
EE-334

Digital System Design

Custom Digital Circuits

VHDL for Synthesis –

Basic Constructs and Correspondences

Fall 2022 EE-334: Digital System Design 1

Andreas Burg

Hierarchy and Instantiation

• Hierarchy is required for modularity, abstraction, and to deal with complexity

• Blocks used later in a hierarchy are called COMPONENTS

▪ Components can themselves be hierarchical (include instances of other components)

▪ Signals declared in a component are only visible within the component

▪ The interface of a component is defined by its ENTITY

• Each “appearance/use” of a component is called an INSTANCE

▪ There can be multiple instances of the same component

▪ Instances are connected through the ports of their components

EE-334: Digital System Design 2

all

separate

VHDL files

Components vs. Functions

• Only distant analogy to functions in programming: similar purpose (reuse),

BUT very different physical presence

EE-334: Digital System Design 3

Int my_fct(int a, int b)
{

return a+b;
}

Main() {
…
x = my_fct(a, b);
y = my_fct(c, d);
z = my_fct(x, y);

}

a
b

c
d

x

y

z

Hardware (VHDL) Software (C)

Component

definition
Function

definition

Component

instantiations

Function

calls

Co-exist

in parallel
Sequential execution

Instantiating Components in VHDL (1/2)

• Components need to be declared before instantiating/using them in the

architecture of another component

▪ Declaration in the preamble of the architecture in which they are used

▪ Alternative: declaration in a package (not discussed here)

• Component declaration & name must

match the corresponding entity name

EE-334: Digital System Design 4

ENTITY entity_name IS
GENERIC (

generic_1_name : generic_1_type;
generic_2_name : generic_2_type

);
PORT (

port_1_name : port_1_dir port_1_type;
port_2_name : port_2_dir port_2_type

);
END entity_name;

ARCHITECTURE architecture_name OF other_entity_name IS

-- component declaration
COMPONENT component_name IS

GENERIC (
generic_1_name : generic_1_type;
generic_2_name : generic_2_type
);

PORT (
port_1_name : port_1_dir port_1_type;
port_2_name : port_2_dir port_2_type
);

END COMPONENT;

BEGIN
-- VHDL statements

END architecture_name;

Entity declaration of a component in a file,

e.g., entity_name.vhd

Instantiating Components in VHDL (2/2)

• Declared components can be

instantiated in the architecture

body

• Instantiation(s)

▪ defines the instance name

▪ connects ports of an instance of

the components to signals

▪ Defines the generics (parameters)

based on expressions that can be

evaluated at compile-time

EE-334: Digital System Design 5

ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declarations
SIGNAL port_1_1_signal, port_2_1_signal : port_1_type;
SIGNAL port_1_2_signal, port_2_2_signal : port_2_type;
-- component declaration
COMPONENT component_name IS

GENERIC (…);
PORT (…);

END COMPONENT;
BEGIN

-- Component instantiation
instance_1_name : component_name

GENERIC MAP (
generic_1_name => CONSTANT_EXP_1_1,
generic_2_name => CONSTANT_EXP_1_2

)
PORT MAP (

port_1_name => port_1_1_signal,
port_2_name => port_1_2_signal

);
instance_2_name : component_name

GENERIC MAP (CONSTANT_EXP_2_1, CONSTANT_EXP_2_2
)

PORT MAP (port_2_1_signal, port_2_2_signal);
END architecture_name;

Array Types

• To describe hardware we often need BUSSES (groups of signals or constants)

• Arrays are defined by declaring a custom type

• Custom types are declared in the architecture preamble

▪ Elements from left-to-right can be counted “from-low-to-high” or “from-high-downto-low”

▪ Array types, once declared, can again serve as basis for new arrays to build 2+D arrays

• Array size declaration can be deferred until type is used

EE-334: Digital System Design 6

ARCHITECTURE architecture_name OF other_entity_name IS
-- type declarations
TYPE array_type_name_1_1D IS ARRAY (low TO high) of base_type;
TYPE array_type_name_2_1D IS ARRAY (high DOWNTO low) of base_type;
TYPE array_type_name_3_2D IS ARRAY (INTEGER RANGE <>) of array_type_name_2;

