ECOLE POLYTECHMN]
FEDERALE DE LAUSA

nout Fall 2022

EE-334
Digital System Design

Custom Digital Circuits

VHDL for Synthesis —
Basic Constructs and Correspondences

Andreas Burg

EE-334: Digital System Design

Hierarchy and Instantiation

« Hierarchy is required for modularity, abstraction, and to deal with complexity

 Blocks used later in a hierarchy are called COMPONENTS
= Components can themselves be hierarchical (include instances of other components)
= Signals declared in a component are only visible within the component
* The interface of a component is defined by its ENTITY

« Each "appearance/use” of a component is called an INSTANCE
* There can be multiple instances of the same component
* |[nstances are connected through the ports of their components

i O R
@ % i}%:% VHDL files

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 2 (((

Components vs. Functions

* Only distant analogy to functions in programming: similar purpose (reuse),
BUT very different physical presence

Hardware (VHDL) Software (C)
i | Int my_fct(int a, int b)]
Component | | M { Function
definition | | } return a+b; " definition
) Main() { -

ool
ix

< X

LI | |

my fct(a, b);]
my fct(c, d); Function

Component | :EJ,,; z = my_fct(x, y); calls
instantiations }

Co-exist
in parallel

Sequential execution

(| N | («
[COLE POLYTECHNIQUE EE-334: Digital System Design 3

DE LAUSANN

Instantiating Components in VHDL (1/2)

« Components need to be declared before instantiating/using them in the

architecture of another component

= Declaration in the preamble of the architecture in which they are used
= Alternative: declaration in a package (not discussed here)

« Component declaration & name must
match the corresponding entity name

Entity declaration of a component in a file,
e.g., entity name.vhd

ENTITY entity name IS
GENERIC (
generic_1 name :
generic_2 name :

generic_1 type;
generic_2 type

)
PORT (
port 1 name : port_1 dir port 1 type;
port 2 name : port_2 dir port 2 type
)
END entity_name;

ECOLE I
FEDERALE DE LAUSANN

OLY TECHNIQUE
E FLAUSANNE

ARCHITECTURE architecture _name OF other_entity_name IS

-- component declaration

e

COMPONENT component_name IS
GENERIC (
generic_1 name :
generic_2 name :
)s
PORT (
port 1 name :
port 2 name :
)5
END COMPONENT;

generic_1 type;
generic 2 type

port 1 dir port 1 type;
port 2 dir port 2 type

BEGIN

-- VHDL statements

END architecture_name;

EE-334: Digital System Design

Instantiating Components in VHDL (2/2)

« Declared components can be
Instantiated in the architecture
body

* Instantiation(s)
= defines the instance name

= connects ports of an instance of
the components to signals

= Defines the generics (parameters)
based on expressions that can be
evaluated at compile-time

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

ARCHITECTURE architecture_name OF other_entity name IS
-- signal declarations

-- component declaration
COMPONENT component_name IS
GENERIC (..);
PORT (..);
END COMPONENT;
BEGIN
-- Component instantiation
instance_1_name : component_name
GENERIC MAP (
generic_1 name => CONSTANT_EXP_1_1,
generic_2 name => CONSTANT_EXP_1 2
)
PORT MAP (
port 1 name => port_1 1 signal,
port 2 name => port_1 2 signal
)

instance_2_name : component_name

)
PORT MAP (port_2_1 signal, port_2_2_ signal);
END architecture_name;

SIGNAL port_1_1_signal, port_2_1 signal : port_1_ type;
SIGNAL port_1_ 2 signal, port_2_2 signal : port_2_ type;

GENERIC MAP (CONSTANT_EXP_2 1, CONSTANT EXP 2 2

EE-334: Digital System Design 5 (((

it

Array Types

« To describe hardware we often need BUSSES (groups of signals or constants)
- Arrays are defined by declaring a custom type

« Custom types are declared in the architecture preamble
= Elements from left-to-right can be counted “from-low-to-high” or “from-high-downto-low”
= Array types, once declared, can again serve as basis for new arrays to build 2+D arrays

-- type declarations

-- signal declaration

SIGNAL signal 1 name

SIGNAL signal 2 name
BEGIN

-- VHDL statements
END architecture_name;

ARCHITECTURE architecture_name OF other_entity_name IS

TYPE array type name 1 1D IS ARRAY (low TO high) of base_type;

TYPE array type name 2 1D IS ARRAY (high|DOWNTO Lgﬁi;if\iase_type;

