

Mock Midterm 30 Octobre, 2024

Prénom:	 Nom:	 Sciper:	
i i ciiciii.	 1,0111.	 DOIPCI.	

Question 1

Considérez le signal $x(t) = \frac{1}{2} + \cos^2(2\pi t) - \sin^2(2\pi t)$, calculez:

- $1. \ \bar{x}$
- $P_x(T)$
- 3. P_x
- 4. x_{eff}

Question 2

Soit le système linéaire suivant:

$$y[n-2] + y[n] = x[n-2] - x[n-1] - 6x[n]$$

- 1. Calculez sa réponse H(z).
- 2. Calculez les pôles et les zéros de H(z) et faites un diagramme dans le plan complex. Quel est l'effet de ce système sur les fréquences basses, moyennnes et hautes? Justifiez.
- 3. On applique à l'entrée du système le signal $x[n]=(\frac{1}{3})^n\epsilon[n]$, avec $\epsilon[n]$ l'échelon unité. Calculez la réponse du système au signal.

Question 3

Considèrez le signal $x(t) = \cos(4\pi t) + \sin(2\pi t)$, calculez:

- 1. Donnez l'expression du signal numérique $x_1(k)$ obtenu par son échantillonnage à la fréquence $f_{s1}=4\mathrm{Hz}$.
- 2. Supposez qu'on effectue un fenêtrage du signal à l'aide d'une fenêtre rectangulaire de longueur N=4 (seulement les 4 premiers coefficients du signal). Calculez l'amplitude des coefficients de la TDF.
- 3. En augmentant la fréquence d'échantillonnage on obtient une nouvelle séquence $x_2(k) = \cos(\frac{\pi}{2}k) + \sin(\frac{\pi}{4}k)$. Quelle est la nouvelle fréquence d'échantillonnage f_{s2} ?
- 4. On calcule la TFD du signal $x_2(k)$ avec N = 16 points. Quel sera l'intervalle de fréquence entre deux échantillons successifs (résolution fréquentielle en Hz)?