-- signal declaration
SIGNAL signal_1_name : array_type_name_1;
SIGNAL signal_2_name : array_type_name_3(low TO high);

BEGIN
-- VHDL statements

END architecture_name;

Counting

high-to-low

Range defined here

STD_LOGIC_VECTOR with DOWNTO Index

• STD_LOGIC_VECTOR: heavily used in hardware modelling

▪ Array type that comes with STD_LOGIC type

▪ Defined in IEEE.STD_LOGIC_1164 package

▪ STD_LOGIC_VECTORS for binary numbers are typically declared “from-high-downto-low”

• Correlates better to the established

weighted number representation

– MSB on the left (low index)

– LSB on the right (high index)

• Ideally, use only DOWNTO

EE-334: Digital System Design 7

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY entity_name IS
…

END entity_name;

ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declaration
SIGNAL signal_bus_name : STD_LOGIC_VECTOR(low TO high);
SIGNAL bin_signal_name : STD_LOGIC_VECTOR(high DOWNTO low);

BEGIN
-- VHDL statements

END architecture_name;

“0 1 0 0 0” = 8’dec
Bit idx. 4 3 2 1 0

(4 downto 0)

Operations on Array Types

• Accessing from and assigning to array elements or ranges

target_array_object(index) <= base_type_object

target_base_type_object <= target_base_type_array(index)

target_array_object(index_range) <= from_array_object(index_range)

index_range = low TO high | high DOWNTO low

• Assigning array aggregates (collections of elements) to an array

▪ Multiple options exist to “fill” an array (assign multiple elements together)

target_array_object <= (value_1, value_2, …);

target_array_object <= (idx_1=>value_1, idx_2=>value_2, …);

target_array_object <= (idx_1=>value_1, idx_2|idx_3=>value_2, …);

EE-334: Digital System Design 8

Operations on Array Types

• Filling an array: OTHERS refers to all still unassigned elements in the aggregator

target_array_object <= (idx_1=>value_1, OTHERS=>value_2); -- fill all remaining

target_array_object <= (OTHERS=>value_1); -- fill all elements

• Assignments to arrays with character elements

▪ Array literal values can be places in double quotes

target_array_object(index_range) <= “…” –- e.g., “0100-1”

▪ STD_LOGIC_VECTOR is based on STD_LOGIC which is a character type, i.e., ‘0’, ‘1’, ‘X’, ‘-’, …

target_array_object(index_range) <= “010-10-”

• Concatenation of arrays and array elements

target_array_object(index_range) <= base_type_object_1 & base_type_object_1

EE-334: Digital System Design 9

Example Operations on STD_LOGIC_VECTOR

• Signal declarations of STD_LOGIC_VECTOR

• Assignments

• Concatenation and indexing

EE-334: Digital System Design 10

-- signal declaration of std_logic_vectors
SIGNAL AxD, BxD, CxD, DxD, ExD : STD_LOGIC_VECTOR(8-1 DOWNTO 0);
SIGNAL QxS : STD_LOGIC;

QxS <= ‘1’;
AxD <= “10010101”;
BxD <= “-0-001-1”;
CxD <= (OTHERS => ‘0’);

BxD <= AxD(7-1 downto 0) & ‘0’; -- SHIFT LEFT
CxD <= ‘0’ & AxD(8-1 downto 1); -- SHIFT RIGHT
DxD <= AxD(7-1 downto 0) & AxD(8-1); -- ROTATE LEFT
ExD <= QxS & QxS & ‘1’ & “00001”;

Types for Arithmetic: UNSIGNED/SIGNED

• Built-in type INTEGER supports basic arithmetic operations,

BUT the integer type is not sufficiently generic for optimized hardware

▪ INTEGER type has a fixed width of 32 bit (often too large or sometimes too small)

▪ INTEGER represents only signed numbers having half the range

▪ Any overflow or underflow will trigger an ERROR in the simulation rather than a wrap-around

