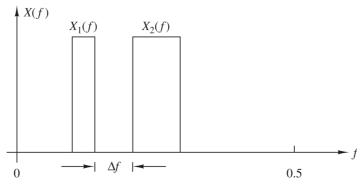


Figure 14.1.3 Two narrowband signal spectra.

Figure de [1]

Et pour les signaux aléatoires?

- Les signaux aléatoires obéissent à des lois statistiques
 - Ils n'ont pas de description temporelle analytique
- On cherche essentiellement une description fréquentielle de ces signaux
 - Importance des différentes composantes fréquentielles: Spectre de puissance
- Sous des conditions d'ergodicité et de stationnarité, une réalisation est considérée comme typique ou représentative
 - On calcule les propriétés statistiques du signal à partir d'une seule réalisation
- Autocorrélation et DSP (processus) sont liées par Wiener-Khintchine

$$\gamma_{xx}(\tau) = E[x^*(t)x(t+\tau)]$$
 $\Gamma_{xx}(\omega) = \int_{-\infty}^{\infty} \gamma_{xx}(t)e^{-j\omega t}dt$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

204

Description fréquentielle

- On peut obtenir la fonction d'autocorrélation temporelle
 - calculée sur une réalisation, de durée finie

$$R_{xx}(\tau) = \frac{1}{2T_0} \int_{-T_0}^{T_0} x^*(t)x(t+\tau)dt$$

 Si le processus est ergodique pour la moyenne et la corrélation, on obtient une estimation de la fonction d'autocorrélation (statistique)

$$\gamma_{xx}(\tau) = \lim_{T_0 \to \infty} R_{xx}(\tau) = \lim_{T_0 \to \infty} \frac{1}{2T_0} \int_{-T_0}^{T_0} x^*(t) x(t+\tau) dt$$

- Finalement, la DSP est donnée par $\Gamma_{xx}(\omega)=\int_{-\infty}^{\infty}\gamma_{xx}(t)e^{-j\omega t}dt$ méthode to
- On peut aussi avoir une estimation directe de la DSP:

$$\Gamma_{xx}(\omega) = \lim_{T_0 \to \infty} E[P_{xx}(\omega)]$$

méthode 2

$$P_{xx}(\omega) = \int_{-T_0}^{T_0} R_{xx}(\tau) e^{-j\omega\tau} d\tau = \frac{1}{2T_0} \int_{-T_0}^{T_0} \left[\int_{-T_0}^{T_0} x^*(t) x(t+\tau) dt \right] e^{-j\omega\tau} d\tau = \frac{1}{2T_0} \left| \int_{-T_0}^{T_0} x(t) e^{-j\omega t} dt \right|^2$$

Corrélation de signaux discrets

- On considère que le signal aléatoire est correctement échantillonné, $F_s > 2B$
- On obtient un signal de durée finie en prenant N échantillons

$$x(n), \quad 0 \le n \le N-1$$

 On peut tout d'abord estimer une moyenne temporelle de la fonction d'autocorrélation

$$r'_{xx}(m) = \frac{1}{N-m} \sum_{n=0}^{N-m-1} x^*(n)x(n+m), \ m = 0, 1, ..., N-1$$
$$r'_{xx}(m) = [r'_{xx}(-m)]^*$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

206

Propriétés du premier estimateur

L'estimateur de l'autocorrélation est non biaisé

$$E[r'_{xx}(m)] = \frac{1}{N-m} \sum_{n=0}^{N-m-1} E[x^*(n)x(n+m)] = \gamma_{xx}(m)$$

• On peut aussi montrer que [JenkinsWatts:1968]

$$\sum_{n=-\infty}^{\infty} |\gamma_{xx}(n)|^2 < \infty \Rightarrow \lim_{N \to \infty} \operatorname{var}[r'_{xx}(m)] = 0$$

