ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334
Digital System Design

Custom Digital Circuits

VHDL for Simulation —
Basic Constructs

Andreas Burg

EE-334: Digital System Design

Verification and Simulation

« HDL simulations mimic hardware behaviour

 We simulate VHDL code to verify and debug the code of a Device Under Test

« HDL simulations involve three types of components:

» The device under test (DUT)
= Atestbench that Complex simulation setup for a wireless transceiver

functional gauge

* orchestrates the simulation comode

* Provides stimuli to the DUT ;;:Ea;ﬁ
« Checks the correctness of the behaviour (outputs) Poliatan S, .| | po | [

o -8 RS e ot
= Models of other system components that Bl P (=]

protocol adapter compact signal
waveforms

interact with the DUT e T e e B e

Y filters 5'9'13‘5 complex iF waveform U [—
actual format demodulator [+~ - preparator stimuli
7resp1 signal —

generated generated

evaallrjlgled MIMO = multiple-input multiple-output [or antennas] PCI = peripheral component interconnect evaaluated
with e ' . " with

MATHLAB HSPDA = high-speed downlink packet access IF = intermediate frequency MATHLAB

-(I’fl-

L lL[l‘t]l(_.llNJ(lLL

EE-334: Digital System Design 2 (((ﬁ

Event Based Simulation of VHDL

* How to simulate parallel hardware on a computer?

« HDL simulation follows an event based execution model
= Key element is the event queue: ordered list of entries that mark signal changes over time

= Signal assignments that lead to a change in a signal deposit an event in the event queue

« Signal changes only when the simulator esent moment
proceeds to the scheduled event of time
= Three stage execution:
past events

. . . I scheduled events
1. Advance simulation time to the T e -) -
next event (Go to next event in tlme><—

A B C D

>

2. Update the signal values that change
with the currently processed event

3. Process (execute) all statements

— - sensitive input —
H- : ‘ Evaluate expressions that
input b= ess gets invoked by | output P :
that are sensitive to this event variabies | y2iccess gets invoked by | (ilEes Gepend B

and schedules events |
on vanables C and D

(Register new events)

process

P = | @)
OLE POLYTECHNIQU EE-334: Digital System Design 3

Event Based Simulation of VHDL

« Simulation time advances while progressing through the event queue

« Often, VHDL assignments do not have any delay
» When to schedule the signal change in the event queue?

« If no delay/time is specified for an assignment, the simulator assigns a é-Delay
= A §-Delay has no time duration, but allows to schedule events one-after-another

-- Async Reset Generation T=0ns | T=10ns T=20ns
p_rst : PROCESS (INxS, AxS)
BEGIN +18 +26 +186 +26
BxS <= AXS;
Ae <o ThS; INXS 0 1 1 1 0 0 0
X5 <= AXS; AXS 0 0 1 1 1 0 0
END PROCESS p_rst;
BxS 0 0 0 1 1 1 0
CxS 0 0 0 1 1 1 0

A - . (G
LLLLL YTECHNIQUE EE-334: Dlgltal System Design 4

FEDEI

What I1s a Testbench?

« Atestbench is atest harness for the purpose of simulating a DUT

» Testbenches themselves are often written in an HDL (e.g., VHDL)
= The testbench is the top-level entity for simulation

 ADbasic testbench performs the following tasks:

= [nstantiation of the DUT

= Generation of the Clock

= Asynchronous (power-up) Reset

= Application of stimuli (DUT inputs)
Checking of responses (DUT outputs)

ECOLE YTECHNIQUE
FEDER DE LAUSANNE

apply
stimuli

clock & reset

v A 4

DUT

check
responses

EE-334: Digital System Design

The Simulation Schedule for Synchronous Circuits

* In (positive edge triggered) synchronous systems, stimuli application and
response acquisition follows a specific cycle-by-cycle schedule and timing
= Each cycle starts with the positive clock edge
= Stimuli are applied in the beginning of each cycle (A), after a fixed, short delay
» Responses are checked at the end of each cycle (T), a fixed, short delay before the next edge

via state transition function

via output function
cause * observable effect observable effect
S(K} i s(k+1)
ifk) ofk) | ifk+1) ofk+1) K+
k ' Y | A Fd v i A
= simulation time
[| []
CLK ' i clock signal
& f
cycle k with its vector set cycle k+1 with its vector set cycle k+Z
)
B CPA -~ | (@)
ECOL YTECHNIQUE EE-334: Dlgltal System Design 6

