Boucles à verrouillage de phase "Phase-Locked Loops" - PLL

Introduction et notions de base Etude générale Modèle linéaire et fonction de transfert Comportement dynamique

Etude des blocs fonctionnels: Détecteurs de Phase VOC

Applications

DÉTECTEURS DE PHASE

DÉTECTEURS DE PHASE

- Introduction
- Détecteurs de phase analogiques
- Détecteur de phase numérique XOR
- Détecteur de phase-fréquence numérique

INTRODUCTION

DÉTECTEURS DE PHASE ANALOGIQUES

Multiplieur analogique à cellule de Gilbert "balanced mixer" Signaux impairs, typiquement sinusoïdaux et/ou carrés

DÉTECTEUR DE PHASE NUMÉRIQUE XOR

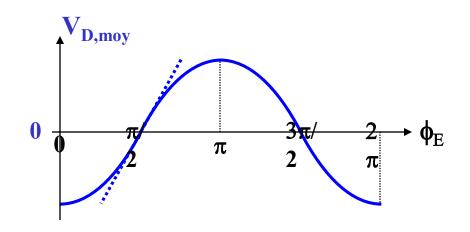
Signaux logiques, avec un rapport cyclique de 50%

DÉTECTEURS DE PHASE-FRÉQUENCE NUMÉRIQUES

Logique séquentielle n'admettant que des signaux logiques Indépendants du rapport cyclique des signaux

PRINCIPE: MULTIPLIEUR ANALOGIQUE

$$V_{IN} = A_{IN} \cdot \sin(\omega t) \longrightarrow V_{D} = \frac{A_{IN} \cdot A_{OUT}}{Z} \cdot \frac{1}{2} \cdot [\cos(2\omega t - \phi_{E}) - \cos(\phi_{E})]$$


$$PLL \text{ verrouill\'ee}$$

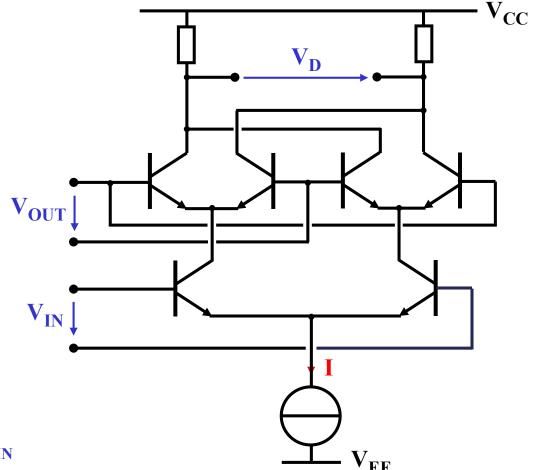
$$\omega_{IN} = \omega_{OUT} = \omega$$

$$V_{OUT} = A_{OUT} \cdot \sin(\omega t - \phi_{E}) \text{ issus du VCO}$$

$$V_{D,moy} = \frac{1}{T} \cdot \int_{0}^{T} v_{D}(t) \cdot dt = -\frac{A_{IN} \cdot A_{OUT}}{2 \cdot Z} \cdot \cos(\phi_{E})$$

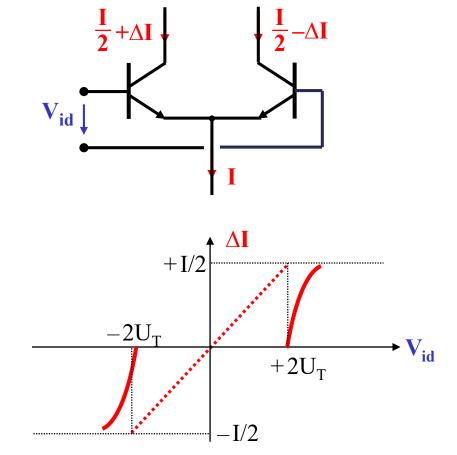
$$\mathbf{K_D} = \frac{\mathbf{A_{IN} \cdot A_{OUT}}}{2 \cdot \mathbf{Z}}$$

8 K_D dépendant de A_{IN} et A_{OUT}


8 non-linéaire

MODULATEUR ÉQUILIBRÉ OU "MULTIPLIEUR DE GILBERT"

Sinus, triangle ou carré à ω_{OUT} issus du VCO (ou d'un diviseur), amplitude > 200 mV_{p-p}