• Need for a more flexible type with variable length for signed and unsigned

• IEEE numeric_std package: define integer as array of std_logic

• Two new data types: UNSIGNED, SIGNED

• The array interpreted as an unsigned or signed binary numbers

▪ UNSIGNED are represented as standard binary

▪ SIGNED vectors are represented using two’s complement

▪ Array elements can be accessed and assigned as in a std_logic_vector

EE-334: Digital System Design 11

UNSIGNED/SIGNED Data Types (Best practice)

• SIGNED and UNSIGNED data types represent numbers. Therefore

▪ Corresponding signals best carry the suffix xD to indicate the numeric type of data

<Signal Name>xD

MyInputAxDI, MySIGNALxD, AccuREGxDN, AccuREGxDP

• SIGNED and UNSIGNED use weighted binary digits, counted from right to left

▪ Use DOWNTO bit order to place the LSB (bit-0) on the right and the MSB (bin-N) on the left

SIGNAL <Signal Name>xD : UNSIGNED(8-1 DOWNTO 0);
SIGNAL ExSIGNALxD : SIGNED(8-1 DOWNTO 0);

• When declaring a signal, it is often useful to immediately see the number of bits

▪ Since bits are counted from zero (0), it is often more clear to write

SIGNAL <Signal Name>xD : UNSIGNED(#BITS-1 DOWNTO 0);

EE-334: Digital System Design 12

Arithmetic Operations on SIGNED and UNSIGNED

• IEEE numeric_std defines many common operators

EE-334: Digital System Design 13

Arithmetic Operations on SIGNED and UNSIGNED

• IEEE numeric_std defines many common operators and type conversions

EE-334: Digital System Design 14

Type Conversions to/from SIGNED and UNSIGNED

• STD_LOGIC_VECTOR, UNSIGNED, and SIGNED are defined as arrays of std_logic

• However, they are considered as different types

• Type conversion

functions needed

between these types

▪ Second “length” argument

required for source types

without explicit length

(INTEGER)

• Type conversion requires

NO hardware resources

EE-334: Digital System Design 15

Arithmetic Operations Example

• Basic Arithmetic Operations: ENTITY ports are std_logic_vector

EE-334: Digital System Design 16

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY adder IS
PORT (AxDI,BxDI : IN std_logic_vector(8-1 downto 0);

CxDO : OUT std_logic_vector(8-1 downto 0));
END adder;

ARCHITECTURE rtl OF adder IS
-- signal declaration
SIGNAL SgnAxD, SgnBxD, SgnCxD : signed(8-1 DOWNTO 0);

BEGIN
-- Type conversion
SgnAxD <= signed(AxDI);
SgnBxD <= signed(BxDI);
-- Arithmetic
SgnCxD <= SgnAxD + SgnBxD;
-- Convert back to std_logic_vector for output port
CxDO <= std_logic_vector(SgnCxD);

END rtl;

No
hardware
resources

The Problem of Describing Logic Efficiently

• Combinational logic is the work-horse of any digital circuit as it performs the

data manipulation (algorithm/operations)

• Truth/look-up tables are the most generic way to

describe Boolean logic, but also the most

tedious one: difficult to formulate and to read/interpret

• Some more efficient means exist to describe specific types of logic:

▪ Sometimes operations are naturally described in Boolean equations, but these quickly become

difficult to create or understand

▪ Arithmetic operations describe a frequently used specific subset of operations and we know how

to map these to Boolean logic (from many early research works)

Need an efficient way to describe Boolean logic

Fall 2020 EE-334: Digital System Design 17

Efficiently Describing Logic as Decision Trees

• A fully arbitrary logic function must ultimately be described by a truth/look-up table

• Completely arbitrary functions are rare in practice

▪ Some inputs or combinations of some inputs

render the output independent of all other inputs

▪ In Karnaugh maps, we refer to this as

“combining minterms”

• Such truth tables can be expressed efficiently

and interpreted as decision diagrams

▪ Interpretation as decision trees

▪ Formulation based on if-then-elsif-elsif-...-else

Fall 2020 EE-334: Digital System Design 18

00 01 11 10

00 1 0 0 1

01 0 0 1 0

11 0 0 0 0

10 0 0 0 0

Designing Logic “with/as Multiplexers” (1/2)

