Exercices Paire Différentielle (2eme séance)

Exercice 1

Dimensionnez l'amplificateur différentiel montré dans la Fig. 1 pour qu'il fonctionne avec des alimentations de \pm 2.5V et fournisse un gain de tension différentiel $A_d = 60$. La dissipation de puissance à l'état de repos ne doit pas dépasser 1 mW.

- a) Spécifiez les valeurs de *I* et *Rc*. Quelle tension continue (dc) apparaît aux collecteurs ?
- b) Si β = 100, quelle est la résistance différentielle d'entrée R_{id} ?
- c) Pour un signal $v_{id}=10mV$, quelle est la tension à chacun des collecteurs (V_{o1}, V_{o2}) ?
- d) Dans la situation (c), quelle est la valeur maximale admissible de la tension de mode commun d'entrée V_{CM} ? (À noter que pour maintenir un transistor npn en régime active normal, c'est-à-dire garantir que la jonction base-collecteur reste polarisée en inverse, la tension de la base v_B ne doit pas dépasser la tension du collecteur v_C , de plus de 0.4V!).

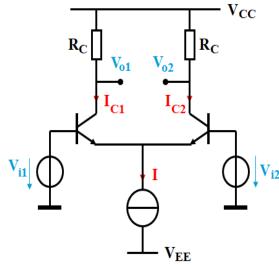


Figure 1

Exercice 2

Considérez le circuit différentiel de base dans la Fig. 2, dans lequel les transistors ont $\beta = 100$ et $V_A = 100V$, avec I = 0.2mA, $1/g_S = 500k\Omega$ et $R_C = 25k\Omega$. Les résistances de collecteur sont appariées avec une *précision* de 1 %.

Trouvez:

- a) le gain différentiel
- b) la résistance d'entrée différentielle
- c) le gain en mode commun
- d) le rapport de réjection en mode commun
- e) la résistance d'entrée en mode commun

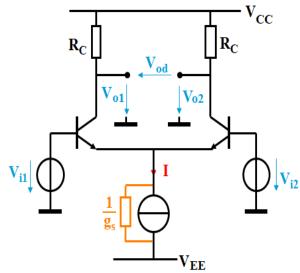


Figure 2

Exercice 3

L'amplificateur différentiel montré dans la Fig. 3 fonctionne avec $I=500\mu A$ et des transistors pour lesquels $\beta=100$ et $V_A=10V$.

Trouvez:

- a) la résistance d'entrée différentielle Rid
- b) la résistance de sortie Rout
- c) la transconductance en court-circuit G_{md}
- d) le gain de tension en circuit ouvert A_d
- e) quel sera le gain de tension si la résistance d'entrée de l'étage suivant (R_L) est égale à R_{id} de l'ampli diff ?

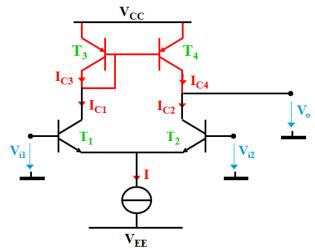


Figure 3