Signal d'entrée sinus à ω_{IN}

Si la PLL est verrouillée, $\omega_{OUT} = \omega_{IN} \, ,$ retard de phase ϕ_E de V_{OUT} sur V_{IN}

MODULATEUR ÉQUILIBRÉ OU "MULTIPLIEUR DE GILBERT"

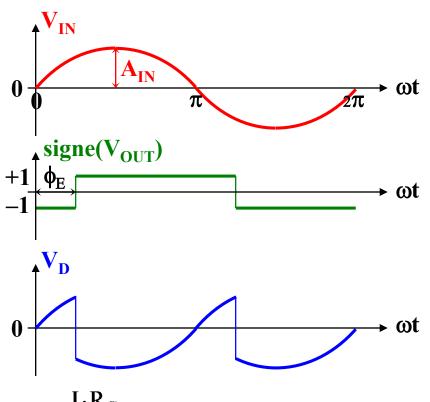
Rappels sur la paire différentielle

Relation exacte

$$\Delta I = \frac{I}{2} \cdot tanh \frac{V_{id}}{2 \cdot U_{T}}$$

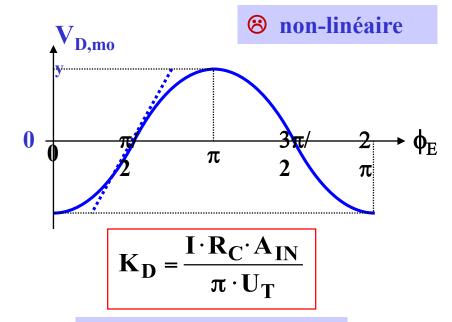
Signaux $\leq 50 \text{ mV}_{p-p}$

$$\Delta I = \frac{I}{2} \cdot \frac{V_{id}}{2 \cdot U_{T}}$$

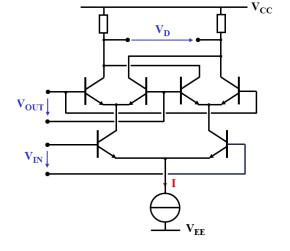

Carré, triangle ou sinus $\geq 200 \text{ mV}_{p-p}$

$$\Delta I = \frac{I}{2} \cdot signe(V_{id})$$

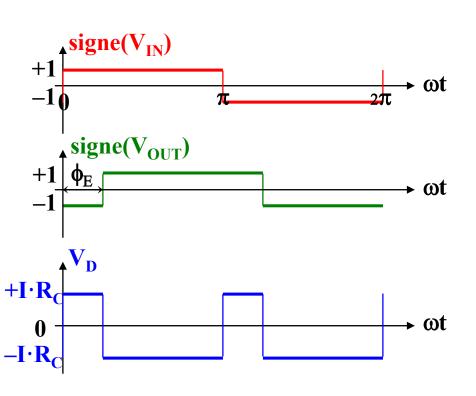
MODULATEUR BALANCÉ OU "MULTIPLIEUR DE GILBERT"


V_{OUT} V_D V_{EE}

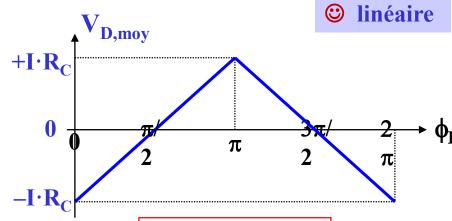
PLL verrouillée sur un signal d'entrée A_{IN} ·sin(ω_{IN} t) "petit" (A_{IN} < 25 mV)


$$v_{D}(t) = -\frac{I \cdot R_{C}}{2 \cdot U_{T}} \cdot signe(sin(\omega_{IN}t - \phi_{E})) \cdot A_{IN} \cdot sin(\omega_{IN}t)$$

$$V_{D,moy} = \frac{1}{T} \cdot \int_{0}^{T} v_{D}(t) \cdot dt = -\frac{I \cdot R_{C}}{\pi \cdot U_{T}} \cdot A_{IN} \cdot \cos \phi_{E}$$



8 K_D dépendant de A_{IN}


MODULATEUR BALANCÉ OU "MULTIPLIEUR DE GILBERT"

