Digital Systems Design - Fall Semester 2024 Exercise 3 - Solutions
Telecommunications Circuits Laboratory EPFL-STI-IEL

VHDL to Circuit Schematics

Task 1

Question 1: The missing else or default statement will create a latch instead of a MUX.
This happens because without the else or default statement the update of the output is only
triggered when SelxSI = ’1’ and when SelxSI has any other value the new value of OutxDO
is not defined so it will have to keep its old value, that is, the value of OutxDO should not
change from what it was before. This implies a memory element, which in this case is a latch.

Question 2: The code can be fixed in two different ways:

= Add an else in the process along with the associated assignment to OutxD0 from In0OxDI
as shown in Listing 1.

» Add a default signal assignment OutxD0 <= InO0xDI in the process as shown in Listing 2.

Question 3: This just requires a MUX with inputs InOxDI and In1xDI at input numbers O
and 1, respectively, and output OutxDO along with the select signal SelxSI.

Listing 1: VHDL solution for Task 1 with else.

process(all)
begin
if SelxSI = '1' then
OutxD0 <= In1xDI;
else
OutxD0O <= InOxDI;
end if;
end process;

Listing 2: VHDL solution for Task 1 with default signal assignment.

process(all)
begin
OutxD0 <= InOxDI;

if SelxSI = '1' then
OutxD0 <= In1xDI;
end if;
end process;

Task 2

Question 1: The syntax errors are the missing else in the 2nd last line and the missing
semicolon for the last line. The typo is the ResxDN <= ResxDP. The solution is shown in
Listing 3.

Exercise 3 - Solutions 2

Listing 3: VHDL solution for Task 2.

signal ResxDN, ResxDP : unsigned(8-1 downto 0);
begin

process (CLKxCI, RSTxRI)
begin
if (RSTxRI = '1') then
ResxDP <= (others => '0');
elsif (CLKxCI'event and CLKxCI = '1') then
ResxDP <= ResxDN;
end if;
end process;

ResxDN <= AxDI + BxDI when CxDI + DxDI > 1 else
AxDI - BxDI - 1 when CxDI > DxDI and DxDI /= O else
AxDI + 1;

Question 2: The circuit schematic is shown in Figure 1.

AxDI
; R
BxDI D Q OutxDO
°]
] RST
- -1 1
0
+1
CxDI S
DxDI _|
o—1 *
* >
1 CLKxCl RSTXRI
Figure 1: Circuit schematic for Task 2.
Task 3

Question 1: The errors are: Empty process sensitivity list for combinational logic, 2 missing
then. The process for the registers is missing the RSTxRI. The solution is shown in Listing 4.

Exercise 3 - Solutions 3

Listing 4: VHDL solution for Task 3.

signal ResxDN, ResxDP : unsigned(8-1 downto 0);
begin

process (CLKxCI, RSTxRI)
begin
if (RSTxRI = '1') then
ResxDP <= (others => '0');
elsif (CLKxCI'event and CLKxCI = '1') then
ResxDP <= ResxDN;
end if;
end process;

process(all)
begin
if SelOxSI = '1' then
ResxDN <= AxDI + BxDI;
elsif Sell1xSI = '1' then
ResxDN <= AxDI + CxDI;
else
ResxDN <= DxDI + 1;
end if;
end process;

Question 2: The solution is shown in Figure 2.

AxDI N 1
BxDI D Q OutxDO
0
d RST
CxDI H +
1
0
DxDI +1
Sel1xSI
Seloxsl CLKXCl RSTXRI

Figure 2: Circuit schematic for Task 3.

Task 4

Question 1: Recall that a signal in a process is not updated until the end of the process. So,
while the update CNTxDP <= CNTxDP + 1 is scheduled at the rising edge of the clock, it does
not take effect until the end of the process. This means that if CNTxDP = "1110" when we
enter the process, the if statement for MaxPulsexS0 does not use CNTxDP + 1 = "1111".
Instead, it uses the current value CNTxDP = "1110" from when we entered the process. As
the process is only triggered by the clock (and the reset), a change to CNTxDP (which happens
at the end of the process) will not trigger the process again and so we wait until the next
rising edge of the clock for the if statement to be evaluated again and the MaxPulsexSO to
be assigned ’1° now that it sees CNTxDP = "1111".

Exercise 3 - Solutions 4

Note that there is a difference between how to think of scheduled events in a process during
simulation and how the inferred hardware looks like. In terms of the hardware, this style of
coding has the effect of inferring a 1-bit register for MaxPulsexS0 which delays the signal by one
clock cycle after CNTxDP has attained the value "1111". You can verify this by looking at the
LUT which sits in front of the MaxPulsexS0 register in Vivado if you synthesize Task4.vhdl.

This style also creates other issues with the hardware when synthesizing it with Vivado. Vivado
returns us an FDSE block for the register MaxPulsexS0, which is a D Flip-Flop with Clock
Enable and Synchronous Set. This FDSE block does not have an asynchronous reset and
instead uses a clock enable which is based on the reset being low. Normally, we expect an
FDCE block, which is a D Flip-Flop with Clock Enable and Asynchronous Clear which uses
the asynchronous reset. If you look at the code it should also be clear as to why this happens,
as MaxPulsexS0 is not reset to *0° when the reset is asserted. Therefore, it is critical that
you never write code like this!

