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Verification and Simulation

« HDL simulations mimic hardware behaviour

 We simulate VHDL code to verify and debug the code of a Device Under Test

« HDL simulations involve three types of components:

» The device under test (DUT)
= Atestbench that Complex simulation setup for a wireless transceiver
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Event Based Simulation of VHDL

* How to simulate parallel hardware on a computer?

« HDL simulation follows an event based execution model
= Key element is the event queue: ordered list of entries that mark signal changes over time

= Signal assignments that lead to a change in a signal deposit an event in the event queue

« Signal changes only when the simulator esent moment
proceeds to the scheduled event of time
= Three stage execution:
past events

. . . I scheduled events
1. Advance simulation time to the T e - ) -
next event (Go to next event in tlme><—
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2. Update the signal values that change
with the currently processed event

3. Process (execute) all statements
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Event Based Simulation of VHDL

« Simulation time advances while progressing through the event queue

« Often, VHDL assignments do not have any delay
» When to schedule the signal change in the event queue?

« If no delay/time is specified for an assignment, the simulator assigns a é-Delay
= A §-Delay has no time duration, but allows to schedule events one-after-another

-- Async Reset Generation T=0ns | T=10ns T=20ns
p_rst : PROCESS (INxS, AxS)
BEGIN +18 +26 +186 +26
BxS <= AXS;
Ae <o ThS; INXS 0 1 1 1 0 0 0
X5 <= AXS; AXS 0 0 1 1 1 0 0
END PROCESS p_rst;
BxS 0 0 0 1 1 1 0
CxS 0 0 0 1 1 1 0
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What I1s a Testbench?

« Atestbench is atest harness for the purpose of simulating a DUT

» Testbenches themselves are often written in an HDL (e.g., VHDL)
= The testbench is the top-level entity for simulation

 ADbasic testbench performs the following tasks:

= [nstantiation of the DUT

= Generation of the Clock

= Asynchronous (power-up) Reset

= Application of stimuli (DUT inputs)
Checking of responses (DUT outputs)
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The Simulation Schedule for Synchronous Circuits

* In (positive edge triggered) synchronous systems, stimuli application and
response acquisition follows a specific cycle-by-cycle schedule and timing
= Each cycle starts with the positive clock edge
= Stimuli are applied in the beginning of each cycle (A), after a fixed, short delay
» Responses are checked at the end of each cycle (T), a fixed, short delay before the next edge

via state transition function

via output function
cause * observable effect observable effect
S(K} i s(k+1)
ifk) ofk) | ifk+1) ofk+1) K+
k ' Y | A Fd v i A
= simulation time
[ | []
CLK ' i clock signal
& f
cycle k with its vector set cycle k+1 with its vector set cycle k+Z
)
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Simulation Strategies: Cycle-by-Cycle

Define cycle accurate stimuli inputs and expected outputs obtained
» from a cycle-accurate golden model of the circuit b th : PROCESS
= manually by interpreting the design specification BEGIN

-- CYCLE 1
« Stimuli and expected outputs can be stored Cycle  INPUT  OUTPUT
1 0100010 01010
= As part of the code of the testbench OR -- CYCLE 2 2 0101110 01001
= |n files that are read by the testbench END PROCESS p_tb; > oloo0iL ool

Very simple testbench proceeds cycle-by-cycle
= Applies the stimuli to the DUT (in the beginning of every cycle)
» Checks the expected outputs (before the end of every cycle)

This approach is only convenient for very small blocks since

x Cycle accurate golden models are usually not available

x Manual design of stimuli and expected responses is very tedious

x Changes in the timing (not the function) of the design requires re-design of the stimuli/testbench
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Cycle-Accurate vs.

Cycle INPUT OUTPUT

1 0100010 01010
2 0101110 01001
3 0100011 01011

p_ALL : PRPCESS ( )
BEGIN v

N

-- APPLY STIMULI

-- CHECK RESPONSES

-- GO to NEXT CYCLE
END PROCESS p_ALL;
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Simulation Strategies: Non-Cycle-Accurate

Define only the functional stimuli and responses, but not their exact timing
» Manually based on the specifications

= Through a purely behavioural model

Stimuli and expected outputs can be stored

= As part of the code of the testbench OR
= In files that are read by the testbench

Complex testbench handles the cycle-by-cycle interaction with the DUT
= Applies the stimuli to the and checks the expected outputs
= Reacts to control outputs of the DUT and generates by itself all control inputs to the DUT

This approach is much more flexible and easy for complex DUTs
» Focuses on the functionality
= Does not require anticipation of the exact timing of inputs/outputs
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Cycle-Accurate vs. Non-Cycle-Accurate