PLL verrouillée sur un signal d'entrée $A_{IN} \cdot \sin(\omega_{IN}t)$ "grand" $(A_{IN} > 100 \text{ mV})$

$$V_D = \frac{1}{T} \cdot \int_0^T v_D(t) \cdot dt = \frac{2 \cdot I \cdot R_C}{\pi} \cdot (\phi_E - \frac{\pi}{2})$$

$$\mathbf{K_D} = \frac{2 \cdot \mathbf{I} \cdot \mathbf{R_C}}{\pi}$$

$$v_D(t) = -I \cdot R_C \cdot signe(sin(\omega_{IN}t - \phi_E)) \cdot signe(sin(\omega_{IN}t))$$

© K_D constant

MODULATEUR BALANCÉ OU "MULTIPLIEUR DE GILBERT"

PLL non-verrouillée: $\omega_{IN} \neq \omega_{OUT}$

signal d'entrée A_{IN} ·sin(ω_{IN} t) "petit" (A_{IN} < 25 mV)

$$V_{D}(t) = -\frac{I \cdot R_{C}}{2 \cdot U_{T}} \cdot signe(sin(\omega_{OUT}t)) \cdot A_{IN} \cdot sin(\omega_{IN}t)$$

$$V_{D,moy} = 0$$

$$V_{D,\text{moy}} = 0 \qquad V_{D,\text{battement, fondamentale}}(t) = \frac{I \cdot R_C}{2 \cdot U_T} \cdot \frac{1}{2} \cdot \frac{4}{\pi} \cdot A_{IN} \cdot \cos(|\omega_{IN} - \omega_{OUT}|t)$$

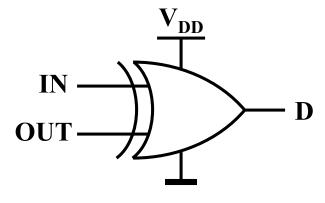
signal d'entrée A_{IN} ·sin(ω_{IN} t) "grand" ($A_{IN} > 100 \text{ mV}$)

$$V_D(t) = -I \cdot R_C \cdot signe(sin(\omega_{OUT}t)) \cdot signe(sin(\omega_{IN}t))$$

$$V_{D,moy} = 0$$

$$V_{D,battement}(t) = I \cdot R_C \cdot triangle(|\omega_{IN} - \omega_{OUT}|t)$$

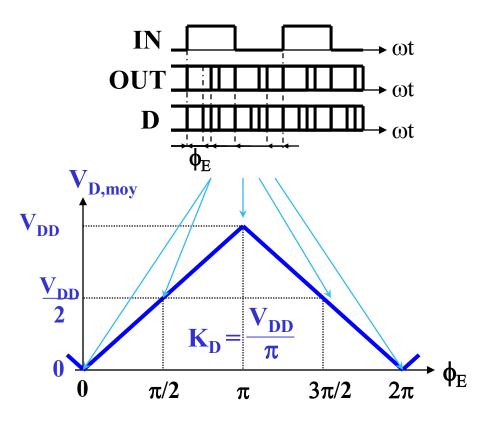
$$V_{D,moy} = 0$$


$$V_{D,battement}(t) = I \cdot R_{C} \cdot triangle(|\omega_{IN} - \omega_{OUT}|t)$$

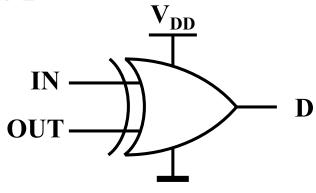
$$V_{D,battement,fondamentale}(t) = I \cdot R_{C} \cdot \frac{8}{\pi^{2}} \cdot cos(|\omega_{IN} - \omega_{OUT}|t)$$

