
EE-334

Digital System Design

Custom Digital Circuits

VHDL for Simulation –

Basic Constructs

EE-334: Digital System Design 1

Andreas Burg



Verification and Simulation

• HDL simulations mimic hardware behaviour

• We simulate VHDL code to verify and debug the code of a Device Under Test

• HDL simulations involve three types of components:

▪ The device under test (DUT)

▪ A testbench that 

• orchestrates the simulation

• Provides stimuli to the DUT

• Checks the correctness of the behaviour (outputs)

▪ Models of other system components that 

interact with the DUT

EE-334: Digital System Design 2

Complex simulation setup for a wireless transceiver



Event Based Simulation of VHDL

• How to simulate parallel hardware on a computer?

• HDL simulation follows an event based execution model

▪ Key element is the event queue: ordered list of entries that mark signal changes over time

▪ Signal assignments that lead to a change in a signal deposit an event in the event queue

• Signal changes only when the simulator 

proceeds to the scheduled event

▪ Three stage execution:

1. Advance simulation time to the 

next event 

2. Update the signal values that change 

with the currently processed event

3. Process (execute) all statements 

that are sensitive to this event

EE-334: Digital System Design 3



Event Based Simulation of VHDL

• Simulation time advances while progressing through the event queue

• Often, VHDL assignments do not have any delay

▪ When to schedule the signal change in the event queue?

• If no delay/time is specified for an assignment, the simulator assigns a 𝜹-Delay

▪ A 𝛿-Delay has no time duration, but allows to schedule events one-after-another

EE-334: Digital System Design 4

-- Async Reset Generation
p_rst : PROCESS (INxS, AxS)
BEGIN

BxS <= AxS;
AxS <= INxS;
CxS <= AxS;

END PROCESS p_rst;

T=0ns T=10ns T=20ns

+1𝛿 +2𝛿 +1𝛿 +2𝛿

INxS 0 1 1 1 0 0 0

AxS 0 0 1 1 1 0 0

BxS 0 0 0 1 1 1 0

CxS 0 0 0 1 1 1 0



What is a Testbench?

• A testbench is a test harness for the purpose of simulating a DUT

▪ Testbenches themselves are often written in an HDL (e.g., VHDL)

▪ The testbench is the top-level entity for simulation

• A basic testbench performs the following tasks:

▪ Instantiation of the DUT

▪ Generation of the Clock

▪ Asynchronous (power-up) Reset

▪ Application of stimuli (DUT inputs)

▪ Checking of responses (DUT outputs)

EE-334: Digital System Design 5

DUT

a
p

p
ly

s
ti
m

u
li

c
h

e
c
k

re
s
p

o
n

s
e
s

clock & reset



The Simulation Schedule for Synchronous Circuits

• In (positive edge triggered) synchronous systems, stimuli application and 

response acquisition follows a specific cycle-by-cycle schedule and timing

▪ Each cycle starts with the positive clock edge

▪ Stimuli are applied in the beginning of each cycle (Δ), after a fixed, short delay

▪ Responses are checked at the end of each cycle (T), a fixed, short delay before the next edge

EE-334: Digital System Design 6



Simulation Strategies: Cycle-by-Cycle

• Define cycle accurate stimuli inputs and expected outputs obtained

▪ from a cycle-accurate golden model of the circuit 

▪ manually by interpreting the design specification

• Stimuli and expected outputs can be stored

▪ As part of the code of the testbench OR

▪ In files that are read by the testbench

• Very simple testbench proceeds cycle-by-cycle

▪ Applies the stimuli to the DUT (in the beginning of every cycle)

▪ Checks the expected outputs (before the end of every cycle)

• This approach is only convenient for very small blocks since 

 Cycle accurate golden models are usually not available

 Manual design of stimuli and expected responses is very tedious

 Changes in the timing (not the function) of the design requires re-design of the stimuli/testbench

EE-334: Digital System Design 7

Cycle INPUT OUTPUT
1 0100010 01010
2 0101110 01001
3 0100011 01011
…

p_tb : PROCESS
BEGIN

-- CYCLE 1
… 

-- CYCLE 2
… 

END PROCESS p_tb;



EE-334: Digital System Design 8

Cycle-Accurate vs. …

DUT

p_ALL : PROCESS (  )
BEGIN

-- APPLY STIMULI
-- CHECK RESPONSES
-- GO to NEXT CYCLE

END PROCESS p_ALL;

Cycle INPUT OUTPUT
1 0100010 01010
2 0101110 01001
3 0100011 01011
…



Simulation Strategies: Non-Cycle-Accurate

• Define only the functional stimuli and responses, but not their exact timing

▪ Manually based on the specifications

▪ Through a purely behavioural model 

• Stimuli and expected outputs can be stored

▪ As part of the code of the testbench OR

▪ In files that are read by the testbench

• Complex testbench handles the cycle-by-cycle interaction with the DUT

▪ Applies the stimuli to the and checks the expected outputs

▪ Reacts to control outputs of the DUT and generates by itself all control inputs to the DUT