TYPE array_ type name_ 3 2D IS ARRAY (INTEGER RANGE < of array_type name_ 2;

: array_type_name_1; high-to-low
: array_type name_3(low TO high);

Counting

Range defined here

* Array size declaration can be deferred until type is used

(A

OLY TECHNIQUE
E DE LAUSANNE

EE-334: Digital System Design 6 (((H

STD LOGIC _VECTOR with DOWNTO Index

« STD LOGIC VECTOR: heavily used in hardware modelling

= Array type that comes with STD_LOGIC type
* Defined in IEEE.STD_LOGIC 1164 package

= STD LOGIC VECTORS for binary numbers are typically declared “from-high-downto-low”

» Correlates better to the established
weighted number representation

— MSB on the left (low index)
— LSB on the right (high index)

“9 1 0 0 0” = 8’dec
Bit idx. 4 3 2 1 ©
(4 downto 0)

« ldeally, use only DOWNTO

(A

OLY TECHNIQUE
E DE LAUSANNE

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY entity_name IS

END entity_name;

ARCHITECTURE architecture_name OF other_entity_name IS

-- signal declaration
SIGNAL signal bus name

BEGIN
-- VHDL statements
END architecture_name;

: STD LOGIC VECTOR(low TO high);
SIGNAL bin_signal name :

STD_LOGIC_VECTOR(high DOWNTO low);

EE-334: Digital System Design

; (e

Operations on Array Types

- Accessing from and assigning to array elements or ranges
target _array object(index) <= base_type object
target _base type object <= target base type array(index)
target_array_object(index_range) <= from_array_object(index_range)
index_range = low TO high | high DOWNTO low

- Assigning array aggregates (collections of elements) to an array
= Multiple options exist to “fill” an array (assign multiple elements together)
target _array object <= (value_1, value 2, ..);
target _array object <= (idx_1=>value_1, idx 2=>value 2, ..);
target _array object <= (idx_1=»>value_ 1, idx_2|idx_3=»>value 2, ..);

)
ECOLE POLY TECHNIOUE EE-334: Digital System Design
FEDERALE DE LAUSANNE

: (¢

Operations on Array Types

* Filling an array: OTHERS refers to all still unassigned elements in the aggregator
target _array object <= (idx_1=>value_1, OTHERS=>value _2); -- fill all remaining
target_array_object <= (OTHERS=»>value_1); -- fill all elements

« Assignments to arrays with character elements
= Array literal values can be places in double quotes
target _array object(index_range) <= “.” -- e.g., “0100-1”
= STD LOGIC VECTOR is based on STD LOGIC which is a character type, i.e., ‘0’, ‘1’, ‘X", *-, ...
target_array_object(index_range) <= “010-10-”

- Concatenation of arrays and array elements
target _array_object(index_range) <= base_type_object 1 & base_type object_ 1

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 9 (((m

Example Operations on STD LOGIC VECTOR

« Signal declarations of STD_LOGIC VECTOR

-- signal declaration of std_logic_vectors
SIGNAL AxD, BxD, CxD, DxD, ExD : STD LOGIC VECTOR(8-1 DOWNTO ©);
SIGNAL QxS : STD_LOGIC;

« Assignments

QxS <= ‘1°;

AxD <= “10010101”;

BXD <= “-0-001-1”;

CxD <= (OTHERS => ‘@’);

« Concatenation and indexing

BxD <= AxD(7-1 downto 0) & ‘@’; -- SHIFT LEFT
CxD <= ‘@’ & AxD(8-1 downto 1); -- SHIFT RIGHT
DxD <= AxD(7-1 downto @) & AxD(8-1); -- ROTATE LEFT
ExD <= QxS & QxS & ‘1’ & “00001”;

-(I’fl-

[COLE POLYTECHNIQUE EE-334: Digital System Design 10 (((

Types for Arithmetic: UNSIGNED/SIGNED

« Built-in type INTEGER supports basic arithmetic operations,
BUT the integer type is not sufficiently generic for optimized hardware
* INTEGER type has a fixed width of 32 bit (often too large or sometimes too small)
» INTEGER represents only signed numbers having half the range
= Any overflow or underflow will trigger an ERROR in the simulation rather than a wrap-around

 Need for a more flexible type with variable length for signed and unsigned
« IEEE numeric_std package: define integer as array of std _logic
« Two new data types: UNSIGNED, SIGNED

 The array interpreted as an unsigned or signed binary numbers
= UNSIGNED are represented as standard binary
= SIGNED vectors are represented using two’'s complement
= Array elements can be accessed and assigned as in a std_logic_vector