Simulation Strategies: Cycle-by-Cycle

Define cycle accurate stimuli inputs and expected outputs obtained
» from a cycle-accurate golden model of the circuit b th : PROCESS
= manually by interpreting the design specification BEGIN

-- CYCLE 1
« Stimuli and expected outputs can be stored Cycle INPUT OUTPUT
1 0100010 01010
= As part of the code of the testbench OR -- CYCLE 2 2 0101110 01001
= |n files that are read by the testbench END PROCESS p_tb; > oloo0iL ool

Very simple testbench proceeds cycle-by-cycle
= Applies the stimuli to the DUT (in the beginning of every cycle)
» Checks the expected outputs (before the end of every cycle)

This approach is only convenient for very small blocks since

x Cycle accurate golden models are usually not available

x Manual design of stimuli and expected responses is very tedious

x Changes in the timing (not the function) of the design requires re-design of the stimuli/testbench

MECHNIQUE EE-334: Digital System Design 7 (((ﬁ

Cycle-Accurate vs.

Cycle INPUT OUTPUT

1 0100010 01010
2 0101110 01001
3 0100011 01011

p_ALL : PRPCESS ()
BEGIN v

N

-- APPLY STIMULI

-- CHECK RESPONSES

-- GO to NEXT CYCLE
END PROCESS p_ALL;

(|

L L lL [OL‘tTl(_.IIN]C& L

v

114

DUT

EE-334: Digital System Design

: (¢

Simulation Strategies: Non-Cycle-Accurate

Define only the functional stimuli and responses, but not their exact timing
» Manually based on the specifications

= Through a purely behavioural model

Stimuli and expected outputs can be stored

= As part of the code of the testbench OR
= In files that are read by the testbench

Complex testbench handles the cycle-by-cycle interaction with the DUT
= Applies the stimuli to the and checks the expected outputs
= Reacts to control outputs of the DUT and generates by itself all control inputs to the DUT

This approach is much more flexible and easy for complex DUTs
» Focuses on the functionality
= Does not require anticipation of the exact timing of inputs/outputs

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

» (¢

Cycle-Accurate vs. Non-Cycle-Accurate

Cycle INPUT OUTPUT

1 0100010 01010
2 0101110 01001
3 0100011 01011

p_ALL : PRPCESS ()
BEGIN v

p_IF1 : PROCESS ()

N

4 -- BEHAVIORAL CODE

BEGIN

-- APPLY STIMULI

-- CHECK RESPONSES

-- GO to NEXT CYCLE
END PROCESS p_ALL;

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

v

114

DUT

END PROCESS p_IF1l; —

p_IF2 : PROCESS ()
BEGIN _
-- BEHAVIORAL CODE

f

IF1
rocess

END PROCESS p_IF2;

EE-334: Digital System Design

f

IF 2
rocess

p_IF3 : PROCESS (
BEGIN

END PROCESS p_IF3;

)

-- BEHAVIORAL CODE

(v

IF 3 Process

\

N

<«

DUT

114

/

o (G

VHDL for Simulations: Introducing Time

 RTL design descriptions for synthesis are discrete time models
= Concept of time (in seconds) is not supported by synthesis

 However, for simulation, we need to model time and delays
» Examples: generate a clock signal with a given period or model circuit delays

« VHDL offers two main options to introduce time and delays

Modeling
Time/Delay
Delayed Delaying execution
signal of sequential
assignments statements

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

11 (((

Delayed Signal Assignments in VHDL

« Signal assignments normally happen without a physical delay

« Assignments can be delayed artificially using

= An inertial delay model: pulses shorter than the delay are swallowed
« Time is specified in s, ms, us, ns, ps
signal <= expression AFTER time;

= Atransport delay model: all signal changes are retained and propagated after the given delay
signal <= TRANSPORT expression AFTER time;

aNns 10ns
INXS | I |
AXS <= INXS AFTER 7.5ns; AXS [|
BXS <= TRANSPORT INXS AFTER 7.5ns;
BXS | [[|
-)
ECOL (Ilg"lrflgjwqug EE-334: Digital System Design 12 (((ﬁ