- L'estimateur de la corrélation est **consistant**, puisqu'il est non biaisé et que sa variance tend vers 0 quand N est grand.
- Pour de grands lags (\emph{m}), l'estimateur $r'_{xx}(\emph{m})$ a une grande variance
 - Quand *m* approche *N*, peu de points sont pris en compte dans l'estimation

biais

Deuxième estimateur de corrélation

On peut utiliser un autre estimateur de la corrélation

$$r_{xx}(m) = \frac{1}{N} \sum_{n=0}^{N-m-1} x^*(n)x(n+m), \ m = 0, 1, ..., N-1$$

· Cet estimateur est par contre biaisé

$$E[r_{xx}(m)] = \frac{1}{N} \sum_{n=0}^{N-m-1} E[x^*(n)x(n+m)] = \frac{N-|m|}{N} \gamma_{xx}(m) = \left(1 - \frac{|m|}{N}\right) \gamma_{xx}(m)$$

- mais il a une variance plus petite que $r_{xx}^{\prime}(m)$

$$\operatorname{var}[r_{xx}(m)] \approx \frac{1}{N} \sum_{n=-\infty}^{\infty} [\gamma_{xx}(n)^2 + \gamma_{xx}^*(n-m)\gamma_{xx}(n+m)]$$

• L'estimateur est quand même consistant, puisque si $N\to\infty$, sa variance est nulle, et il devient non biaisé

$$\lim_{N \to \infty} E[r_{xx}(m)] = \gamma_{xx}(m)$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

208

Estimateurs de corrélation: résumé

- L'estimateur non biaisé a une grande variance pour *m* proche de *N*
 - variance trop élevée
- · L'estimateur biaisé n'a pas ce problème
 - la variance n'augmente pas aussi rapidement avec m
 - par contre, le biais augmente avec m!!!
- Dans les deux cas, on peut améliorer les estimations en augmentant la durée d'observation, N
 - L'estimateur biaisé devient non biaisé
 - Le problème de la variance est déplacée vers les plus grandes valeurs de m
- L'erreur quadratique moyenne de l'estimateur biaisé est inférieure à celle de l'estimateur non biaisé [Jenkins et Watts]
 - on préfère souvent l'estimateur biaisé (paradoxalement)

Estimateur spectral: périodogramme

• La DSP peut être calculée à l'aide de l'estimation de l'autocorrélation

$$P_{xx}(f) = \sum_{m=-N+1}^{N-1} r_{xx}(m)e^{-j2\pi fm} = \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n)e^{-j2\pi fn} \right|^2 = \frac{1}{N} |X(f)|^2$$

- Cette forme est appelée périodogramme (permet la détection de périodicité cachée)
- La DSP peut aussi être calculée de manière directe, par la transformée de Fourier de la séquence échantillonnée
 - Calcul de X(f) par TFD ou TFR, en N points

$$P_{xx}\left(\frac{k}{N}\right) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N} \right|^2, \ 0 \le k \le N-1$$

- Pour une meilleure représentation, on peut faire du 'zero padding' (L-N zéros)

$$P_{xx}\left(\frac{k}{L}\right) = \frac{1}{L} \left| \sum_{n=0}^{L-1} x(n)e^{-j2\pi nk/L} \right|^2, \ 0 \le k \le L-1$$

Résolution donnée par N!!!

Traitement des signaux, automne 2024 Prof. Pascal Frossard

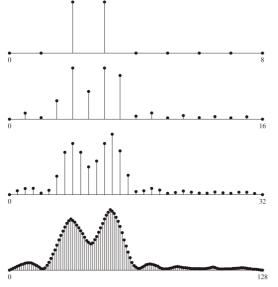
210

Illustration: calcul de DSP par FFT

• Séquence de N=16 points, obtenus par échantillonnage

$$x(n) = \sin 2\pi (0.135) n + \cos 2\pi (0.135 + \Delta f) n, \quad n = 0, 1, ..., 15$$

• On évalue la DSP à $f_k = k/L$ et on varie L en ajoutant des zéros au signal x(n).



les composantes ne peuvent être séparées même pour L grand

Figure 14.1.4 Spectra of two sinusoids with frequency separation $\Delta f = 0.06$.

