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Hierarchy and Instantiation

• Hierarchy is required for modularity, abstraction, and to deal with complexity

• Blocks used later in a hierarchy are called COMPONENTS

▪ Components can themselves be hierarchical (include instances of other components)

▪ Signals declared in a component are only visible within the component

▪ The interface of a component is defined by its ENTITY

• Each “appearance/use” of a component is called an INSTANCE

▪ There can be multiple instances of the same component

▪ Instances are connected through the ports of their components
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Components vs. Functions

• Only distant analogy to functions in programming: similar purpose (reuse), 

BUT very different physical presence
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Int my_fct(int a, int b)
{

return a+b;
}

Main() {
… 
x = my_fct(a, b);
y = my_fct(c, d);
z = my_fct(x, y);

}
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Instantiating Components in VHDL (1/2)

• Components need to be declared before instantiating/using them in the  

architecture of another component

▪ Declaration in the preamble of the architecture in which they are used

▪ Alternative: declaration in a package (not discussed here)

• Component declaration & name must

match the corresponding entity name
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ENTITY entity_name IS
GENERIC ( 

generic_1_name : generic_1_type; 
generic_2_name : generic_2_type

); 
PORT ( 

port_1_name : port_1_dir port_1_type; 
port_2_name : port_2_dir port_2_type 

); 
END entity_name;

ARCHITECTURE architecture_name OF other_entity_name IS

-- component declaration
COMPONENT component_name IS

GENERIC ( 
generic_1_name : generic_1_type; 
generic_2_name : generic_2_type
); 

PORT (
port_1_name : port_1_dir port_1_type;
port_2_name : port_2_dir port_2_type
);

END COMPONENT;

BEGIN
-- VHDL statements 

END architecture_name;

Entity declaration of a component in a file, 

e.g., entity_name.vhd



Instantiating Components in VHDL (2/2)

• Declared components can be 

instantiated in the architecture 

body

• Instantiation(s)

▪ defines the instance name

▪ connects ports of an instance of 

the components to signals

▪ Defines the generics (parameters) 

based on expressions that can be 

evaluated at compile-time
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ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declarations
SIGNAL port_1_1_signal, port_2_1_signal : port_1_type;
SIGNAL port_1_2_signal, port_2_2_signal : port_2_type;
-- component declaration
COMPONENT component_name IS

GENERIC ( … ); 
PORT ( … );

END COMPONENT;
BEGIN

-- Component instantiation 
instance_1_name : component_name

GENERIC MAP (
generic_1_name => CONSTANT_EXP_1_1,
generic_2_name => CONSTANT_EXP_1_2

)
PORT MAP (

port_1_name => port_1_1_signal,
port_2_name => port_1_2_signal

);
instance_2_name : component_name

GENERIC MAP ( CONSTANT_EXP_2_1, CONSTANT_EXP_2_2
)

PORT MAP ( port_2_1_signal, port_2_2_signal );
END architecture_name;



Array Types

• To describe hardware we often need BUSSES (groups of signals or constants)

• Arrays are defined by declaring a custom type

• Custom types are declared in the architecture preamble

▪ Elements from left-to-right can be counted “from-low-to-high” or “from-high-downto-low”

▪ Array types, once declared, can again serve as basis for new arrays to build 2+D arrays

• Array size declaration can be deferred until type is used
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ARCHITECTURE architecture_name OF other_entity_name IS
-- type declarations
TYPE array_type_name_1_1D IS ARRAY (low TO high) of base_type;
TYPE array_type_name_2_1D IS ARRAY (high DOWNTO low) of base_type;
TYPE array_type_name_3_2D IS ARRAY (INTEGER RANGE <>) of array_type_name_2;

-- signal declaration
SIGNAL signal_1_name : array_type_name_1;
SIGNAL signal_2_name : array_type_name_3(low TO high);

BEGIN
-- VHDL statements 

END architecture_name;

Counting 

high-to-low

Range defined here



STD_LOGIC_VECTOR with DOWNTO Index

• STD_LOGIC_VECTOR: heavily used in hardware modelling

▪ Array type that comes with STD_LOGIC type 

▪ Defined in IEEE.STD_LOGIC_1164 package

▪ STD_LOGIC_VECTORS for binary numbers are typically declared “from-high-downto-low”