Cycle INPUT OUTPUT

1 0100010 01010
2 0101110 01001
3 0100011 01011

p_ALL : PRPCESS ( )
BEGIN v

p_IF1 : PROCESS ( )

N

4 -- BEHAVIORAL CODE

BEGIN

-- APPLY STIMULI

-- CHECK RESPONSES

-- GO to NEXT CYCLE
END PROCESS p_ALL;

(|
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END PROCESS p_IF1l; —

p_IF2 : PROCESS ( )
BEGIN _
-- BEHAVIORAL CODE

f

IF1
rocess

END PROCESS p_IF2;
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IF 2
rocess

p_IF3 : PROCESS (
BEGIN

END PROCESS p_IF3;
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-- BEHAVIORAL CODE
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VHDL for Simulations: Introducing Time

 RTL design descriptions for synthesis are discrete time models
= Concept of time (in seconds) is not supported by synthesis

 However, for simulation, we need to model time and delays
» Examples: generate a clock signal with a given period or model circuit delays

« VHDL offers two main options to introduce time and delays

Modeling
Time/Delay
Delayed Delaying execution
signal of sequential
assignments statements
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Delayed Signal Assignments in VHDL

« Signal assignments normally happen without a physical delay

« Assignments can be delayed artificially using

= An inertial delay model: pulses shorter than the delay are swallowed
« Time is specified in s, ms, us, ns, ps
signal <= expression AFTER time;

= Atransport delay model: all signal changes are retained and propagated after the given delay
signal <= TRANSPORT expression AFTER time;

aNns 10ns
INXS | I |
AXS <= INXS AFTER 7.5ns; AXS [ |
BXS <= TRANSPORT INXS AFTER 7.5ns;
BXS | [ [ |
- )
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Delaying Sequential Statement Execution

« Sequential statements in a process are carried out in zero physical time

« Execution of a process can be suspended with a WAIT-statement to

» Wait for any change in any of the signals in a list of signals
WAIT ON signal 1, signal 2, .. ;

Wait for a given boolean condition to be fulfilled
WAIT UNTIL boolean_expression;

Wait for a specified amount of time
WAIT FOR waiting time ;

= \Wait forever
WAIT ;
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Checking for Expected Responses

 VHDL provides dedicated statements to check conditions and issue different
levels of warning or error messages in the simulator console
» Used often to compare signals against expected responses
= Can also be used to check complex conditions, computed within a testbench

« The ASSERT-statement

ASSERT boolean_expression REPORT string SEVERITY severity level;

» checks if a boolean-expression and if the condition evaluates to FALSE
= outputs a REPORT string to the console of the simulator

= with one of four SEVERITY levels: NOTE, WARNING, ERROR or FAILURE
(FAILURE normally aborts the simulation)
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Testbench: Creating Clock and Reset

« CLOCK signal: periodic and runs forever CONSTANT CLK_PERIOD : time := 1@ns;
_ _ CONSTANT CLK_HIGH : time := CLK_PERIOD / 2;
» Best practice: define clock parameters as constantS | CONSTANT CLK_LOW . time := CLK_PERIOD / 2;
» Realized with a process and wait statements BEGIN -- architecture
= Exploits that once a process without sensitivity list ;'cﬁ"fkpggz‘éggtm”
ends it is called again BEGIN

CLKxXC <= ‘@°;
WAIT FOR CLK_LOW;

o : . : CLKxC <= €1°;
RESET_ signal: a;serteo_l once in the e o U AT
beginning of the simulation END PROCESS p_clk;

» Realized with a process and wait statements -- Async Reset Generation
_ _ p_rst : PROCESS
= Reset removal aligned with the CLOCK BEGIN

RSTXRB <= ‘@°;
WAIT UNTIL CLKXC’EVENT and CLKxC=¢1’;
WAIT UNTIL CLKXC’EVENT and CLKxC=¢1’;
WAIT FOR 1ns;
RSTXRB <= “1°;

¢ WAIT;

END PROCESS p_rst;

-(I’fl-
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Applying Stimuli & Checking Responses

« Stimuli application and response acquisition can be done in
= acommon process if both steps are tightly related with short response latency
* independent processes when latencies are large and timing of inputs and outputs is decoupled

« Example for hard-coded stimuli and responses:

-- Stimuli Application
p_stim : PROCESS
BEGIN

INPUTXS <= ‘@’; -- Initial Input during Reset
WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’ and RSTxRB = 1°;
WAIT FOR STIM_APPL_DELAY;
INPUTXS <= “1’; -- First cycle

WAIT UNTIL CLKxC’EVENT and CLKxC=¢1’;
WAIT FOR STIM_APPL_DELAY;
INPUTXS <= ‘@’; -- Second cycle