Figure 14.1.5 Spectra of two sinusoids with frequency separation $\Delta f = 0.01$. Figures de [1]

Estimation par périodogramme

La valeur moyenne du périodogramme est donnée par

$$E[P_{xx}(f)] = E\left[\sum_{m=-N+1}^{N-1} r_{xx}(m)e^{-j2\pi fm}\right] = \sum_{m=-N+1}^{N-1} E[r_{xx}(m)]e^{-j2\pi fm}$$

$$= \sum_{m=-N+1}^{N-1} \left(1 - \frac{|m|}{N}\right) \gamma_{xx}(m)e^{-j2\pi fm}$$

$$\tilde{\gamma}_{xx}(m)$$

 c'est la transformée de Fourier de la fonction d'autocorrélation fenêtrée (Bartlett)

$$E[P_{xx}(f)] = \sum_{m=-\infty}^{\infty} \tilde{\gamma}_{xx}(m)e^{-j2\pi fm} = \int_{-1/2}^{1/2} \Gamma_{xx}(\alpha)W_B(f-\alpha)d\alpha$$

• La moyenne du périodogramme est une version lissée du spectre, avec des fuites d'énergie (effets de la fenêtre de Bartlett)

Traitement des signaux, automne 2024 Prof. Pascal Frossard

212

Propriétés du périodogramme

Le spectre estimé est asymptotiquement non biaisé

$$\lim_{N \to \infty} E\left[\sum_{m=-N+1}^{N-1} r_{xx}(m)e^{-j2\pi fm}\right] = \sum_{m=-\infty}^{\infty} \gamma_{xx}(m)e^{-j2\pi fm} = \Gamma_{xx}(f)$$

- Par contre, la variance de $P_{xx}(f)$ ne converge pas vers 0
 - p.ex., pour un processus Gaussien $\lim_{N o \infty} {
 m var}[P_{xx}(f)] = \Gamma^2_{xx}(f)$
- Le périodogramme n'est pas un estimateur consistant pour la DSP
 - La variance ne dépend pas de la durée d'observation!
 - On doit trouver des astuces pour améliorer le comportement de l'estimateur simple (en profitant de l'avantage du calcul par FFT)

DSP: méthodes non-paramétriques

- But: augmenter la consistance de l'estimateur simple de la DSP
 - sans faire d'hypothèse sur la nature du signal
- Outils: moyennage et lissage du périodogramme
 - le périodogramme bénéficie de méthodes de calcul rapide (FFT)
 - modifications pour réduire le variance de l'estimateur simple
 - pénalité: perte de résolution fréquentielle
- Méthodes non-paramétriques principales
 - Méthode de Bartlett: moyenne des périodogrammes
 - Méthode de Welch: moyenne de périodogrammes modifiés
 - Méthode de Blackman et Tukey: lissage du périodogramme

Traitement des signaux, automne 2024 Prof. Pascal Frossard

214

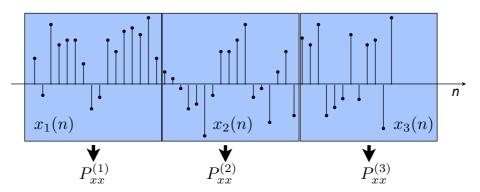
Méthode de Bartlett

- Diminution de la variance de l'estimateur par moyennage
- La séquence est divisée en K segments disjoints de longueur M

$$x_i(n) = x(n+iM), \quad 0 \le i \le K-1, \ 0 \le n \le M-1$$

• Le périodogramme est calculé pour chaque segment

$$P_{xx}^{(i)}(f) = \frac{1}{M} \left| \sum_{n=0}^{M-1} x_i(n) e^{-j2\pi f n} \right|^2, \quad 0 \le i \le K-1 \qquad P_{xx}^B(f) = \frac{1}{K} \sum_{i=0}^{K-1} P_{xx}^{(i)}(f)$$