→ pas de comparaison de fréquence

2. DÉTECTEUR DE PHASE NUMÉRIQUE XOR

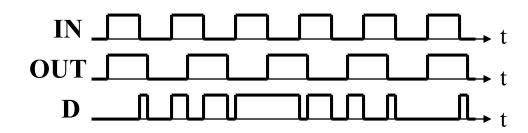

PRINCIPE

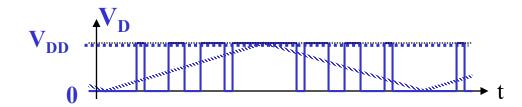
IN	OUT	D
0	0	0
0	1	1
1	0	1
1	1	0


$$\mathbf{V}_{\mathbf{D}} = \mathbf{V}_{\mathbf{DD}} \cdot \mathbf{D}$$

PLL verrouillée

2. DÉTECTEUR DE PHASE NUMÉRIQUE XOR

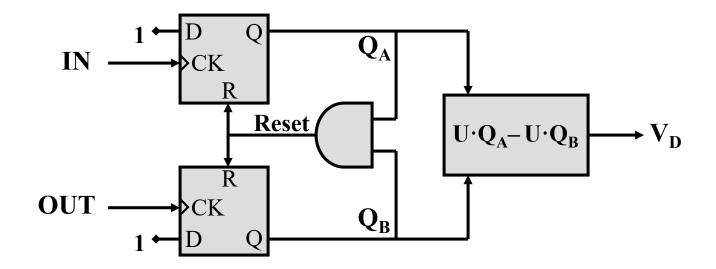

PRINCIPE



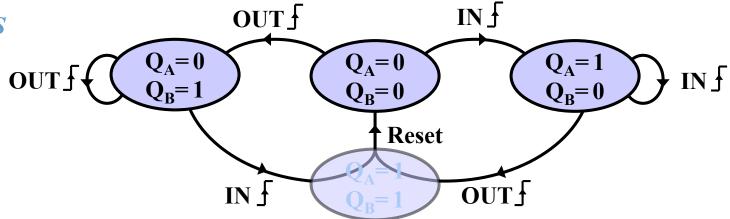
IN	OUT	D
0	0	0
0	1	1
1	0	1
1	1	0

$$\mathbf{V}_{\mathbf{D}} = \mathbf{V}_{\mathbf{DD}} \cdot \mathbf{D}$$

PLL non verrouillée

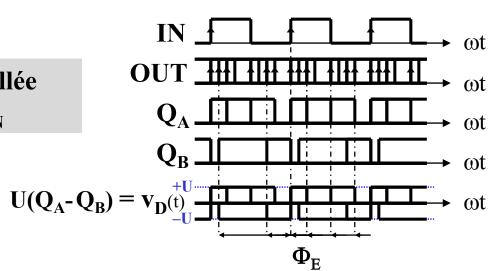

$$V_{D,moy} = V_{DD}/2$$
 pas de comparaison de fréquence

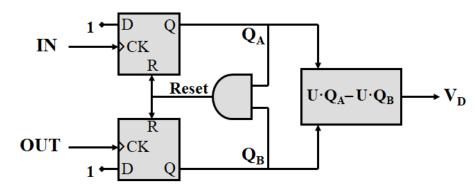
$$V_{D,battement}(t) = \frac{V_{DD}}{2} \cdot (1 + triangle(|\omega_{IN} - \omega_{OUT}|t))$$

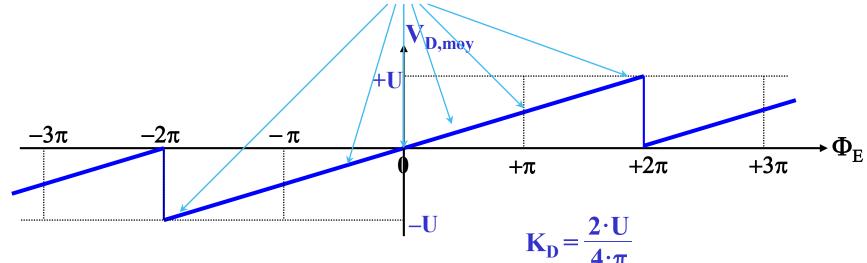

$$\approx K_{\rm D} \frac{\pi}{2} (1 + \cos(|\omega_{\rm IN} - \omega_{\rm OUT}|t))$$