• Correlates better to the established 

weighted number representation 

– MSB on the left (low index) 

– LSB on the right (high index)

• Ideally, use only DOWNTO
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LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY entity_name IS
… 

END entity_name;

ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declaration
SIGNAL signal_bus_name : STD_LOGIC_VECTOR(low TO high);
SIGNAL bin_signal_name : STD_LOGIC_VECTOR(high DOWNTO low);

BEGIN
-- VHDL statements 

END architecture_name;

“0 1 0 0 0” = 8’dec
Bit idx. 4 3 2 1 0

(4 downto 0)



Operations on Array Types

• Accessing from and assigning to array elements or ranges

target_array_object(index) <= base_type_object

target_base_type_object <= target_base_type_array(index)

target_array_object(index_range) <= from_array_object(index_range)

index_range = low TO high | high DOWNTO low

• Assigning array aggregates (collections of elements) to an array

▪ Multiple options exist to “fill” an array (assign multiple elements together)

target_array_object <= (value_1, value_2, …);

target_array_object <= (idx_1=>value_1, idx_2=>value_2, …);

target_array_object <= (idx_1=>value_1, idx_2|idx_3=>value_2, …);
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Operations on Array Types

• Filling an array: OTHERS refers to all still unassigned elements in the aggregator

target_array_object <= (idx_1=>value_1, OTHERS=>value_2); -- fill all remaining

target_array_object <= (OTHERS=>value_1); -- fill all elements

• Assignments to arrays with character elements

▪ Array literal values can be places in double quotes 

target_array_object(index_range) <= “…” –- e.g., “0100-1”

▪ STD_LOGIC_VECTOR is based on STD_LOGIC which is a character type, i.e., ‘0’, ‘1’, ‘X’, ‘-’, …

target_array_object(index_range) <= “010-10-”

• Concatenation of arrays and array elements

target_array_object(index_range) <= base_type_object_1 & base_type_object_1
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Example Operations on STD_LOGIC_VECTOR

• Signal declarations of STD_LOGIC_VECTOR

• Assignments

• Concatenation and indexing
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-- signal declaration of std_logic_vectors
SIGNAL AxD, BxD, CxD, DxD, ExD : STD_LOGIC_VECTOR(8-1 DOWNTO 0);
SIGNAL QxS : STD_LOGIC;

QxS <= ‘1’;
AxD <= “10010101”; 
BxD <= “-0-001-1”;
CxD <= (OTHERS => ‘0’);

BxD <= AxD(7-1 downto 0) & ‘0’; -- SHIFT LEFT
CxD <= ‘0’ & AxD(8-1 downto 1); -- SHIFT RIGHT
DxD <= AxD(7-1 downto 0) & AxD(8-1); -- ROTATE LEFT
ExD <= QxS & QxS & ‘1’ & “00001”;



Types for Arithmetic: UNSIGNED/SIGNED

• Built-in type INTEGER supports basic arithmetic operations, 

BUT the integer type is not sufficiently generic for optimized hardware

▪ INTEGER type has a fixed width of 32 bit (often too large or sometimes too small)

▪ INTEGER represents only signed numbers having half the range

▪ Any overflow or underflow will trigger an ERROR in the simulation rather than a wrap-around

• Need for a more flexible type with variable length for signed and unsigned

• IEEE numeric_std package: define integer as array of std_logic

• Two new data types: UNSIGNED, SIGNED

• The array interpreted as an unsigned or signed binary numbers

▪ UNSIGNED are represented as standard binary

▪ SIGNED vectors are represented using two’s complement

▪ Array elements can be accessed and assigned as in a std_logic_vector
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UNSIGNED/SIGNED Data Types (Best practice) 

• SIGNED and UNSIGNED data types represent numbers. Therefore

▪ Corresponding signals best carry the suffix xD to indicate the numeric type of data 

<Signal Name>xD

MyInputAxDI, MySIGNALxD, AccuREGxDN, AccuREGxDP

• SIGNED and UNSIGNED use weighted binary digits, counted from right to left

▪ Use DOWNTO bit order to place the LSB (bit-0) on the right and the MSB (bin-N) on the left