Bartlett: propriétés

 Propriétés: réduction de la résolution fréquentielle, et de la variance

$$E[P_{xx}^{B}(f)] = E[P_{xx}^{(i)}(f)] = \sum_{m=-N+1}^{N-1} \left(1 - \frac{|m|}{N}\right) \gamma_{xx}(m) e^{-j2\pi f m} = \frac{1}{M} \int_{-1/2}^{1/2} \Gamma_{xx}(\alpha) \left(\frac{\sin \pi (f - \alpha)M}{\sin \pi (f - \alpha)}\right)^{2} d\alpha$$

$$\operatorname{var}[P_{xx}^{B}(f)] = \frac{1}{K^{2}} \sum_{i=0}^{K-1} \operatorname{var}[P_{xx}^{(i)}(f)] = \frac{1}{K} \operatorname{var}[P_{xx}^{(i)}(f)] = \frac{1}{K} \Gamma_{xx}^{2}(f) \left[1 + \left(\frac{\sin 2\pi f M}{M \sin 2\pi f}\right)^{2}\right]$$

- La variance est réduite par un facteur K!
- Mais la résolution fréquentielle est aussi réduite, puisque chaque FFT est calculée avec M = N/K points seulement (la largeur spectrale augmente d'un facteur K)

Fenêtre de Bartlett:
$$w_B(n) = \left\{ \begin{array}{ll} 1 - \frac{|m|}{M}, & |m| \leq M-1 \\ 0, & \text{otherwise.} \end{array} \right.$$

Traitement des signaux, automne 2024 Prof. Pascal Frossard

216

Méthode de Welch

- Modifications de la méthode de Bartlett
 - les L segments peuvent se superposer

$$x_i(n) = x(n+iD), \quad 0 \le n \le M-1, \ 0 \le i \le L-1$$

- fenêtrage des segments

$$\tilde{P}_{xx}^{(i)}(f) = \frac{1}{MU} \left| \sum_{n=0}^{M-1} x_i(n) w(n) e^{-j2\pi f n} \right|^2, \quad 0 \leq i \leq L-1 \qquad \text{avec} \qquad U = \frac{1}{M} \sum_{n=0}^{M-1} w^2(n) \right|$$

$$w(n) \qquad \qquad v_1(n) \qquad w(n) \qquad w(n)$$

$$\tilde{P}_{xx}^{(1)} \qquad P_{xx}^{W}(f) = \frac{1}{L} \sum_{i=0}^{L-1} \tilde{P}_{xx}^{(i)}(f)$$

Welch: propriétés

Propriétés: variance plus petite, mais lissage fréquentiel

$$E[P^W_{xx}(f)] = E[\tilde{P}^{(i)}_{xx}(f)] = \int_{-1/2}^{1/2} \Gamma_{xx}(\alpha) W(f-\alpha) d\alpha$$

$$\text{avec} \quad W(f) = \frac{1}{MU} \left| \sum_{n=0}^{M-1} w(n) e^{-j2\pi f n} \right|^2$$

$$\cdot \text{ si } \textit{w(n)} \text{ est une fenêtre triangulaire:}$$

$$\text{sans overlap: } \operatorname{var}[P^W_{xx}(f)] \approx \frac{1}{L} \Gamma^2_{xx}(f) \qquad \qquad \text{50\% overlap: } \operatorname{var}[P^W_{xx}(f)] \approx \frac{9}{8L} \Gamma^2_{xx}(f)$$

si D = M, et fenêtre rectangulaire, méthode équivalente à Bartlett

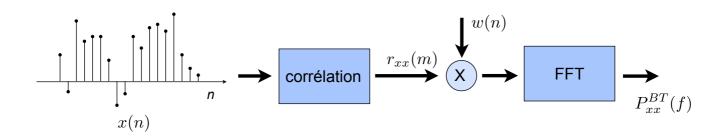
Traitement des signaux, automne 2024 Prof. Pascal Frossard