PRINCIPE

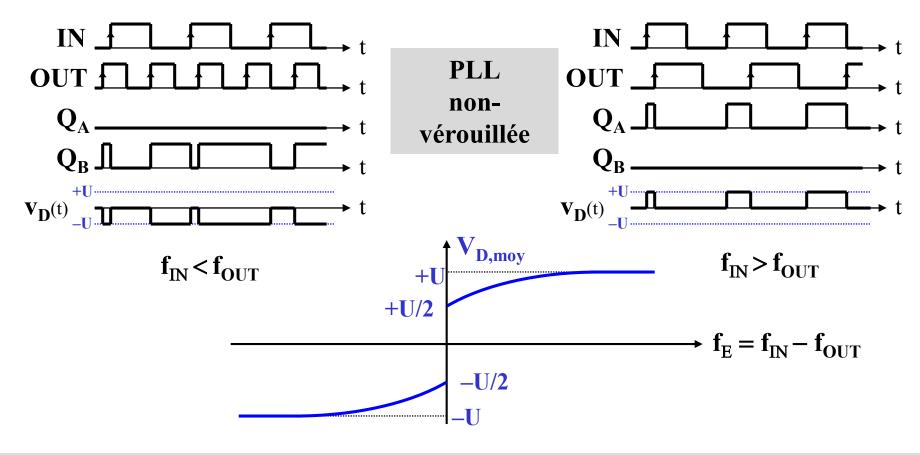
SCHÉMA DE PRINCIPE

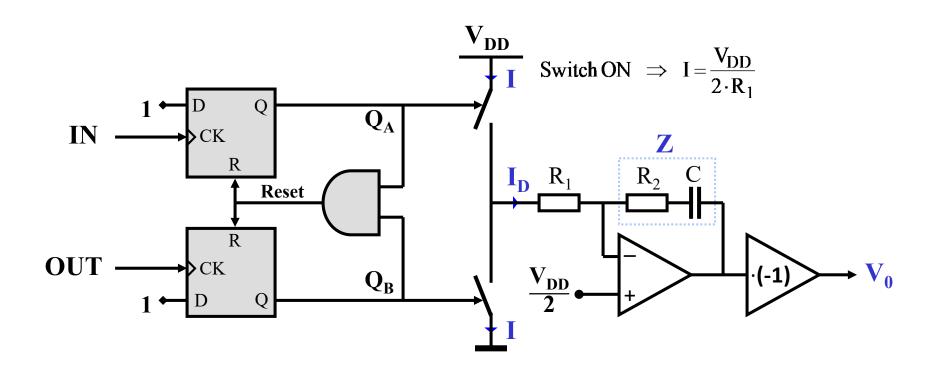



DIAGRAMME DES ÉTATS

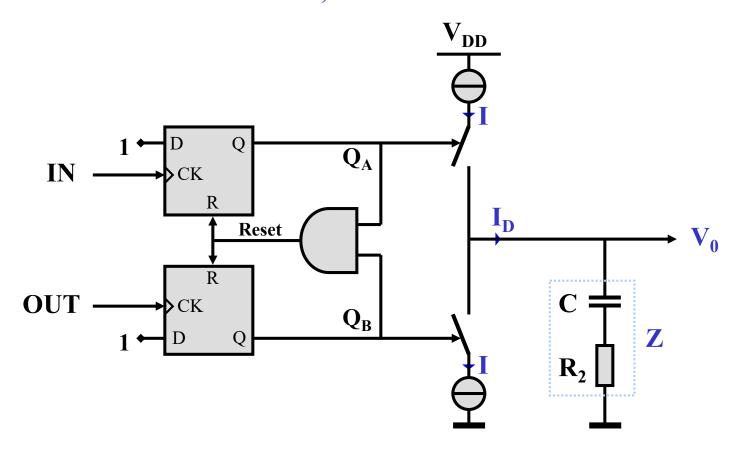


PRINCIPE

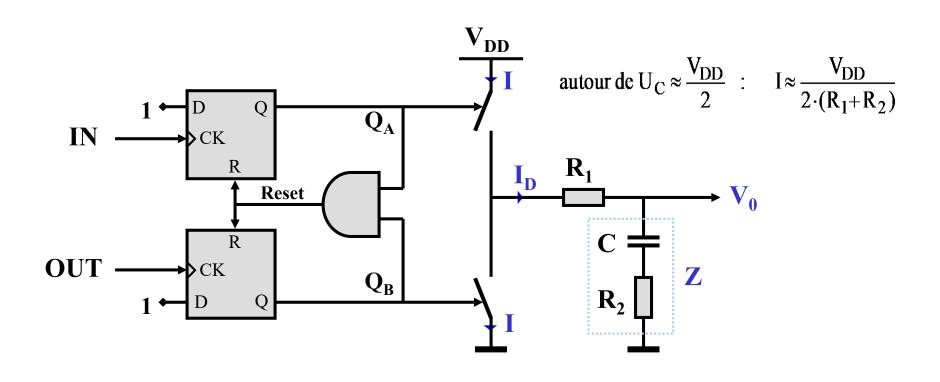

PLL vérouillée $f_{OUT} = f_{IN}$



PRINCIPE


En cas d'écart de fréquence (PLL déverrouillée), la sortie du détecteur est unipolaire, et sa polarité indique le signe de cet écart. En connectant cette sortie à un filtre intégrateur, V_0 sera une fonction croissante ou décroissante qui va provoquer le balayage de la bande de fréquences en vue de capturer le synchronism \mathbf{e}_5

DÉTECTEUR Φ-F ET FILTRE ACTIF INTÉGRATEUR SÉPARÉ


$$K_{D} \cdot F(p) = \frac{\overline{I}_{D}}{\phi_{E}} \cdot Z(p) = \frac{I}{2\pi} \cdot \frac{1 + pCR_{2}}{pC} = \frac{V_{DD}}{4\pi} \cdot \frac{1 + pCR_{2}}{pCR_{1}}$$

DÉTECTEUR Φ-F ET FILTRE PASSIF, INTÉGRATEUR PAR "CHARGE PUMP"

$$K_{D} \cdot F(p) = \frac{\overline{I}_{D}}{\phi_{E}} \cdot Z(p) = \frac{I}{2\pi} \cdot \frac{1 + pR_{2}C}{pC} = \frac{V_{DD}}{4\pi} \cdot \frac{1 + pCR_{2}}{pCR_{1}} \underbrace{V_{DD}}_{avec R_{1}} = \frac{V_{DD}}{2I} \text{ fictive}$$

