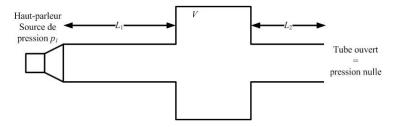
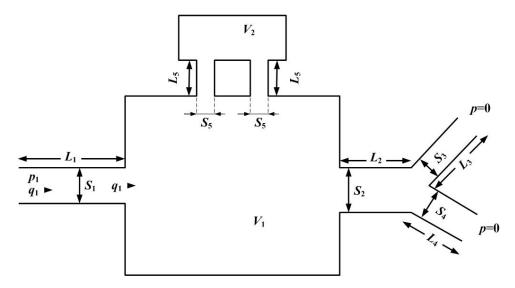
Série 2-2 - Systèmes acoustiques


Hervé Lissek

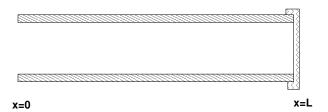
Electroacoustique (BA5)

Exercice 1. Silencieux


Dessinez le schéma acoustique analogue du silencieux ci-dessous, en considérant :

- le haut-parleur comme une source idéale de pression acoustique p_1
- la terminaison de droite ouverte (p=0)
- les conduits débouchant sur une jonction sont considérés comme non rayonnant
- les conduits de section constante sont considérés en première approximation comme des masses acoustiques m_a (rappeler les expressions des masses acoustiques m_{a1} et m_{a2} ; on notera r_d le rayon des deux conduits de longueur L_1 et L_2).
- les volumes sont assimilés à des compliances acoustiques C_a (rappeler l'expression de C_a)

Exercice 2. Circuit acoustique


Dessinez le schéma analogue du dispositif acoustique de la figure suivante. On considèrera une source de pression acoustique p_1 à l'entrée gauche du circuit, et deux terminaisons non rayonnantes p=0 à l'extrémité droite du circuit.

Exercice 3. Boomwhacker

Nous considérons ici les boomwhackers décrits dans le cours. Le système étudié ici est un tube ouvert à son extrémité et fermé à l'autre.

Nous proposons ici de réaliser le schéma équivalent au boomwhacker et de calculer l'impédance acoustique à l'entrée du boomwhacker (x = 0) comme présenté à la figure ci dessous.

- 1. Représenter le schéma équivalent au boomwhacker dans la représentation en T sans prendre en compte l'impédance terminale pour le moment.
- 2. Déterminer la valeur de l'impédance terminale au boomwhacker.
- 3. Représenter le schéma équivalent au boomwhacker en prenant en compte l'impédance terminale cette fois-ci.
- 4. Calculer la valeur de l'impédance acoustique d'entrée à l'aide du schéma équivalent. Pour quelles fréquences l'impédance est-elle nulle?
- 5. Donner l'expression de l'impédance acoustique d'entrée aux basses fréquences (longueur d'onde très grande devant la longueur du tube). Retrouve-t-on les fréquences calculées au point 4?

Nous considérons maintenant le cas du Boomwhacker ouvert aux deux extrémités (ie. p(x = L) = 0).

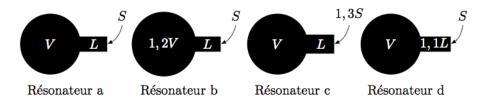
- 6. Calculer l'expression de la nouvelle fréquence de résonance ($1^{\grave{e}re}$ valeur pour laquelle l'impédance d'entrée est nulle)
- 7. Calculer les longueurs des 8 boomwhackers permettant de jouer les notes de la gamme tempérée :

Note	DO	RE	MI	FA	SOL	LA	SI	DO
Fréquence (Hz)	256	288	320	341.3	384	426.7	480	512
Longueur de tube								

Exercice 4. Bouteille vide

Nous considérons la bouteille de vin vide de la figure suivante :

Le volume d'air dans la bouteille est désigné V, et le goulot de la bouteille a une longueur l et un diamètre \emptyset . On suppose qu'une source idéale de pression p_e se trouve à l'entrée du goulot de la bouteille, et on désignera par q le débit volumique entrant dans le goulot de la bouteille.


- 1. Quels sont les composants acoustiques de la bouteille vide? Représenter un schéma de principe (symbolique) du système acoustique.
- 2. Trouver le schéma analogue ("électrique") de ce système acoustique.
- 3. Exprimer la fonction de transfert $\frac{q}{p_e}$. Représenter schématiquement le diagramme de Bode correspondant.
- 4. Par analogie avec vos connaissances en électrotechnique (et en mécanique), comment qualifieriez-vous le système acoustique réalisé par la bouteille vide? Définir les caractéristiques de ce type de système (très courant en électrotechnique). Les pertes acoustiques sont-elles significatives?

On remplit maintenant la bouteille (avec de l'eau...) aux trois-quarts de son volume.

5. Comment varient ses caractéristiques? Applications numériques : V=750 ml, l=63 mm, $\emptyset=18.5$ mm, $\rho_0=1.2$ kg.m⁻³, c=340 m.s⁻¹, $\eta=18.6.10^{-6}$ Pa.s

Exercice 5. Résonateurs de Helmholtz

Voici quatre résonateurs de Helmholtz, classer leurs fréquences de résonances par ordre croissant.