218

Méthode de Blackman-Tukey

- Fenêtrage de l'autocorrélation, puis transformation de Fourier
 - valeurs de l'autocorrélation peu fiables pour *m* grand (peu de points de calcul)
 - on peut donner un poids w(m) plus petit à ces valeurs

$$P_{xx}^{BT}(f) = \sum_{m=-M+1}^{M-1} r_{xx}(m)w(m)e^{-j2\pi fm} = \int_{-1/2}^{1/2} P_{xx}(\alpha)W(f-\alpha)d\alpha$$



Blackman-Tukey: Propriétés

Propriétés de la méthode de Blackman-Tukey

$$E[P_{xx}^{BT}(f)] = \int_{-1/2}^{1/2} E[P_{xx}(\alpha)]W(f-\alpha)d\alpha = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \Gamma_{xx}(\theta)W_B(\alpha-\theta)W(f-\alpha)d\alpha d\theta$$

$$E[P_{xx}^{BT}(f)] = \sum_{m=-M+1}^{M-1} E[r_{xx}(m)] w(m) e^{-j2\pi f m} = \sum_{m=-M+1}^{M-1} \gamma_{xx}(m) w_B(m) w(m) e^{-j2\pi f m}$$

avec
$$w_B(n) = \begin{cases} 1 - \frac{|m|}{N}, & |m| \leq N \\ 0, & \text{otherwise.} \end{cases}$$

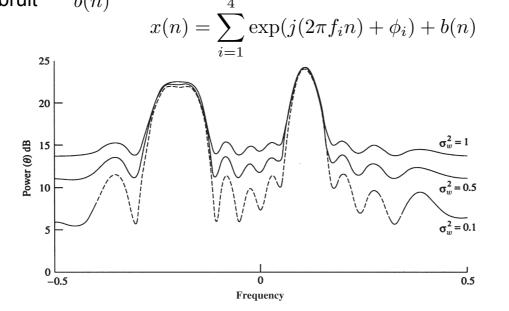
- lissage du périodogramme, si w(n) est plus étroit que $w_B(n)$
- réduction de la variance: ${\rm var}[P_{xx}^{BT}(f)] \approx \Gamma_{xx}^2(f) \left[\frac{1}{N} \sum_{m=-M+1}^{M-1} w^2(m)\right]$ (si processus Gaussien)

Traitement des signaux, automne 2024 Prof. Pascal Frossard

220

Illustration: Blackman-Tukey (M=12)

• Signal aléatoire composé de quatre sinusoïdes noyées dans un bruit b(n) $_4$



$$f_1 = -0.22$$

$$f_2 = -0.166$$

$$f_3 = 0.1$$

$$f_4 = 0.122$$

EPFL

Limitations des méthodes non-paramétriques

- Les méthodes non-paramétriques ont l'avantage d'être simples
 - calcul rapide par FFT
 - méthodes génériques: pas besoin de modèle du signal
- Par contre, elles souffrent de plusieurs limitations
 - besoin de longs signaux pour une bonne résolution fréquentielle
 - fuites d'énergie dues au fenêtrage (elles masquent les signaux faibles)
- Des hypothèses 'irréalistes' expliquent ces limitations
 - la fonction d'autocorrélation est nulle pour $m \geq N$
 - le périodogramme est périodique (période N)

Traitement des signaux, automne 2024 Prof. Pascal Frossard

222

Méthodes paramétriques

- Idée: on utilise un modèle du signal
- L'utilisation d'un modèle permet d'extrapoler les valeurs de la fonction d'autocorrélation pour $m \ge N$
 - plus besoin de fenêtrage (plus de fuites d'énergie)
 - meilleure résolution fréquentielle que les méthodes basées sur la FFT
 - des signaux de courte durée deviennent suffisants pour l'analyse (intéressant pour des phénomènes transitoires ou variables dans le temps)
- A partir du signal observé
 - on estime les paramètres du modèle du signal
 - on calcule la DSP à partir du modèle

Modèle donné par système linéaire

 Les signaux (stationnaires) observés sont souvent modélisés comme la sortie d'un système linéaire, excité par un signal aléatoire stationnaire w(n)

$$H(z) = \frac{B(z)}{A(z)} = \frac{\sum_{k=0}^{q} b_k z^{-k}}{1 + \sum_{k=1}^{p} a_k z^{-k}}$$

$$x(n) = -\sum_{k=1}^{p} a_k x(n-k) + \sum_{k=0}^{q} b_k w(n-k)$$

$$\Gamma_{xx}(f) = |H(f)|^2 \Gamma_{ww}(f)$$

- si w(n) est un bruit blanc, le DSP devient

$$\Gamma_{xx}(f) = \sigma_w^2 |H(f)|^2 = \sigma_w^2 \frac{|B(f)|^2}{|A(f)|^2}$$

La DSP est donnée si les paramètres du modèle sont connus!