• Besides boolean and arithmetic operations, the CONDITIONAL ASSIGNMENT is

a fundamental building block for HDL-based hardware design

• The simplest conditional assignment corresponds to a 2-input MUX

▪ natural way to combine 2 pieces of logic into one

EE-334: Digital System Design 19

Expression
1

Expression
2

boolean_
expression

signal_1

Hardware

2-input MUX

If boolean_expression then

signal_1 <= expression_1
Else

signal_1 <= expression_2
End

HDL

Pseudo-Code

Conditional Assignment

Designing Logic “with/as Multiplexers” (2/2)

• How to describe the combination of multiple expressions?

▪ Nested IF statements: VHDL version described later

▪ Nesting level

• encodes priority in the HDL description

• defines the level of the MUX in the HW

– Outer-most IF corresponds to last MUX in the chain

– Inner-most IF corresponds to first MUX in the chain

EE-334: Digital System Design 20

If boolean_expression_1 then
signal_1 <= expression_1

Else

If boolean_expression_2 then
signal_1 <= expression_2

Else

signal_1 <= expression_3
End

End

Hardware

H
D

L
 P

s
e

u
d

o
-C

o
d

e

Expression
1

boolean_
expression

1

signal_1

boolean_
expression

2

Expression
3

Expression
2

Nesting level

Nesting level

outerinner

Designing Logic “with/as Multiplexers” (2/2)

• How to describe the combination of multiple expressions?

▪ Combined IF, ELSIF, ELSIF, … , ELSE statements:

▪ Order

• encodes priority in the HDL description

• defines the level of the MUX in the HW

– First IF corresponds to last MUX in the chain

– Last IF corresponds to first MUX in the chain

EE-334: Digital System Design 21

Hardware

H
D

L
 P

s
e

u
d

o
-C

o
d

e

Expression
1

boolean_
expression

1

signal_1

boolean_
expression

2

Expression
3

Expression
2

Order

Order level

outerinner

If boolean_expression_1 then
signal_1 <= expression_1

Elsif boolean_expression_2 then
signal_1 <= expression_2

Else

signal_1 <= expression_3
End

Conditional Assignments (MUXes) in VHDL (1/2)

• Due to their importance and power to describe logic in an intuitive manner,

VHDL provides many options for conditional assignments

▪ WHEN-ELSE statement for multiple different binary conditions (IF, ELSIF, ELSIF, … ELSE)

target_signal <= expression_1 WHEN boolean_expression_1 ELSE
expression_2 WHEN boolean_expression_2 ELSE
…
expression_N;

• Multiple conditions may be true at the same time

– Order encodes the priority: only first one is relevant

• Note: often expression_x is simply a signal

EE-334: Digital System Design 22

ELSE

Order=

Priority

• Due to their importance and power to describe logic in an intuitive manner,

VHDL provides many options for conditional assignments

▪ WITH-SELECT statement for a single multi-valued (non-binary) condition

WITH cond_signal SELECT

target_signal <=

expression_1 WHEN constant_1,

expression_2 WHEN constant_2,
…
expression_N WHEN OTHERS;

• Only one condition is true at the same time

• Note: often expression_x is simply a signal

Conditional Assignments (MUXes) in VHDL (2/2)

EE-334: Digital System Design 23

ELSE

Hardware

cond_sigal

Expression
3

Expression
2

Expression
1

target_sigal

constant_1

constant_2

OTHERS

An Important Remark on Conditional Assignments

• Consider the pseudo-code below, which is common practice in Software

• HOWEVER, a physical wire can never

be “not assigned” any value at all

EE-334: Digital System Design 24

If boolean_expression_1 then
signal_1 <= expression_1

Elsif boolean_expression_2 then
signal_1 <= expression_2

End

▪ NOTE: If none of the conditions is met,

no assignment is made to signal_1

Expression
1

boolean_
expression

1

signal_1

boolean_
expression

2

Expression
2

?
NOT

LIKE

THIS!!!