DÉTECTEUR Φ-F ET FILTRE PASSIF, PSEUDO-INTÉGRATEUR PAR "CHARGE PUMP"

$$K_{D} \cdot F(p) = \frac{\overline{I}_{D}}{\phi_{E}} \cdot Z(p) = \frac{I}{2\pi} \cdot \frac{1 + pCR_{2}}{pC} \cong \frac{V_{DD}}{4\pi} \cdot \frac{1 + pCR_{2}}{pC(R_{1} + R_{2})}$$

DÉTECTEURS DE PHASE : RESUME

DÉTECTEURS DE PHASE ANALOGIQUES "BALANCED MIXER"

Signaux impairs, typiquement sinusoïdaux et/ou carrés Gamme de phase de $\pm \pi/2$ autour de $\pi/2$ Linéarité fonction de l'amplitude et de la forme des signaux Admettent les signaux bruités (télécom)

DÉTECTEUR DE PHASE NUMÉRIQUE XOR

Signaux logiques (ampli limiteur ou comparateur parfois inclus)

Gamme de phase $\pm \pi/2$ autour de $\pi/2$, réduite si le rapport cyclique $\neq 50\%$ Admet les signaux binaires avec impulsions parasites

DÉTECTEURS DE PHASE-FRÉQUENCE NUMÉRIQUES

Logique séquentielle n'admettant que des signaux logiques Gamme de phase de $\pm 2\pi$ centrée sur 0 Indépendants du rapport cyclique des signaux N'admettent pas les impulsions manquantes ou parasites

OSCILLATEURS CONTROLES EN TENSION VOLTAGE-CONTROLLED OSCILLATORS (VCO)

OSCILLATEURS CONTROLES EN TENSION VOLTAGE-CONTROLLED OSCILLATORS (VCO)