Traitement des signaux, automne 2024 Prof. Pascal Frossard

224

Modèles courants

• Modèle ARMA d'ordre (p,q)

$$x(n) = -\sum_{k=1}^{p} a_k x(n-k) + \sum_{k=0}^{q} b_k w(n-k)$$

• Modèle AR d'ordre p si $b_0 = 1$ et q = 0

$$H(z) = 1/A(z)$$

- AR(p) est le modèle le plus courant (équations linéaires très simples)
- AR(p) permet de représenter un spectre avec des pics étroits (résonance)
- Modèle MA d'ordre q si A(z) = 1. On a alors H(z) = B(z)
 - rarement utilisé, ils nécessitent bp de paramètres pour une bonne estimation

Paramètres et autocorrélation

Modèle ARMA

$$\gamma_{xx}(m) = \begin{cases} \left(-\sum_{k=1}^{p} a_k \gamma_{xx}(m-k) & m > q \\ -\sum_{k=1}^{p} a_k \gamma_{xx}(m-k) + \sigma_w^2 \sum_{k=0}^{q-m} b_{k+m} h(k) & 0 \le m \le q \\ \gamma_{xx}^*(-m) & m < 0 \end{cases}$$

- on voit que les paramètres $\{a_k\}$ permettent de calculer la corrélation pour m>q
- Modèle AR

$$\gamma_{xx}(m) = \begin{cases} -\sum_{k=1}^p a_k \gamma_{xx}(m-k) & m>0 \\ -\sum_{k=1}^p a_k \gamma_{xx}(m-k) + \sigma_w^2 & m=0 \\ \gamma_{xx}^*(-m) & m<0 \end{cases}$$
 équations de Yule-Walker

- le système peut se mettre sous la forme d'une matrice Toeplitz, et peut se résoudre par Levinson-Durbin
- la connaissance de $\{a_k\}$ permet d'étendre la séquence d'autocorrélation

Traitement des signaux, automne 2024 Prof. Pascal Frossard

226

AR: Méthode de Yule-Walker

1. Estimation de la fonction d'autocorrélation à partir du signal

$$r_{xx}(m) = \frac{1}{N} \sum_{n=0}^{N-m-1} x^*(n)x(n+m), \quad m \ge 0$$

2. Solution des équations normales (γ_{xx} remplacé par r_{xx})

$$\begin{bmatrix} r_{xx}(0) & r_{xx}(-1) & \dots & r_{xx}(-p+1) \\ r_{xx}(1) & r_{xx}(0) & \dots & r_{xx}(-p+2) \\ \vdots & \vdots & \vdots & \vdots \\ r_{xx}(p-1) & r_{xx}(p-2) & \dots & r_{xx}(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = - \begin{bmatrix} r_{xx}(1) \\ r_{xx}(2) \\ \vdots \\ r_{xx}(p) \end{bmatrix}$$

Solution du système par Levinson-Durbin

L'estimation de la DSP devient

$$P_{xx}^{YW}(f) = \frac{\hat{\sigma}_{wp}^2}{|1 + \sum_{k=1}^p \hat{a}_p(k)e^{-j2\pi fk}|^2}$$

3. L'estimation de la DSP devient
$$P_{xx}^{YW}(f) = \frac{\hat{\sigma}_{wp}^2}{|1 + \sum_{k=1}^p \hat{a}_p(k)e^{-j2\pi fk}|^2} \quad \text{avec} \quad \hat{\sigma}_{wp}^2 = r_{xx}(0) + \sum_{k=1}^p \hat{a}_p(k)r_{xx}(-k)$$