WAIT;
END PROCESS p_stim;

-- Response Checking
p_resp : PROCESS
BEGIN
WAIT UNTIL CLKxC’EVENT and CLKxC=¢1’ and RSTxRB = ‘1°;
WAIT FOR RESP_CHK_DELAY;
ASSERT OUTxS = exp_response_1 REPORT “Mismatch 1”
SEVERITY FAILURE;

WAIT UNTIL CLKxC’EVENT and CLKxC=¢1-;

WAIT FOR RESP_CHK_DELAY;

ASSERT OUTxS = exp_response_2 REPORT “Mismatch 2”
SEVERITY FAILURE;

WAIT;
END PROCESS p_stim;

(|

_OLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

ECO

EE-334: Digital System Design

i (GER)




“Interactive” Stimuli Application

« Consider a simple REQ / ACK protocol at the DUT input

= REQ signal (provided by the TB)
iIndicates that input is ready

= ACK signal from the DUT indicates s
that data was accepted s

o |DIN_REQxS
o DIN_ACKxS

B DINkD[3:0]

DIN_REQXS —3
DIN_ACKXS <—
DINXD —>

DUT

p_DIN: PROCESS IS

BEGIN -- PROCESS p_DIN
WAIT UNTIL RSTxR='1’;
DINXD <= "0000";
DIN_REQXS <= €0°;

WAIT UNTIL CLKxC'event AND CLKxC=‘1’ AND RSTxR='@’;
WAIT FOR CLK_STIM;

DINXD <= "0000";

DIN_REQxS <= ‘1°;

WAIT FOR CLK_STIM;
DIN_REQXS <= '©°;
DINXD <= "XXXX";

WAIT UNTIL CLKxC'event AND CLKxC=¢1’ AND DIN_ACKxS='1’;

WAIT UNTIL CLKxC'event AND CLKxC='1’;
WAIT UNTIL CLKxC'event AND CLKxC='1’;

WAIT FOR CLK_STIM;
DIN_REQxS <= '1°;
DINXD <= "@101";

WAIT UNTIL CLKXC'event AND CLKxC='1’
AND DIN_ACKxS='1’;

WAIT FOR CLK_STIM;

DIN_REQXS <= '©°;

DINXD <= "XXXX";

WAIT;
END PROCESS p_DIN;
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“Interactive” Response Acquisition/Check

« Consider a simple REQ / ACK protocol at a DUT input

= REQ signal (provided by the TB) 4 DOUT_REQXS
indicates that input is ready v DU 0]

= ACK signal from the DUT indicates 4 RSTR
that data was accepted & CLExC

p_DOUT_ACK: PROCESS (DOUT_REQxS) IS p_DOUT: PROCESS IS
BEGIN -- PROCESS p_DIN BEGIN -- PROCESS p_DIN
IF DOUT_REQXS = '1' THEN WAIT UNTIL RSTxR=‘1’;
DOUT_ACKXS <= '1' AFTER 24ns;
ELSIF DOUT_REQXS = '@' THEN WAIT UNTIL CLKXC'event AND CLKxC='1' AND RSTxR='0’;
DOUT_ACKXS <= '©' AFTER 2ns; WAIT UNTIL CLKXC'event AND CLKxC='1' AND DOUT_REQxS='1’;
ELSE ASSERT DOUTxD = "@000" REPORT "OK" SEVERITY warning;
DOUT_ACKXS <= 'X°;
END IF; WAIT UNTIL CLKXC'event AND CLKxC='1' AND DOUT_REQxS='1’;
END PROCESS p_DOUT ACK; ASSERT DOUTxD = "@000" REPORT "OK" SEVERITY warning;
DOUT _REQXS WAIT;
END PROCESS p_DOUT;

DUT  [DOUT_ACKxS
—> DOUTXD

- (&)
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How to Debug VHDL Code

 To debug the DUT, we look at the evolution of signals over time as waveforms
= Consider not only the inputs and outputs, but also the internal signals of your code

TECHNIQUE
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Interpreting “std _logic” Signal Waveforms

 The type “std_logic” supports values other than just ‘0’ and ‘1’ which provide
useful hints to potential “issues” or “intents” in the code

= ‘X’ indicates a signal that has conflicting assignments

= ‘U’ indicates a signal that was never (in the entire simulation) assigned any value
(appear sometimes in the beginning of a simulation in signals from the testbench)

« Within a design, all ‘U’ should have disappeared after the asynchronous reset or after the first clock edge

= " is a signal that was assigned as “DON’'T CARE", i.e., it could be either ‘0’ or ‘1’
(this is usually done on purpose to give the synthesis tool more freedom to optimize)
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