
1.1 - V_{ramp} et le compteur sont initialisés à zéro au début du processus.

Durant T_0 (2000 $T_{ck)}$ seuls S_{in} , S_{ref} et S_3 sont fermés.

Etablir les expressions de U_X , V_e et V_{ramp} .

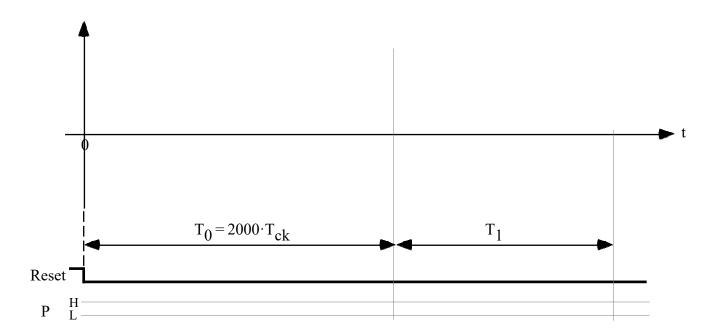
V_{ramp} et le compteur sont initialisés à zéro au début du processus.

Pour V_{in} positif représenter sur le graphique ci-dessous V_{ramp} et la variable logique P durant T_0

Exprimer la valeur de $V_{ramp}(T_0)$ et l'état de la variable logique mémorisée sur POL à la fin de T_0 .

Durant T_1 , S_{in} et S_{ref} étant ouverts, quel doit être le signe de V_e pour ramener V_{ramp} à 0 ? Lesquels de S_1 S_2 S_3 S_4 doivent alors être fermés ?

Etablir alors les expressions de V_e et de V_{ramp} durant T_1 .


Représenter V_{ramp} et la variable logique P durant T₁.

Etablir l'expression de la durée de T₁ lorsque V_{ramp} franchit 0V

Etablir l'expression du nombre stocké dans le registre après T₁.

V_{ramp} et le compteur sont initialisés à zéro au début du processus.

Si V_{in} est **négatif**, sur le graphique ci-dessous, représenter V_{ramp} et la variable logique P durant T_0 .

Exprimer la valeur de $V_{ramp}(T_0)$ et l'état de la variable logique mémorisée sur POL à la fin de T_0 .

Durant T_1 , S_{in} et S_{ref} étant ouverts, quel doit être le signe de V_e pour ramener V_{ramp} à 0 ? Lesquels de S_1 S_2 S_3 S_4 doivent alors être fermés ?

Etablir alors les expressions de V_e et de V_{ramp} durant T₁.

Représenter V_{ramp} et la variable logique P durant T₁.

Etablir l'expression de la durée de T₁ lorsque V_{ramp} franchit 0V

Etablir l'expression du nombre stocké dans le registre après T₁.

Circuits et systèmes électroniques	
1.2 -	Sachant que le compteur "tourne" sans arrêt, et en négligeant la durée du reset, combien de mesures par seconde sont effectuées ?
1.3 -	Dimensionner la constante RC pour que $ V_{\text{ramp}} $ ne dépasse jamais 3 V.