• This approach is much more flexible and easy for complex DUTs

▪ Focuses on the functionality 

▪ Does not require anticipation of the exact timing of inputs/outputs

EE-334: Digital System Design 9



EE-334: Digital System Design 10

Cycle-Accurate vs. Non-Cycle-Accurate

IF 1
Process

IF 2
Process

IF 3 Process

DUTDUT p_IF2 : PROCESS (  )
BEGIN

-- BEHAVIORAL CODE 
END PROCESS p_IF2;

p_IF1 : PROCESS (  )
BEGIN

-- BEHAVIORAL CODE 
END PROCESS p_IF1;

p_IF3 : PROCESS (  )
BEGIN

-- BEHAVIORAL CODE 
END PROCESS p_IF3;

p_ALL : PROCESS (  )
BEGIN

-- APPLY STIMULI
-- CHECK RESPONSES
-- GO to NEXT CYCLE

END PROCESS p_ALL;

Cycle INPUT OUTPUT
1 0100010 01010
2 0101110 01001
3 0100011 01011
…



VHDL for Simulations: Introducing Time

• RTL design descriptions for synthesis are discrete time models

▪ Concept of time (in seconds)  is not supported by synthesis

• However, for simulation, we need to model time and delays

▪ Examples: generate a clock signal with a given period or model circuit delays

• VHDL offers two main options to introduce time and delays

EE-334: Digital System Design 11

Modeling

Time/Delay

Delayed

signal

assignments

Delaying execution 

of sequential 

statements



Delayed Signal Assignments in VHDL

• Signal assignments normally happen without a physical delay

• Assignments can be delayed artificially using 

▪ An inertial delay model: pulses shorter than the delay are swallowed

• Time is specified in s, ms, us, ns, ps

signal <= expression AFTER time;

▪ A transport delay model: all signal changes are retained and propagated after the given delay 

signal <= TRANSPORT expression AFTER time;

EE-334: Digital System Design 12

AxS <= INxS AFTER 7.5ns;
BxS <= TRANSPORT INxS AFTER 7.5ns;

BxS

AxS

INxS
5ns 10ns



Delaying Sequential Statement Execution

• Sequential statements in a process are carried out in zero physical time

• Execution of a process can be suspended with a WAIT-statement to

▪ Wait for any change in any of the signals in a list of signals

WAIT ON signal_1, signal_2, … ;

▪ Wait for a given boolean condition to be fulfilled

WAIT UNTIL boolean_expression ;

▪ Wait for a specified amount of time

WAIT FOR waiting_time ;

▪ Wait forever

WAIT ;

EE-334: Digital System Design 13



Checking for Expected Responses

• VHDL provides dedicated statements to check conditions and issue different 

levels of warning or error messages in the simulator console

▪ Used often to compare signals against expected responses

▪ Can also be used to check complex conditions, computed within a testbench

• The ASSERT-statement

ASSERT boolean_expression REPORT string SEVERITY severity_level;

▪ checks if a boolean-expression and if the condition evaluates to FALSE 

▪ outputs a REPORT string to the console of the simulator

▪ with one of four SEVERITY levels: NOTE, WARNING, ERROR or FAILURE

(FAILURE normally aborts the simulation)

Fall 2020 EE-334: Digital System Design 14



Testbench: Creating Clock and Reset

• CLOCK signal: periodic and runs forever

▪ Best practice: define clock parameters as constants

▪ Realized with a process and wait statements

▪ Exploits that once a process without sensitivity list 

ends it is called again 

• RESET signal: asserted once in the 

beginning of the simulation

▪ Realized with a process and wait statements

▪ Reset removal aligned with the CLOCK

EE-334: Digital System Design 15

CONSTANT CLK_PERIOD  : time := 10ns;
CONSTANT CLK_HIGH    : time := CLK_PERIOD / 2;
CONSTANT CLK_LOW     : time := CLK_PERIOD / 2;
…
BEGIN -- architecture

-- Clock Generation
p_clk : PROCESS
BEGIN

CLKxC <= ‘0’;
WAIT FOR CLK_LOW;
CLKxC <= ‘1’;
WAIT FOR CLK_HIGH;

END PROCESS p_clk;

-- Async Reset Generation
p_rst : PROCESS
BEGIN

RSTxRB <= ‘0’;
WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT FOR 1ns;
RSTxRB <= ‘1’;
WAIT;

END PROCESS p_rst;



Applying Stimuli & Checking Responses

• Stimuli application and response acquisition can be done in 

▪ a common process if both steps are tightly related with short response latency

▪ independent processes when latencies are large and timing of inputs and outputs is decoupled

• Example for hard-coded stimuli and responses:

EE-334: Digital System Design 16

-- Stimuli Application
p_stim : PROCESS
BEGIN

INPUTxS <= ‘0’; -- Initial Input during Reset

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’ and RSTxRB = ‘1’;
WAIT FOR STIM_APPL_DELAY;
INPUTxS <= ‘1’; -- First cycle

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT FOR STIM_APPL_DELAY;
INPUTxS <= ‘0’; -- Second cycle

WAIT;
END PROCESS p_stim;

-- Response Checking
p_resp : PROCESS
BEGIN

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’ and RSTxRB = ‘1’;
WAIT FOR RESP_CHK_DELAY;
ASSERT OUTxS = exp_response_1 REPORT “Mismatch 1”    

SEVERITY FAILURE;

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT FOR RESP_CHK_DELAY;
ASSERT OUTxS = exp_response_2 REPORT “Mismatch 2”    

SEVERITY FAILURE;

WAIT;
END PROCESS p_stim;



“Interactive” Stimuli Application

• Consider a simple REQ / ACK protocol at the DUT input

▪ REQ signal (provided by the TB) 

indicates that input is ready

▪ ACK signal from the DUT indicates 

that data was accepted

EE-334: Digital System Design 17

p_DIN: PROCESS IS  
BEGIN  -- PROCESS p_DIN

WAIT UNTIL RSTxR='1’;
DINxD <= "0000";
DIN_REQxS <= ‘0’;

WAIT UNTIL CLKxC'event AND CLKxC=‘1’ AND RSTxR='0’;
WAIT FOR CLK_STIM;
DINxD <= "0000";
DIN_REQxS <= ‘1’;

WAIT UNTIL CLKxC'event AND CLKxC=‘1’ AND DIN_ACKxS='1’;
WAIT FOR CLK_STIM;
DIN_REQxS <= '0’;
DINxD <= "XXXX";

WAIT UNTIL CLKxC'event AND CLKxC='1’;
WAIT UNTIL CLKxC'event AND CLKxC='1’;
WAIT FOR CLK_STIM;
DIN_REQxS <= '1’;
DINxD <= "0101";

WAIT UNTIL CLKxC'event AND CLKxC='1’ 
AND DIN_ACKxS='1’;

WAIT FOR CLK_STIM;
DIN_REQxS <= '0’;
DINxD <= "XXXX";

WAIT;
END PROCESS p_DIN;

DUT

DIN_REQxS

DIN_ACKxS

DINxD



“Interactive” Response Acquisition/Check

• Consider a simple REQ / ACK protocol at a DUT input

▪ REQ signal (provided by the TB) 

indicates that input is ready

▪ ACK signal from the DUT indicates 

that data was accepted

EE-334: Digital System Design 18

p_DOUT_ACK: PROCESS (DOUT_REQxS) IS  
BEGIN  -- PROCESS p_DIN

IF DOUT_REQxS = '1' THEN
DOUT_ACKxS <= '1' AFTER 24ns;

ELSIF DOUT_REQxS = '0' THEN
DOUT_ACKxS <= '0' AFTER 2ns;

ELSE
DOUT_ACKxS <= 'X’;

END IF;
END PROCESS p_DOUT_ACK;

p_DOUT: PROCESS IS
BEGIN  -- PROCESS p_DIN

WAIT UNTIL RSTxR=‘1’;

WAIT UNTIL CLKxC'event AND CLKxC='1' AND RSTxR='0’;
WAIT UNTIL CLKxC'event AND CLKxC='1' AND DOUT_REQxS='1’;
ASSERT DOUTxD = "0000" REPORT "OK" SEVERITY warning;

WAIT UNTIL CLKxC'event AND CLKxC='1' AND DOUT_REQxS='1’;
ASSERT DOUTxD = "0000" REPORT "OK" SEVERITY warning;

WAIT;
END PROCESS p_DOUT;  

DUT

DOUT_REQxS

DOUT_ACKxS
DOUTxD



How to Debug VHDL Code

• To debug the DUT, we look at the evolution of signals over time as waveforms

▪ Consider not only the inputs and outputs, but also the internal signals of your code

EE-334: Digital System Design 19



Interpreting “std_logic” Signal Waveforms

• The type “std_logic” supports values other than just ‘0’ and ‘1’ which provide 

useful hints to potential “issues” or “intents” in the code

▪ ‘X’ indicates a signal that has conflicting assignments

▪ ‘U’ indicates a signal that was never (in the entire simulation) assigned any value

(appear sometimes in the beginning of a simulation in signals from the testbench)

• Within a design, all ‘U’ should have disappeared after the asynchronous reset or after the first clock edge

▪ ‘-’ is a signal that was assigned as “DON’T CARE”, i.e., it could be either ‘0’ or ‘1’

(this is usually done on purpose to give the synthesis tool more freedom to optimize)

EE-334: Digital System Design 20