• Introduction: définition, classification et caractéristiques

- VCO à Oscillateurs en anneau
 - CMOS
 - Structure différentielle

INTRODUCTION

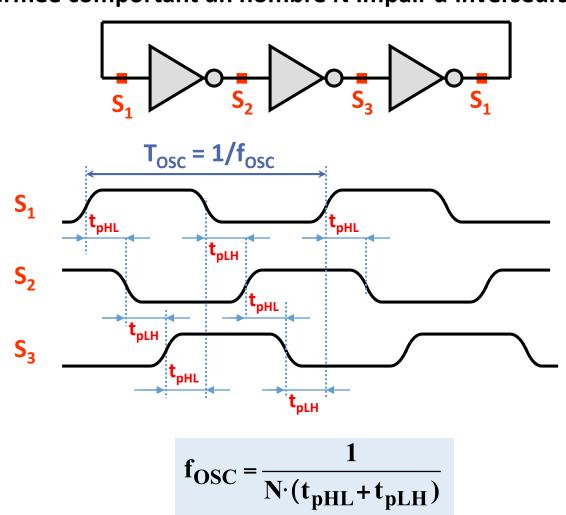
DEFINITION

Oscillateur est un terme général pour des circuits électroniques qui produisent par eux-même un signal périodique à une fréquence donnée. Dans un VCO, ou"<u>V</u>oltage-<u>C</u>ontrolled <u>O</u>scillator", celle-ci est variable, commandée par une tension de contrôle.

Signaux de sortie

- Sinusoïdaux
- Non-sinusoïdaux
 Rectangulaires
 Impulsions
 Dents de scie

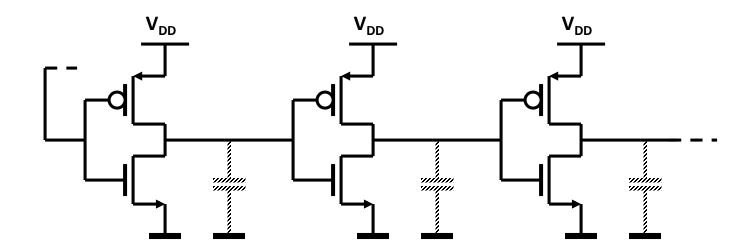
INTRODUCTION


PARAMETRES CARACTERISTIQUES

- La linéarité de la relation tension → fréquence
- Le "Gain" $K_0 = \Delta \omega_{OSC} / \Delta V_0$
- La fréquence limite maximum d'oscillation
- La dynamique de fréquence absolue $f_{\rm OSC,max}-f_{\rm OSC,min}$ et relative $f_{\rm OSC,max}/f_{\rm OSC,min}$, en fonction de V_0
- La forme du signal de sortie, sinusoïdale ou autre
- Taux de distorsion pour les oscillateurs sinusoïdaux
- Bruit de phase

1. VCO A OSCILLATEUR EN ANNEAU CMOS

PRINCIPE

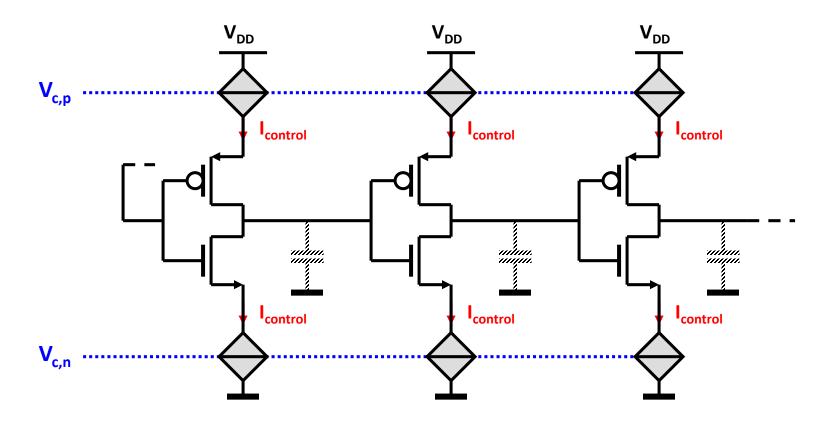

Chaine fermée comportant un nombre N impair d'inverseurs logiques

1. VCO A OSCILLATEUR EN ANNEAU CMOS

PRINCIPE

Les temps de propagation t_{phl} et t_{phl} sont liés au temps de charge et de décharge, au travers des transistors NMOS ou PMOS, de la capacité de charge totale de la sortie de chaque étage.

