Chapitre 4 - Systèmes électroacoustiques

Hervé Lissek

Electroacoustique (BA5)

Exercice 1. Rayonnement d'une membrane de haut-parleur

Qeulle est l'expression de la résistance de rayonnement d'un haut-parleur circulaire de rayon a:

- 1. monté sur un écran infini?
- 2. monté dans une enceinte close (on suppose que la dimension du haut-parleur est du même ordre que celle de la face de l'enceinte sur laquelle il est monté)?
- 3. monté dans une enceinte close, l'enceinte étant placée dans le coin d'une salle (contre 3 parois) et rayonne donc dans un huitième de sphère?

Inscrivez le numéro de la question dans les réponses proposées ci-dessous :

 $- \square R_{ar} = 2Z_c(ka)$ $- \square R_{ar} = 2Z_c(ka)^2$ $- \square R_{ar} = Z_c(ka)$ $- \square R_{ar} = Z_c(ka)^2$ $- \square R_{ar} = Z_c \frac{(ka)^2}{2}$ $- \Box R_{ar} = Z_c \frac{\overline{2}}{2}$ $- \square R_{ar} = Z_c \frac{(ka)^2}{4}$ $- \square R_{ar} = Z_c \frac{(ka^2)}{4}$

Exercice 2. Réponse en pression d'un haut-parleur

Quel est le type de réponse en pression acoustique, aux basses fréquences :

- 1. d'un haut-parleur monté sur enceinte close?
- 2. d'un haut-parleur monté sur enceinte à évent (bass-reflex)?

ses proposées ci-dessous :

Inscrivez le numéro de la question dans les répons
$ \square$ un filtre passe bas de pente 6 dB/ octave
$ \square$ un filtre passe bas de pente 12 dB/ octave
$ \square$ un filtre passe bas de pente 24 dB/ octave
$ \square$ un filtre passe bande de pente 6 dB/ octave
$ \square$ un filtre passe bande de pente 12 dB/ octave
$ \square$ un filtre passe bande de pente 24 dB/ octave
$ \square$ un filtre passe haut de pente 6 dB/ octave
$-\Box$ un filtre passe haut de pente 12 dB/ octave

 $-\Box$ un filtre passe haut de pente 24 dB/ octave

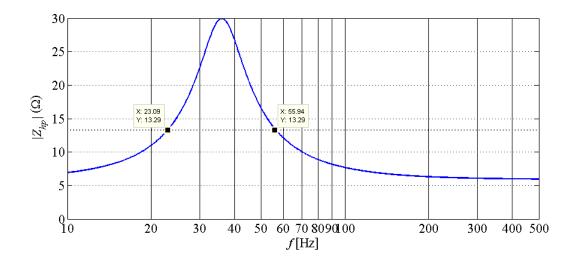
Exercice 3.

Un haut-parleur possède une fréquence de résonance $f_s = 50Hz$, un $V_{as} = 20\ell$ et un facteur de qualité $Q_{ts} = 0, 5$. Ce haut-parleur est monté dans une enceinte close de volume $V_b = 30\ell$. Calculez la fréquence de résonance et le facteur de qualité du système complet.

Exercice 4. Paramètres mécaniques d'un haut-parleur

Lorsqu'on achète un haut-parleur dans le commerce, on dispose en général du tableau de valeurs suivant.

Description	Grandeur	Valeur	Unité
Resonance frequency	f_s	36	Hz
D.C. resistance	R_e	5.9	Ω
Mechanical Q factor	Q_{ms}	2.43	
Electrical Q factor	Q_{es}	0.66	
Total Q factor	Q_{ts}	0.52	
Equivalent volume	V_{as}	38	1
Effective piston area	S_d	129	cm^2
Dynamically moved mass	M_{ms}	13	g
Force factor	$B\ell$	5.4	T.m
Inductance of the voice coil	L_e	1.2	mH


Connaissant les paramètres constructeur du haut-parleur (ici le VISATON 170S), proposez une méthode pour calculer la valeur de la compliance C_{ms} et de la résistance mécanique R_{ms} .

Exercice 5. Impédance électrique d'entrée d'un haut-parleur

En reprenant le schéma électrique équivalent d'un haut-parleur sur écran infini (cours 4.1, slide 33 et suivantes),

- 1. donnez l'expression de l'impédance électrique d'entrée mesurée aux bornes du haut-parleur : $Z_{hp}(f) = \frac{u_{hp}}{i}$, à l'aide des paramètres R_e , $B\ell$, R_{ms} , f_s et Q_{ms} .
- 2. D'après l'expression de l'impédance électrique d'entrée, retrouver les expression des résistance, inductance et capacité électriques (R_s, C'_s, L_s) représentant la partie mobile du haut-parleur $(R_{ms}, M'_{ms}, C_{ms})$.

On mesure l'impédance électrique d'entrée d'un haut-parleur VISATON 170S sur écran CEI (normalisé), et on obtient les résultats suivants :

Pour retrouver la valeur de f_s (difficile à estimer précisément sur la courbe, en raison de la largeur de la résonance), on va mesurer deux fréquences f_1 et f_2 vérifiant $|Z_{hp}(f_1, f_2)| = R_0$. Pour simplifier les calculs, on va choisir $R_0 = \sqrt{1 + \frac{(B\ell)^2}{R_e R_{ms}}} R_e$.

3. Montrez que $f_s = \sqrt{f_1 f_2}$. Retrouver la valeur numérique du tableau précédent, en observant que $f_1 = 23, 1Hz$ et $f_2 = 55, 9Hz$.

Exercice 6. Absorbeur électroacoustique

On dispose d'un haut-parleur VISATON 170S, que l'on souhaite utiliser comme absorbeur électroacoustique.

- 1. Calculez la valeur d'absorption acoustique optimale réalisée par la membrane lorsque le haut-parleur est en circuit ouvert du côté électrique, puis en court-circuit.
- 2. Quelle résistance électrique R_{shunt} doit-on choisir pour obtenir un absorption totale à la résonance?