Question 2: This style of coding is considered bad practice because it is much harder to take
the VHDL code and compare it to a circuit schematic and the result is not what you may
expect, as described in the previous question. Imagine a much larger process with many signals
and several nested if statements. It would be much more difficult to keep track of the state of
the signals and the order in which they are updated compared to writing combinational logic
inside process(all), separate from the register description in process (CLKxCI, RSTxRI).

Question 3: The solution is to change the process to define only the register for the counter
and then move the code for the counting and pulse outside as concurrent assignments (or in
a process(all)). This can be seen in Listing 5. Now that the if statement is a concurrent
assignment, whenever CNTxDP changes value the change is observed immediately instead of
being delayed and no register is inferred for MaxPulsexS0.

Question 4: The corrected circuit is shown in Figure 3.

Listing 5: VHDL solution for Task 4.

signal CNTxDN, CNTxDP : unsigned(4-1 downto 0);
begin

process (CLKxCI, RSTxRI)
begin
if (RSTxRI = '1') then
CNTxDP <= (others => '0');
elsif (CLKxCI'event and CLKxCI = '1') then
CNTxDP <= CNTxDN;
end if;
end process;

CNTxDN <= CNTxDP + 1;
MaxPulsexSO <= '1' when CNTxDP = "1111" else
IO|;

Exercise 3 - Solutions 5

|_ CNTxDP
+1 D Q
1111

== MaxPulsexSO

RST

CLKxCI
RSTxRI

Figure 3: Circuit schematic for Task 4.

Circuits to VHDL

Task 5

Question 1: The solution is shown in Listing 6. This solution use (others => ’X’) as the
default instead of don't care (*-?) or *0’. The reason why you may want to use (others
=> ’X’) is because it allows your component to output an >X’> when SelxSI has an ’X’ in
it, that is, your component does not swallow an ’X’ but allows it to propagate through. This
can make it easier to perform debugging when you have a larger hiearchical design where you
want to ensure that any error happening in a sub-component can be seen at the output. If you
picked (others => ’0’) as the default, then, even if SelxSI has an ’X’ in it, you would
not observe it on the output but would only see an output that is all zero.

Listing 6: VHDL solution for Task 5.

signal ResxDN, ResxDP : unsigned(8-1 downto 0);
begin

process(CLKxCI, RSTxRI)
begin
if (RSTxRI = '1') then
ResxDP <= (others => '0');
elsif (CLKxCI'event and CLKxCI = '1') then
ResxDP <= ResxDN;
end if;
end process;

with SelxSI select

ResxDN <= AxDI + 1 when "00",
AxDI - BxDI - 1 when "O1",
AxDI + BxDI when "10" | "11",

(others => 'X') when others;

OutxD0 <= ResxDP;

Task 6

Question 1: This block is used to find the smallest input value. It does not return the index,
only the smallest value.

Question 2: The solution is shown in Listing 7.

Question 3-4: The testbench is given in file tb_task6_sol.vhdl.

Exercise 3 - Solutions

Listing 7: VHDL solution for Task 6.

signal ResOxD, Res1xD, Res2xD :

unsigned(8-1 downto 0);

signal CompOxS, ComplxS, Comp2xS : std_logic;
begin
CompOxS <= '1' when InOxDI < InlxDI else '0O'; -- Comparators

Comp1xS <= '1' when In2xDI < In3xDI else '0';
Comp2xS <= '1' when ResO0xD < ReslxD else '0O';

Res0xD <= InOxDI when CompOxS
Resl1xD <= In2xDI when ComplxS

Res2xD <= ResOxD when Comp2xS =

OutxD0 <= Res2xD;

'1' else InlxDI; -- Muz
'1' else In3xDI;
'1' else ReslxD;

Task 7

Question 1: The circuit schematic for Task 7 shows how an adder can be reused for many
different input signal combinations instead of having multiple adders for each combination like
in Task 3. This is called resource sharing, and is quite commonly done in RTL design. In this

case, we only use 1 adder instead of 3!

Question 2: The solution is shown in Listing 8.

Listing 8: VHDL solution for Task 7.

signal SrcOxD, SrclxD : unsigned(8-1 downto 0);
signal ResxDN, ResxDP : unsigned(8-1 downto 0);

begin

process(CLKxCI, RSTxRI)
begin
if (RSTxRI = '1') then

ResxDP <= (others => '0');
elsif (CLKxCI'event and CLKxCI

ResxDP <= ResxDN;
end if;
end process;

with SelxSI select
SrcOxD <= AxDI
DxDI
(others => 'X'")

with SelxSI select
SrcixD <= BxDI
CxDI
"00000001"
(others => 'X'")

ResxDN <= SrcOxD + SrcilxD;
OutxD0 <= ResxDP;
end rtl;

when
when
when

when
when
when
when

= '1') then
uoou | "01" s
nqo" | nqqn s
others;
uoon’

noq" s

nqo" | nqqn s
others;