SIGNAL <Signal Name>xD : UNSIGNED(8-1 DOWNTO 0);
SIGNAL ExSIGNALxD : SIGNED(8-1 DOWNTO 0);

• When declaring a signal, it is often useful to immediately see the number of bits

▪ Since bits are counted from zero (0), it is often more clear to write 

SIGNAL <Signal Name>xD : UNSIGNED(#BITS-1 DOWNTO 0);
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Arithmetic Operations on SIGNED and UNSIGNED

• IEEE numeric_std defines many common operators
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Arithmetic Operations on SIGNED and UNSIGNED

• IEEE numeric_std defines many common operators and type conversions
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Type Conversions to/from SIGNED and UNSIGNED

• STD_LOGIC_VECTOR, UNSIGNED, and SIGNED are defined as arrays of std_logic

• However, they are considered as different types

• Type conversion 

functions needed

between these types

▪ Second “length” argument

required for source types 

without explicit length 

(INTEGER)

• Type conversion requires

NO hardware resources
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Arithmetic Operations Example

• Basic Arithmetic Operations: ENTITY ports are std_logic_vector
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LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY adder IS
PORT (AxDI,BxDI : IN  std_logic_vector(8-1 downto 0);

CxDO : OUT std_logic_vector(8-1 downto 0));
END adder;

ARCHITECTURE rtl OF adder IS
-- signal declaration
SIGNAL SgnAxD, SgnBxD, SgnCxD : signed(8-1 DOWNTO 0);

BEGIN
-- Type conversion
SgnAxD <= signed(AxDI);
SgnBxD <= signed(BxDI);
-- Arithmetic
SgnCxD <= SgnAxD + SgnBxD;
-- Convert back to std_logic_vector for output port
CxDO <= std_logic_vector(SgnCxD);

END rtl;

No 
hardware 
resources



The Problem of Describing Logic Efficiently

• Combinational logic is the work-horse of any digital circuit as it performs the 

data manipulation (algorithm/operations)

• Truth/look-up tables are the most generic way to 

describe Boolean logic, but also the most 

tedious one: difficult to formulate and to read/interpret

• Some more efficient means exist to describe specific types of logic:

▪ Sometimes operations are naturally described in Boolean equations, but these quickly become 

difficult to create or understand

▪ Arithmetic operations describe a frequently used specific subset of operations and we know how 

to map these to Boolean logic (from many early research works)

Need an efficient way to describe Boolean logic
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Efficiently Describing Logic as Decision Trees

• A fully arbitrary logic function must ultimately be described by a truth/look-up table

• Completely arbitrary functions are rare in practice

▪ Some inputs or combinations of some inputs 

render the output independent of all other inputs

▪ In Karnaugh maps, we refer to this as 

“combining minterms”

• Such truth tables can be expressed efficiently 

and interpreted as decision diagrams

▪ Interpretation as decision trees

▪ Formulation based on if-then-elsif-elsif-...-else
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Designing Logic “with/as Multiplexers” (1/2)

• Besides boolean and arithmetic operations, the CONDITIONAL ASSIGNMENT is 

a fundamental building block for HDL-based hardware design

• The simplest conditional assignment corresponds to a 2-input MUX 

▪ natural way to combine 2 pieces of logic into one
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Expression
1

Expression
2

boolean_
expression

signal_1

Hardware

2-input MUX

If boolean_expression then 

signal_1 <= expression_1
Else 

signal_1 <= expression_2
End

HDL

Pseudo-Code

Conditional Assignment



Designing Logic “with/as Multiplexers” (2/2)

• How to describe the combination of multiple expressions?

▪ Nested IF statements: VHDL version described later

▪ Nesting level 

• encodes priority in the HDL description

• defines the level of the MUX in the HW

– Outer-most IF corresponds to last MUX in the chain

– Inner-most IF corresponds to first MUX in the chain
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If boolean_expression_1 then 
signal_1 <= expression_1

Else 

If boolean_expression_2 then 
signal_1 <= expression_2

Else 

signal_1 <= expression_3
End

End
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Designing Logic “with/as Multiplexers” (2/2)

• How to describe the combination of multiple expressions?