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 11 (((

UNSIGNED/SIGNED Data Types (Best practice)

« SIGNED and UNSIGNED data types represent numbers. Therefore
= Corresponding signals best carry the suffix xD to indicate the numeric type of data
<Signal Name>xD
MyInputAxDI, MySIGNALxD, AccuREGxDN, AccuREGxDP

« SIGNED and UNSIGNED use weighted binary digits, counted from right to left

= Use DOWNTO bit order to place the LSB (bit-0) on the right and the MSB (bin-N) on the left

SIGNAL <Signal Name>xD : UNSIGNED(8-1 DOWNTO ©);
SIGNAL EXSIGNALXD : SIGNED(8-1 DOWNTO ©);

« When declaring a signal, it is often useful to immediately see the number of bits
= Since bits are counted from zero (0), it is often more clear to write
SIGNAL <Signal Name>xD : UNSIGNED(#BITS-1 DOWNTO ©);

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 12 (((

Arithmetic Operations on SIGNED and UNSIGNED

« IEEE numeric_std defines many common operators

overloaded description data tvpe data tvpe data tvpe
operator of operand a of operand b of result
abs a absolute value signed signed

- a negation

a * b

a / b unsigned unsigned. natural unsigned
a mod b arithmetic unsigned. natural unsigned unsigned
a rem b operation signed signed. integer signed

a + b signed. integer signed signed

a - b

a=~>b

a /= b unsigned unsigned. natural boolean
a < b relational unsigned. natural unsigned boolean
a <= b operation signed signed. integer boolean
a > b signed. integer signed boolean
a »>= b

(|

ECOLE POLYTECHNIQUE EE-334: Digital System Design 13 (((

DERALE [

Arithmetic Operations on SIGNED and UNSIGNED

« IEEE numeric_std defines many common operators and type conversions

-(I’ﬂ-

[COL[[OL‘rT[CI IN]CL

function description data type of data type of data type of
operand a operand b result
shift_left(a,b) shift left unsigned. signed natural same as a
shift right(a,b) shift right
rotate_left(a,b) rotate left
rotate_right(a,b) rotate right
resize(a,b) resize array unsigned. signed — natural same as a
std_match(a,b) compare -’ unsigned. signed sameasa boolean
std_logic_vector,
std_logic
to_integer(a) data type unsigned. signed integer
to_unsigned(a,b) conversion natural natural unsigned
to_signed(a,b) integer natural signed

EE-334: Digital System Design

u (¢

Type Conversions to/from SIGNED and UNSIGNED

« STD LOGIC VECTOR, UNSIGNED, and SIGNED are defined as arrays of std_logic
« However, they are considered as different types

« Type conversion
functions needed
between these types

» Second “length” argument
required for source types
without explicit length
(INTEGER)

« Type conversion requires

NO hardware resources

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

std_logic_vector unsigned unsigned(std_logic_vector)

unsigned std_logic_vector std_logic_vector(unsigned)

signed std_logic_vector std_logic_vector(signed)

unsigned integer to_integer(unsigned)

integer unsigned to_unsigned(integer, no_of_bits)

linteger signed to_signed(integer, no_of bits) |
15 (((m)))

EE-334: Digital System Design

Arithmetic Operations

Example

« Basic Arithmetic Operations: ENTITY ports are std_logic_vector

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY adder IS
PORT (AxDI,BxDI
CxDO

: IN
END adder;

ARCHITECTURE rtl OF adder IS
-- signal declaration
SIGNAL SgnAxD, SgnBxD, SgnCxD :
BEGIN
-- Type conversion
SgnAxD <= signed(AxDI);
SgnBxD <= signed(BxDI);
-- Arithmetic
SgnCxD <= SgnAxD + SgnBxD;
-- Convert back to std logic vector for
CxDO <= std_logic_vector(SgnCxD);
END rtl;

std logic vector(8-1 downto 0);
: OUT std _logic vector(8-1 downto 90));

signed(8-1 DOWNTO 9);

N

No
hardware
resources

tput port

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 16

(«

The Problem of Describing Logic Efficiently

 Combinational logic is the work-horse of any digital circuit as it performs the
data manipulation (algorithm/operations) Thith Table

Inputs
B Cin

Qla

=[=f=]o|=|eo|e|=o|e

* Truth/look-up tables are the most generic way to HD—

describe Boolean logic, but also the most $®
tedious one: difficult to formulate and to read/interpret