ELAUSANN

Delaying Sequential Statement Execution

« Sequential statements in a process are carried out in zero physical time

« Execution of a process can be suspended with a WAIT-statement to

» Wait for any change in any of the signals in a list of signals
WAIT ON signal 1, signal 2, .. ;

Wait for a given boolean condition to be fulfilled
WAIT UNTIL boolean_expression;

Wait for a specified amount of time
WAIT FOR waiting time ;

= \Wait forever
WAIT ;

ECOLE YTECHNIQUE
FEDER DE LAUSANNE

EE-334: Digital System Design

s (¢

Checking for Expected Responses

 VHDL provides dedicated statements to check conditions and issue different
levels of warning or error messages in the simulator console
» Used often to compare signals against expected responses
= Can also be used to check complex conditions, computed within a testbench

« The ASSERT-statement

ASSERT boolean_expression REPORT string SEVERITY severity level;

» checks if a boolean-expression and if the condition evaluates to FALSE
= outputs a REPORT string to the console of the simulator

= with one of four SEVERITY levels: NOTE, WARNING, ERROR or FAILURE
(FAILURE normally aborts the simulation)

ECOL

ivaue Fall 2020 EE-334: Digital System Design 14 (((ﬁ

FEDER

Testbench: Creating Clock and Reset

« CLOCK signal: periodic and runs forever CONSTANT CLK_PERIOD : time := 1@ns;
_ _ CONSTANT CLK_HIGH : time := CLK_PERIOD / 2;
» Best practice: define clock parameters as constantS | CONSTANT CLK_LOW . time := CLK_PERIOD / 2;
» Realized with a process and wait statements BEGIN -- architecture
= Exploits that once a process without sensitivity list ;'cﬁ"fkpggz‘éggtm”
ends it is called again BEGIN

CLKxXC <= ‘@°;
WAIT FOR CLK_LOW;

o : . : CLKxC <= €1°;
RESET_ signal: a;serteo_l once in the e o U AT
beginning of the simulation END PROCESS p_clk;

» Realized with a process and wait statements -- Async Reset Generation
_ _ p_rst : PROCESS
= Reset removal aligned with the CLOCK BEGIN

RSTXRB <= ‘@°;
WAIT UNTIL CLKXC’EVENT and CLKxC=¢1’;
WAIT UNTIL CLKXC’EVENT and CLKxC=¢1’;
WAIT FOR 1ns;
RSTXRB <= “1°;

¢ WAIT;

END PROCESS p_rst;

-(I’fl-

ECOLE POLYTECHNIQUE EE-334: Digital System Design 15 (((ﬁ

Applying Stimuli & Checking Responses

« Stimuli application and response acquisition can be done in
= acommon process if both steps are tightly related with short response latency
* independent processes when latencies are large and timing of inputs and outputs is decoupled

« Example for hard-coded stimuli and responses:

-- Stimuli Application
p_stim : PROCESS
BEGIN

INPUTXS <= ‘@’; -- Initial Input during Reset
WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’ and RSTxRB = 1°;
WAIT FOR STIM_APPL_DELAY;
INPUTXS <= “1’; -- First cycle

WAIT UNTIL CLKxC’EVENT and CLKxC=¢1’;
WAIT FOR STIM_APPL_DELAY;
INPUTXS <= ‘@’; -- Second cycle

WAIT;
END PROCESS p_stim;

-- Response Checking
p_resp : PROCESS
BEGIN
WAIT UNTIL CLKxC’EVENT and CLKxC=¢1’ and RSTxRB = ‘1°;
WAIT FOR RESP_CHK_DELAY;
ASSERT OUTxS = exp_response_1 REPORT “Mismatch 1”
SEVERITY FAILURE;

WAIT UNTIL CLKxC’EVENT and CLKxC=¢1-;

WAIT FOR RESP_CHK_DELAY;

ASSERT OUTxS = exp_response_2 REPORT “Mismatch 2”
SEVERITY FAILURE;

WAIT;
END PROCESS p_stim;

(|

_OLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

ECO

EE-334: Digital System Design

i (GER)