• Consider the pseudo-code below, which is common practice in Software

• HOWEVER, a physical wire can never

be “not assigned” any value at all

• In VHDL, signals preserve their state

if no value is assigned

▪ Works perfectly in simulation, BUT

• Is often not the desired behaviour

• Is NOT COMPATIBLE with the rules of

synchronous design => issues later in the design

RULE: every combinational conditional assignment must be complete

An Important Remark on Conditional Assignments

EE-334: Digital System Design 25

If boolean_expression_1 then
signal_1 <= expression_1

Elsif boolean_expression_2 then
signal_1 <= expression_2

End

▪ NOTE: If none of the conditions is met,

no assignment is made to signal_1

Expression
1

boolean_
expression

1

signal_1

boolean_
expression

2

Expression
2

D Q

NO CONDITION
HOLD (keep)

!

Example: A Simple ALU

• Specification: 8-bit ALU

▪ Three operations: +, -, AND

▪ Specified by CMDxSI (2-bit command)

▪ For CMDxDI=“11”, the output DOES NOT MATTER

EE-334: Digital System Design 26

…
ARCHITECTURE rtl OF my_first_counter IS

-- signal declaration
SIGNAL SgnCxD : SIGNED(8-1 DOWNTO 0);

BEGIN
WITH CMDxSI SELECT

SgnCxD <=
SIGNED(AxDI) + SIGNED(BxDI) WHEN “00”,
SIGNED(AxDI) - SIGNED(BxDI) WHEN “01”,
SIGNED(AxDI AND BxDI) WHEN “10”,
“--------” WHEN OTHERS;

-- Output assignment with type conversion
CxDO <= std_logic_vector(SgnCxD);

END rtl;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all
ENTITY my_first_counter IS

PORT (
AxDI : IN std_logic_vector(8-1 DOWNTO 0);
BxDI : IN std_logic_vector(8-1 DOWNTO 0);
CMDxSI : IN std_logic_vector(2-1 DOWNTO 0);

CxDO : OUT std_logic_vector(8-1 DOWNTO 0)
);

END my_first_counter;
…

AND

“00”

“01”

“10”

AxDI

BxDI

CMDxDI

CxDO

How to Implement Registers in a Clean Way?

• Synchronous designs requires the notion of a state

▪ In VHDL, signals preserve their state (have a state) when nothing is assigned to them

▪ This preservation of states can be exploited to describe registers,

but it must be done with care

• Objective: stick to the rules of synchronous design

▪ ONLY the clock triggers a state transition

▪ Use ONLY positive edge triggered FlipFLops (no latches)

▪ ➔ Incomplete combinational conditional assignments are not the solution to create registers

• Clean solution:

Describe registers EXPLICITLY with a well controlled template

EE-334: Digital System Design 27

Describing Edge Triggered Registers in VHDL

• Two ingredients:

▪ A conditional statement that is TRUE when an edge (transition) occurs: clock_signal'event

• Positive edge: clock_signal'event AND clock_signal = '1'

▪ A special process template that is well understood and clean

• Assign input signal of a

FlipFlop (next_state_signal)

to the FlipFlop output signal

(present_state_signal)

• Conditional assignment is

incomplete and only triggers

on rising edge of the clock

EE-334: Digital System Design 28

ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declaration
SIGNAL next_state_signal_1,next_state_signal_2:state_signal_type;
SIGNAL present_state_signal_1 : state_signal_type;
SIGNAL present_state_signal_2 : state_signal_type;

BEGIN

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal) IS
BEGIN -- process name: p_seq

IF clock_signal’EVENT AND clock_signal = '1’ THEN
present_state_signal_1 <= next_state_signal_1

| expression;
present_state_signal_2 <= next_state_signal_2

| expression;
END IF;

END PROCESS p_seq;
END architecture_name;