AR: autres méthodes

- D'autres méthodes ont été proposées pour l'estimation des paramètres AR
- · Méthode de Burg
 - minimisation de l'erreur de prédiction fwd et bwd (treillis), sous la contrainte que les paramètres AR satisfont la récursion Levinson-Durbin
 - haute résolution fréquentielle, modèle AR stable, calcul efficace
- Méthode des moindres carrés non-contrainte
 - minimisation de l'erreur de prédiction fwd et bwd (treillis), sans la contrainte que les paramètres AR satisfont la récursion Levinson-Durbin
 - calcul efficace, performance meilleure que Burg, mais stabilité AR non garantie

Traitement des signaux, automne 2024 Prof. Pascal Frossard

228

Ordre du modèle AR?

- Ordre du modèle AR
 - compromis entre lissage, et apparition de pics 'erronés' dans le spectre
- Sélection par observation de l'erreur
 - l'erreur résiduelle décroît quand l'ordre du modèle augmente
 - l'ordre peut être choisi où la décroissance de l'erreur devient lente
- Sélection de l'ordre p de façon à minimiser des critères tels que
 - Final prediction error, FPE

$$FPE(p) = \hat{\sigma}_{wp}^2 \left(\frac{N+p+1}{N-p-1} \right)$$

- Akaike information criteria, AIC

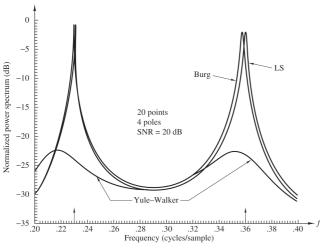
$$AIC(p) = \log \hat{\sigma}_{wp}^2 + 2p/N$$

- Minimum description length, MDL

$$MDL(p) = N \log \hat{\sigma}_{wp}^2 + p \log N$$

Illustration: méthodes paramétriques

• Signal composé de 2 sinusoïdes séparées par Δf , d'amplitudeAavec du bruit Gaussien de variance σ^2



-5 Normalized power spectrum (dB) -10 -20 Yule–Walker -2520 points 4 poles SNR = 20 dB 30 Frequency (cycles/sample)

Figure 14.3.1 Comparison of AR spectrum estimation methods.

Figure 14.3.2 Comparison of AR spectrum estimation methods.

SNR donné par $10 \log_{10} A^2/2\sigma^2$

Figures de [1].

Traitement des signaux, automne 2024 Prof. Pascal Frossard

230

Illustration: DSP avec ARMA modèle

N = 100

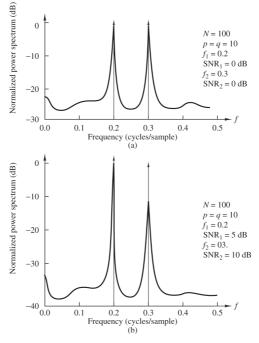


Figure 14.3.13 ARMA (10, 10) power spectrum estimates from paper by Kay (1980). Reprinted with permission from the IEEE.

Figure de [1].

Résumé

- On caractérise les signaux aléatoires par leurs statistiques d'ordre 2
 - Le théorême de Wiener-Khintchine lie la densité spectrale de puissance et la fonction d'autocorrélation
- Estimation de la fonction d'autocorrélation ou de la DSP pour des durées d'observation finies
 - Erreurs d'approximations (distorsion du spectre)
 - Estimations parfois non consistantes
- Méthodes non-paramétriques
 - Meilleure consistance de l'estimateur, par lissage et moyennage
- Méthodes paramétriques
 - Meilleure estimation en cas de connaissance a priori / modèle

Traitement des signaux, automne 2024 Prof. Pascal Frossard

232

Reférences

- 1. Digital Signal Processing (Proakis): chapitre 14
- 2. Traitement numérique des signaux (Kunt): chapitre 6
- 3. Digital Signal Processing (Mitra): chapitre 15