- |- || =]l

0
1
0
1
0
1
0
1

= |l=|lojlol=|=|lolo

« Some more efficient means exist to describe specific types of logic:

= Sometimes operations are naturally described in Boolean equations, but these quickly become
difficult to create or understand

= Arithmetic operations describe a frequently used specific subset of operations and we know how
to map these to Boolean logic (from many early research works)

Need an efficient way to describe Boolean logic

ECOLE POLYTECHMN L
FEDERALE DE LAUSANN

ioue - Fall 2020 EE-334: Digital System Design 17 (((H)))

Efficiently Describing Logic as Decision Trees

« Afully arbitrary logic function must ultimately be described by a truth/look-up table

« Completely arbitrary functions are rare in practice
= Some inputs or combinations of some inputs

render the output independent of all other inputs 00 01 11 10
= |n Karnaugh maps, we refer to this as 00 1 0 0 1
“combining minterms”
01 0 0 1 0
o 11 0 0 0 0
e Such truth tables can be expressed efficiently 10 0 0 0 0
and interpreted as decision diagrams

» |nterpretation as decision trees
» Formulation based on if-then-elsif-elsif-...-else

ECOLE POLYTECHMN]
FEDERALE DE LAUSA

nout Fall 2020 EE-334: Digital System Design 18 (((H

Designing Logic “with/as Multiplexers” (1/2)

« Besides boolean and arithmetic operations, the CONDITIONAL ASSIGNMENT is
a fundamental building block for HDL-based hardware design

« The simplest conditional assignment corresponds to a 2-input MUX

= patural way to combine 2 pieces of logic into one

Hardware
HDL 2-input MUX

Pseudo-Code
- . boolean_
Conditional Assignment expression

If boolean_expression then

signal_1 <= expression_1

Else
signal_1 <= expression_2 .
End signal_1
)
&g!»ﬂf&@ EE-334: Digital System Design 19 (((H

Designing Logic “with/as Multiplexers” (2/2)

 How to describe the combination of multiple expressions?
= Nested IF statements: VHDL version described later Hardware

8 If boolean_expression_1 then
@) signal_1 <= expression_1 boolean_ boolean_
@) Else expression expre551on
1 . 2
-8 If boolean_expression_2 then _
= R T e
N Else Expression
a signal_1 <= expression_3 1
— End
D _ 5 > 1 1
T | End » Nesting level signal_
= Nesting level
 encodes priority in the HDL description
« defines the level of the MUX in the HW
— Quter-most IF corresponds to last MUX in the chain
— Inner-most IF corresponds to first MUX in the chain _inner outer

Nesting level

)
-(!* f&! EE-334: Digital System Design 20 (((m)))

Designing Logic “with/as Multiplexers” (2/2)

 How to describe the combination of multiple expressions?
= Combined IF, ELSIF, ELSIF, ... , ELSE statements: Hardware
signal_1 <= expression_1

boolean_ boolean_
expression expre551on
Elsif boolean_expression_2 then Order 2

signal_1 <= expression_2 e

@
1

If boolean_expression_1 then

Else

signal_1 <= expression_3

End

HDL Pseudo-Code

signal_1

= Order
 encodes priority in the HDL description

« defines the level of the MUX in the HW
— First IF corresponds to last MUX in the chain
— Last IF corresponds to first MUX in the chain inner outer

Order leve

)
-(!* f&! EE-334: Digital System Design 21 (((m)))

Conditional Assignments (MUXes) in VHDL (1/2)

* Due to their importance and power to describe logic in an intuitive manner,
VHDL provides many options for conditional assignments

= WHEN-ELSE statement for multiple different binary conditions (IF, ELSIF, ELSIF, ... ELSE)
target signal <=| expression 1 WHEN boolean_expression_ 1 ELSE

Order=
Priority .
expression N;
V| ' f
ELSE
« Multiple conditions may be true at the same time ; ~{
— Order encodes the priority: only first one is relevant M
* Note: often expression_x is simply a signal ./

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

expression 2 WHEN boolean expression 2 ELSE

signal_1

22 (((m

Conditional Assignments (MUXes) in VHDL (2/2)

* Due to their importance and power to describe logic in an intuitive manner,
VHDL provides many options for conditional assignments

_ _ _ ~Hardware
= WITH-SELECT statement for a single multi-valued (non-binary) condition
WITH cond_signal SELECT cond_sigal

target signal <=
expression 1 WHEN constant 1,

constant_1

expression 2 WHEN constant 2,

constant_2 = target sigal

expression_N WHEN OTHERS;