▪ Combined IF, ELSIF, ELSIF, … , ELSE statements:

▪ Order

• encodes priority in the HDL description

• defines the level of the MUX in the HW

– First IF corresponds to last MUX in the chain

– Last IF corresponds to first MUX in the chain
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If boolean_expression_1 then 
signal_1 <= expression_1

Elsif boolean_expression_2 then 
signal_1 <= expression_2

Else 

signal_1 <= expression_3
End



Conditional Assignments (MUXes) in VHDL (1/2)

• Due to their importance and power to describe logic in an intuitive manner, 

VHDL provides many options for conditional assignments

▪ WHEN-ELSE statement for multiple different binary conditions (IF, ELSIF, ELSIF, … ELSE)

target_signal <= expression_1 WHEN boolean_expression_1 ELSE
expression_2 WHEN boolean_expression_2 ELSE
… 
expression_N;

• Multiple conditions may be true at the same time

– Order encodes the priority: only first one is relevant

• Note: often expression_x is simply a signal
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• Due to their importance and power to describe logic in an intuitive manner, 

VHDL provides many options for conditional assignments

▪ WITH-SELECT statement for a single multi-valued (non-binary) condition

WITH cond_signal SELECT

target_signal <=

expression_1 WHEN constant_1,

expression_2 WHEN constant_2, 
… 
expression_N WHEN OTHERS;

• Only one condition is true at the same time

• Note: often expression_x is simply a signal

Conditional Assignments (MUXes) in VHDL (2/2)
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An Important Remark on Conditional Assignments 

• Consider the pseudo-code below, which is common practice in Software

• HOWEVER, a physical wire can never 

be “not assigned” any value at all 
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If boolean_expression_1 then 
signal_1 <= expression_1

Elsif boolean_expression_2 then 
signal_1 <= expression_2

End

▪ NOTE: If none of the conditions is met, 

no assignment is made to signal_1

Expression
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boolean_
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signal_1

boolean_
expression

2

Expression
2

?
NOT 

LIKE 

THIS!!!



• Consider the pseudo-code below, which is common practice in Software

• HOWEVER, a physical wire can never 

be “not assigned” any value at all 

• In VHDL, signals preserve their state 

if no value is assigned

▪ Works perfectly in simulation, BUT

• Is often not the desired behaviour

• Is NOT COMPATIBLE with the rules of 

synchronous design => issues later in the design

RULE: every combinational conditional assignment must be complete

An Important Remark on Conditional Assignments 
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If boolean_expression_1 then 
signal_1 <= expression_1

Elsif boolean_expression_2 then 
signal_1 <= expression_2

End

▪ NOTE: If none of the conditions is met, 

no assignment is made to signal_1

Expression
1

boolean_
expression

1

signal_1

boolean_
expression

2

Expression
2

D Q

NO CONDITION
HOLD (keep)

!



Example: A Simple ALU

• Specification: 8-bit ALU

▪ Three operations: +, -, AND

▪ Specified by CMDxSI (2-bit command)

▪ For CMDxDI=“11”, the output DOES NOT MATTER
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…
ARCHITECTURE rtl OF my_first_counter IS

-- signal declaration
SIGNAL SgnCxD : SIGNED(8-1 DOWNTO 0);

BEGIN
WITH CMDxSI SELECT

SgnCxD <= 
SIGNED(AxDI) + SIGNED(BxDI) WHEN “00”, 
SIGNED(AxDI) - SIGNED(BxDI) WHEN “01”, 
SIGNED(AxDI AND BxDI) WHEN “10”,
“--------” WHEN OTHERS;

-- Output assignment with type conversion
CxDO <= std_logic_vector(SgnCxD);

END rtl;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all
ENTITY my_first_counter IS

PORT ( 
AxDI : IN  std_logic_vector(8-1 DOWNTO 0);    
BxDI : IN  std_logic_vector(8-1 DOWNTO 0);
CMDxSI : IN  std_logic_vector(2-1 DOWNTO 0);

CxDO : OUT std_logic_vector(8-1 DOWNTO 0)
); 

END my_first_counter;
…

AND

“00”

“01”

“10”

AxDI

BxDI

CMDxDI

CxDO



How to Implement Registers in a Clean Way?