D Q present_state_signalnext_state_signal

clock_signal

TWO

registers

Describing Registers with Asynchronous Reset

• An asynchronous reset triggers also a state transition, independent of clock

▪ The asynchronous reset typically takes precedence over the clock

• Asynchronous reset (async_reset_signal)
assigns a constant to the

FlipFlop output signal

(present_state_signal)

• Conditional assignment is still

incomplete and now triggers

on rising edge of the clock

and on the reset signal

• Reset can be low- or high-active

EE-334: Digital System Design 29

ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declaration
SIGNAL next_state_signal : state_signal_type;
SIGNAL present_state_signal : state_signal_type;

BEGIN

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal, async_reset_signal) IS
BEGIN -- process name: p_seq

IF async_reset_signal = ‘0|1’ THEN
present_state_signal <= constant;

ELSIF clock_signal’EVENT AND clock_signal = '1’ THEN
present_state_signal <= next_state_signal

| expression;
END IF;

END PROCESS p_seq;

END architecture_name;

D Q

RST

present_state_signalnext_state_signal

clock_signal

async_reset_signal

Example: A Simple Counter (Overflowing)

• Specification: 8-bit counter, overflowing (wrap-around)

EE-334: Digital System Design 30

…
ARCHITECTURE rtl OF my_first_counter IS

-- signal declaration
SIGNAL CNTxDN : UNSIGNED(8-1 DOWNTO 0);
SIGNAL CNTxDP : UNSIGNED(8-1 DOWNTO 0);

BEGIN
-- Counting/incrementing (Combinational Logic)
CNTxDN <= CNTxDP + 1;

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (CLKxCI, RSTxRBI) IS
BEGIN -- process name: p_seq

IF RSTxRBI = ‘0’ THEN
CNTxDP <= (OTHERS => ‘0’);

ELSIF CLKxCI’EVENT AND CLKxCI = '1’ THEN
CNTxDP <= CNTxDN;

END IF;
END PROCESS p_seq;

-- Output assignment with type conversion
CNTxDO <= std_logic_vector(CNTxDP);

END rtl;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all
ENTITY my_first_counter IS

PORT (
CLKxCI : IN std_logic;
RSTxRBI : IN std_logic;
CNTxDO : OUT std_logic_vector(8-1 DOWNTO 0)

);
END my_first_counter;
…

	Slide 1: EE-334 Digital System Design
	Slide 2: Hierarchy and Instantiation
	Slide 3: Components vs. Functions
	Slide 4: Instantiating Components in VHDL (1/2)
	Slide 5: Instantiating Components in VHDL (2/2)
	Slide 6: Array Types
	Slide 7: STD_LOGIC_VECTOR with DOWNTO Index
	Slide 8: Operations on Array Types
	Slide 9: Operations on Array Types
	Slide 10: Example Operations on STD_LOGIC_VECTOR
	Slide 11: Types for Arithmetic: UNSIGNED/SIGNED
	Slide 12: UNSIGNED/SIGNED Data Types (Best practice)
	Slide 13: Arithmetic Operations on SIGNED and UNSIGNED
	Slide 14: Arithmetic Operations on SIGNED and UNSIGNED
	Slide 15: Type Conversions to/from SIGNED and UNSIGNED
	Slide 16: Arithmetic Operations Example
	Slide 17: The Problem of Describing Logic Efficiently
	Slide 18: Efficiently Describing Logic as Decision Trees
	Slide 19: Designing Logic “with/as Multiplexers” (1/2)
	Slide 20: Designing Logic “with/as Multiplexers” (2/2)
	Slide 21: Designing Logic “with/as Multiplexers” (2/2)
	Slide 22: Conditional Assignments (MUXes) in VHDL (1/2)
	Slide 23: Conditional Assignments (MUXes) in VHDL (2/2)
	Slide 24: An Important Remark on Conditional Assignments
	Slide 25: An Important Remark on Conditional Assignments
	Slide 26: Example: A Simple ALU
	Slide 27: How to Implement Registers in a Clean Way?
	Slide 28: Describing Edge Triggered Registers in VHDL
	Slide 29: Describing Registers with Asynchronous Reset
	Slide 30: Example: A Simple Counter (Overflowing)