ELSE
 Only one condition is true at the same time

* Note: often expression x is simply a signal

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 23 (((m)))

An Important Remark on Conditional Assignments

« Consider the pseudo-code below, which is common practice in Software

If boolean_expression_1 then _ . :
signal 1 <= expression 1 = NOTE: If none of the conditions is met,

Elsif boolean_expression_2 then no assignment is made to signal_1

signal_1 <= expression_2
« HOWEVER, a physical wire can never

be “not assigned” any value atall —— >~ | N

signal_1

NOT
LIKE
THIS!!
[COLE POLYTECHNIQUE EE-334: Digital System Design 24

An Important Remark on Conditional Assignments

be “not assigned” any value at all Q *
* In VHDL, signals preserve their state : NO CONDITION
. . . " HOLD (keep)
If no value is assigned m : p
= Works perfectly in simulation, BUT 5 B ob—signa1 1
I « Is often not the desired behaviour
* Is NOT COMPATIBLE with the rules of w
- synchronous design =>issues later in the design
RULE: every combinational conditional assignment must be complete
)
&g!;ﬁ&:wsﬁ EE-334: Digital System Design 25 (((m

Consider the pseudo-code below, which is common practice in Software

If boolean_expression_1 then _ . :
signal 1 <= expression 1 = NOTE: If none of the conditions is met,

Elsif boolean_expression_2 then no assignment is made to signal_1

signal_1 <= expression_2
boolean_ boolean_
2 1

End

HOWEVER, a physical wire can never

Example: A Simple ALU

« Specification: 8-bit ALU
» Three operations: +, -, AND
» Specified by CMDxSI (2-bit command)

= For CMDxDI="117, the output DOES NOT MATTER

CxDO

AxDI
BxDI

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all
ENTITY my_first_counter IS

PORT (
AxDI : IN std logic vector(8-1 DOWNTO 0);
BxDI : IN std logic vector(8-1 DOWNTO 0);

CMDxSI : IN std logic vector(2-1 DOWNTO 0);

CxDO : OUT std logic vector(8-1 DOWNTO ©)
)s

END my_first_counter;

(|

ECOLE POLYTECHNIQUE EE-334: DIgIta' System DESigI’] 26 (((m

FEDERALE DE LAUSANNE

ARCHITECTURE rtl OF my_first_counter IS

BEGIN

END rtl;

-- signal declaration
SIGNAL SgnCxD : SIGNED(8-1 DOWNTO ©);

WITH CMDxSI SELECT
SgnCxD <=
SIGNED(AxXDI) + SIGNED(BxDI) WHEN “00”,
SIGNED(AxXDI) - SIGNED(BxDI) WHEN “01”,
SIGNED(AxXDI AND BxDI) WHEN “10”,
Cmmmmmmem * WHEN OTHERS;

-- Output assignment with type conversion
CxDO <= std_logic_vector(SgnCxD);

How to Implement Registers in a Clean Way?

« Synchronous designs requires the notion of a state

» |[n VHDL, signals preserve their state (have a state) when nothing is assigned to them

= This preservation of states can be exploited to describe registers,
but it must be done with care

* Objective: stick to the rules of synchronous design
= ONLY the clock triggers a state transition

= Use ONLY positive edge triggered FlipFLops (no latches)
= =>» Incomplete combinational conditional assignments are not the solution to create registers

e Clean solution:

Describe registers EXPLICITLY with a well controlled template

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 27 (((

Describing Edge Triggered Registers in VHDL

* Two ingredients:

» A conditional statement that is TRUE when an edge (transition) occurs: clock _signal'event
« Positive edge: clock_signal'event AND clock signal = '1°
= A special process template that is well understood and clean

« Assign input signal of a
FlipFlop (next_state_signal)
to the FlipFlop output signal
(present_state signal)

« Conditional assignment is
incomplete and only triggers
on rising edge of the clock

next_state_signal —p ofl—npresent_state_signal

clock_signal —>

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

ARCHITECTURE architecture name OF other_entity_name IS
-- signal declaration
SIGNAL next_state_signal_1,next_state_signal 2:state signal type;
SIGNAL present_state signal 1 : state signal type;

SIGNAL present_state signal 2 : state signal type;
BEGIN

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock signal) IS
BEGIN -- process name: p_seq