• Synchronous designs requires the notion of a state

▪ In VHDL, signals preserve their state (have a state) when nothing is assigned to them

▪ This preservation of states can be exploited to describe registers, 

but it must be done with care

• Objective: stick to the rules of synchronous design 

▪ ONLY the clock triggers a state transition 

▪ Use ONLY positive edge triggered FlipFLops (no latches)

▪ ➔ Incomplete combinational conditional assignments are not the solution to create registers

• Clean solution: 

Describe registers EXPLICITLY with a well controlled template
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Describing Edge Triggered Registers in VHDL

• Two ingredients: 

▪ A conditional statement that is TRUE when an edge (transition) occurs: clock_signal'event

• Positive edge: clock_signal'event AND clock_signal = '1' 

▪ A special process template that is well understood and clean

• Assign input signal of a 

FlipFlop (next_state_signal) 

to the FlipFlop output signal 

(present_state_signal)

• Conditional assignment is 

incomplete and only triggers

on rising edge of the clock
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ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declaration
SIGNAL next_state_signal_1,next_state_signal_2:state_signal_type;
SIGNAL present_state_signal_1 : state_signal_type;
SIGNAL present_state_signal_2 : state_signal_type;

BEGIN

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal) IS
BEGIN  -- process name: p_seq

IF clock_signal’EVENT AND clock_signal = '1’ THEN
present_state_signal_1 <= next_state_signal_1 

| expression;
present_state_signal_2 <= next_state_signal_2 

| expression;
END IF;

END PROCESS p_seq;
END architecture_name;

D Q present_state_signalnext_state_signal

clock_signal

TWO 

registers



Describing Registers with Asynchronous Reset

• An asynchronous reset triggers also a state transition, independent of clock

▪ The asynchronous reset typically takes precedence over the clock

• Asynchronous reset (async_reset_signal) 
assigns a constant to the 

FlipFlop output signal 

(present_state_signal)

• Conditional assignment is still 

incomplete and now triggers

on rising edge of the clock 

and on the reset signal

• Reset can be low- or high-active
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ARCHITECTURE architecture_name OF other_entity_name IS
-- signal declaration
SIGNAL next_state_signal    : state_signal_type;
SIGNAL present_state_signal : state_signal_type;

BEGIN

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal, async_reset_signal) IS
BEGIN  -- process name: p_seq

IF async_reset_signal = ‘0|1’ THEN
present_state_signal <= constant;

ELSIF clock_signal’EVENT AND clock_signal = '1’ THEN
present_state_signal <= next_state_signal

| expression;
END IF;

END PROCESS p_seq;

END architecture_name;

D Q

RST

present_state_signalnext_state_signal

clock_signal

async_reset_signal



Example: A Simple Counter (Overflowing)

• Specification: 8-bit counter, overflowing (wrap-around)
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…
ARCHITECTURE rtl OF my_first_counter IS

-- signal declaration
SIGNAL CNTxDN : UNSIGNED(8-1 DOWNTO 0);
SIGNAL CNTxDP : UNSIGNED(8-1 DOWNTO 0);

BEGIN
-- Counting/incrementing (Combinational Logic)
CNTxDN <= CNTxDP + 1;

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (CLKxCI, RSTxRBI) IS
BEGIN  -- process name: p_seq

IF RSTxRBI = ‘0’ THEN
CNTxDP <= (OTHERS => ‘0’);

ELSIF CLKxCI’EVENT AND CLKxCI = '1’ THEN
CNTxDP <= CNTxDN;

END IF;
END PROCESS p_seq;

-- Output assignment with type conversion
CNTxDO <= std_logic_vector(CNTxDP);

END rtl;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all
ENTITY my_first_counter IS

PORT ( 
CLKxCI : IN std_logic; 
RSTxRBI : IN std_logic; 
CNTxDO : OUT std_logic_vector(8-1 DOWNTO 0)

); 
END my_first_counter;
…
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