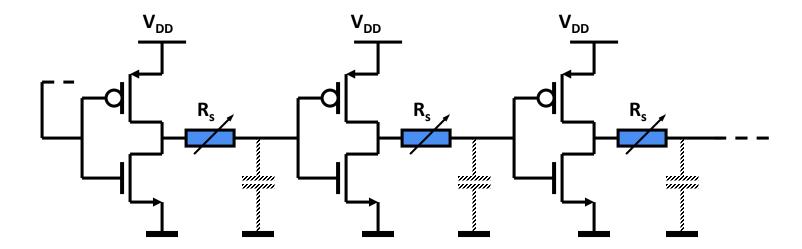
$$f_{OSC} = \frac{1}{N \cdot (t_{pHL} + t_{pLH})}$$


Les oscillateurs en anneau sont utilisés comme:

- oscillateurs / VCOs
- circuits de caractérisation de la vitesse d'une technologie (mesure du temps de propagation moyen)

VCO A OSCILLATEUR EN ANNEAU CMOS

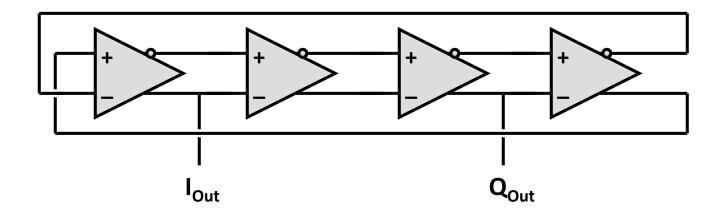
TRANSFORMATION DE L'OSCILLATEUR EN ANNEAU CMOS EN VCO PAR "CURRENT STARVING"


Les inverseurs CMOS servent de commutateurs pour les sources de courant contrôlées

1. VCO A OSCILLATEUR EN ANNEAU CMOS

TRANSFORMATION DE L'OSCILLATEUR EN ANNEAU CMOS EN VCO PAR RESISTANCE SERIE VARIABLE

Une résistance variable contrôlée est mise en série à la sortie de chaque étage inverseur.

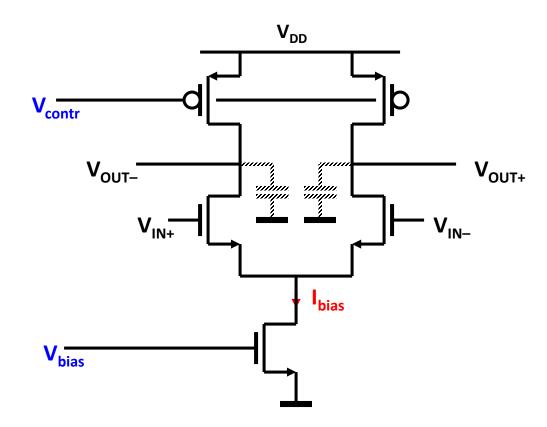

1. VCO A OSCILLATEUR EN ANNEAU CMOS

CARECTERISTIQUES GENERALES

- Totalement intégrable en technologies CMOS numériques avancées
- Grande souplesse dans le choix de la gamme de fréquence par simple changement du nombre d'étages
- Amplitude de sortie (sur les drains) constante en fonction de la fréquence
- Relation plus ou moins linéaire entre la tension de contrôle et la fréquence
- En pratique, rapport de plus de 2 décades entre f_{min} et f_{max}

2. VCO A OSCILLATEUR EN ANNEAU A STRUCTURE DIFFERENTIELLE

PRINCIPE



$$\mathbf{f_{OSC}} = \frac{1}{2 \cdot \mathbf{N} \cdot \mathbf{t_p}}$$

Possibilité d'avoir un nombre N pair de portes logiques, en particulier N = 4, ce qui permet d'avoir des signaux de sortie en quadrature (I - Q).

2. VCO A OSCILLATEUR EN ANNEAU A STRUCTURE DIFFERENTIELLE

SCHEMA DE PRINCIPE D'UN ETAGE

$$t_{p} = r_{on,p} \cdot C \cdot \ln 2$$

$$t_{p} = \frac{C \cdot \ln 2}{\beta_{p} \cdot (V_{DD} - V_{contr} - V_{Tp})}$$

V_{bias} et donc I_{bias} sont asservis à V_{contr} pour obtenir une amplitude donnée des oscillations.

2. VCO A OSCILLATEUR EN ANNEAU A STRUCTURE DIFFERENTIELLE

CARECTERISTIQUES GENERALES

- Totalement intégrable en technologies CMOS numériques avancées
- Nombreuses structures possibles
- Grande souplesse dans le choix de la gamme de fréquence par simple changement du nombre d'étages
- Possibilité d'un nombre paire d'étages, en particulier 4 pour obtenir des signaux de sortie en quadrature
- Bonne immunité aux bruits de mode commun, en particulier ceux d'alimentation et de couplage par le substrat