IF clock_signal’ EVENT AND clock_signal = '1° THEN
present_state _signal 1 <= next_state_signal 1
TWO ‘=::::::::::: | expression;
registers present_state_signal 2 <= next_state_signal 2
| expression;
END IF;

END PROCESS p_seq;
END architecture_name;

EE-334: Digital System Design 28 (((m)))

Describing Registers with Asynchronous Reset

« An asynchronous reset triggers also a state transition, independent of clock

» The asynchronous reset typically takes precedence over the clock
 Asynchronous reset (async_reset_signal)

async_reset_signal

(|

assigns a constant to the
FlipFlop output signal
(present_state signal)

« Conditional assignment is still
incomplete and now triggers
on rising edge of the clock
and on the reset signal

« Reset can be low- or high-active

ECOLE POLYTECHNIQUE

| expression;
RST END IF;
next_state_signal —p ol—present_state_signal END PROCESS p_seq;
clock_signal — .
—i8 > END architecture_name;
EE-334: Digital System Design 29

FEDERALE DE

LAUSANNE

ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declaration
SIGNAL next_state_signal : state_signal type;

SIGNAL present_state_signal : state_signal type;
BEGIN

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal, async_reset_signal) IS
BEGIN -- process name: p_seq
IF async_reset_signal = €@|1’ THEN
present_state_signal <= constant;
ELSIF clock_signal’EVENT AND clock_signal = '1’ THEN
present_state_signal <= next_state_signal

Example: A Simple Counter (Overflowing)

« Specification: 8-bit counter, overflowing (wrap-around)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all
ENTITY my_first_counter IS

PORT (

CLKxCI : IN std logic;

RSTXRBI : IN std logic;

CNTxXDO : OUT std logic_vector(8-1 DOWNTO ©)
)s

END my_first_counter;

BEGIN

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

END rtl;

ARCHITECTURE rtl OF my_first_counter IS

-- signal declaration
SIGNAL CNTxDN : UNSIGNED(8-1 DOWNTO 9);
SIGNAL CNTxDP : UNSIGNED(8-1 DOWNTO 9);

-- Counting/incrementing (Combinational Logic)
CNTXDN <= CNTXDP + 1;

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (CLKxCI, RSTxRBI) IS

BEGIN -- process name: p_seq
IF RSTXRBI = ‘@’ THEN
CNTXDP <= (OTHERS => €@°);
ELSIF CLKXCI?EVENT AND CLKxCI = "1’ THEN

CNTXDP <= CNTXDN;
END IF;

END PROCESS p_seq;

-- Output assignment with type conversion
CNTxDO <= std logic_vector(CNTxDP);

EE-334: Digital System Design 30

(e

	Slide 1: EE-334 Digital System Design
	Slide 2: Hierarchy and Instantiation
	Slide 3: Components vs. Functions
	Slide 4: Instantiating Components in VHDL (1/2)
	Slide 5: Instantiating Components in VHDL (2/2)
	Slide 6: Array Types
	Slide 7: STD_LOGIC_VECTOR with DOWNTO Index
	Slide 8: Operations on Array Types
	Slide 9: Operations on Array Types
	Slide 10: Example Operations on STD_LOGIC_VECTOR
	Slide 11: Types for Arithmetic: UNSIGNED/SIGNED
	Slide 12: UNSIGNED/SIGNED Data Types (Best practice)
	Slide 13: Arithmetic Operations on SIGNED and UNSIGNED
	Slide 14: Arithmetic Operations on SIGNED and UNSIGNED
	Slide 15: Type Conversions to/from SIGNED and UNSIGNED
	Slide 16: Arithmetic Operations Example
	Slide 17: The Problem of Describing Logic Efficiently
	Slide 18: Efficiently Describing Logic as Decision Trees
	Slide 19: Designing Logic “with/as Multiplexers” (1/2)
	Slide 20: Designing Logic “with/as Multiplexers” (2/2)
	Slide 21: Designing Logic “with/as Multiplexers” (2/2)
	Slide 22: Conditional Assignments (MUXes) in VHDL (1/2)
	Slide 23: Conditional Assignments (MUXes) in VHDL (2/2)
	Slide 24: An Important Remark on Conditional Assignments
	Slide 25: An Important Remark on Conditional Assignments
	Slide 26: Example: A Simple ALU
	Slide 27: How to Implement Registers in a Clean Way?
	Slide 28: Describing Edge Triggered Registers in VHDL
	Slide 29: Describing Registers with Asynchronous Reset
	Slide 30: Example: A Simple Counter (Overflowing)