“Interactive” Stimuli Application

« Consider a simple REQ / ACK protocol at the DUT input

= REQ signal (provided by the TB)
iIndicates that input is ready

= ACK signal from the DUT indicates s
that data was accepted s

o |DIN_REQxS
o DIN_ACKxS

B DINkD[3:0]

DIN_REQXS —3
DIN_ACKXS <—
DINXD —>

DUT

p_DIN: PROCESS IS

BEGIN -- PROCESS p_DIN
WAIT UNTIL RSTxR='1’;
DINXD <= "0000";
DIN_REQXS <= €0°;

WAIT UNTIL CLKxC'event AND CLKxC=‘1’ AND RSTxR='@’;
WAIT FOR CLK_STIM;

DINXD <= "0000";

DIN_REQxS <= ‘1°;

WAIT FOR CLK_STIM;
DIN_REQXS <= '©°;
DINXD <= "XXXX";

WAIT UNTIL CLKxC'event AND CLKxC=¢1’ AND DIN_ACKxS='1’;

WAIT UNTIL CLKxC'event AND CLKxC='1’;
WAIT UNTIL CLKxC'event AND CLKxC='1’;

WAIT FOR CLK_STIM;
DIN_REQxS <= '1°;
DINXD <= "@101";

WAIT UNTIL CLKXC'event AND CLKxC='1’
AND DIN_ACKxS='1’;

WAIT FOR CLK_STIM;

DIN_REQXS <= '©°;

DINXD <= "XXXX";

WAIT;
END PROCESS p_DIN;

MCP\ -

JLE POLYTEC E[N\(lLL
IEI‘)\I ALE DE LAUSANNIE

“Interactive” Response Acquisition/Check

« Consider a simple REQ / ACK protocol at a DUT input

= REQ signal (provided by the TB) 4 DOUT_REQXS
indicates that input is ready v DU 0]

= ACK signal from the DUT indicates 4 RSTR
that data was accepted & CLExC

p_DOUT_ACK: PROCESS (DOUT_REQxS) IS p_DOUT: PROCESS IS
BEGIN -- PROCESS p_DIN BEGIN -- PROCESS p_DIN
IF DOUT_REQXS = '1' THEN WAIT UNTIL RSTxR=‘1’;
DOUT_ACKXS <= '1' AFTER 24ns;
ELSIF DOUT_REQXS = '@' THEN WAIT UNTIL CLKXC'event AND CLKxC='1' AND RSTxR='0’;
DOUT_ACKXS <= '©' AFTER 2ns; WAIT UNTIL CLKXC'event AND CLKxC='1' AND DOUT_REQxS='1’;
ELSE ASSERT DOUTxD = "@000" REPORT "OK" SEVERITY warning;
DOUT_ACKXS <= 'X°;
END IF; WAIT UNTIL CLKXC'event AND CLKxC='1' AND DOUT_REQxS='1’;
END PROCESS p_DOUT ACK; ASSERT DOUTxD = "@000" REPORT "OK" SEVERITY warning;
DOUT _REQXS WAIT;
END PROCESS p_DOUT;

DUT [DOUT_ACKxS
—> DOUTXD

- (&)

DLE POLYTEC E[NJ(}LL
IEI‘)\I ALE DE LAUSANNE

How to Debug VHDL Code

 To debug the DUT, we look at the evolution of signals over time as waveforms
= Consider not only the inputs and outputs, but also the internal signals of your code

TECHNIQUE
FLAUSANNE

EE-334: Digital System Design 19 (((

Interpreting “std _logic” Signal Waveforms

 The type “std_logic” supports values other than just ‘0’ and ‘1’ which provide
useful hints to potential “issues” or “intents” in the code

= ‘X’ indicates a signal that has conflicting assignments

= ‘U’ indicates a signal that was never (in the entire simulation) assigned any value
(appear sometimes in the beginning of a simulation in signals from the testbench)

« Within a design, all ‘U’ should have disappeared after the asynchronous reset or after the first clock edge

= " is a signal that was assigned as “DON’'T CARE", i.e., it could be either ‘0’ or ‘1’
(this is usually done on purpose to give the synthesis tool more freedom to optimize)

ECOL YTECHNIQUE
FEDER DE LAUSANNE

EE-334: Digital System Design 20 (((ﬁ)))

