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Verification and Simulation

• HDL simulations mimic hardware behaviour

• We simulate VHDL code to verify and debug the code of a Device Under Test

• HDL simulations involve three types of components:

▪ The device under test (DUT)

▪ A testbench that 

• orchestrates the simulation

• Provides stimuli to the DUT

• Checks the correctness of the behaviour (outputs)

▪ Models of other system components that 

interact with the DUT
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Complex simulation setup for a wireless transceiver



Event Based Simulation of VHDL

• How to simulate parallel hardware on a computer?

• HDL simulation follows an event based execution model

▪ Key element is the event queue: ordered list of entries that mark signal changes over time

▪ Signal assignments that lead to a change in a signal deposit an event in the event queue

• Signal changes only when the simulator 

proceeds to the scheduled event

▪ Three stage execution:

1. Advance simulation time to the 

next event 

2. Update the signal values that change 

with the currently processed event

3. Process (execute) all statements 

that are sensitive to this event
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Event Based Simulation of VHDL

• Simulation time advances while progressing through the event queue

• Often, VHDL assignments do not have any delay

▪ When to schedule the signal change in the event queue?

• If no delay/time is specified for an assignment, the simulator assigns a 𝜹-Delay

▪ A 𝛿-Delay has no time duration, but allows to schedule events one-after-another
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-- Async Reset Generation
p_rst : PROCESS (INxS, AxS)
BEGIN

BxS <= AxS;
AxS <= INxS;
CxS <= AxS;

END PROCESS p_rst;

T=0ns T=10ns T=20ns

+1𝛿 +2𝛿 +1𝛿 +2𝛿

INxS 0 1 1 1 0 0 0

AxS 0 0 1 1 1 0 0

BxS 0 0 0 1 1 1 0

CxS 0 0 0 1 1 1 0



What is a Testbench?

• A testbench is a test harness for the purpose of simulating a DUT

▪ Testbenches themselves are often written in an HDL (e.g., VHDL)

▪ The testbench is the top-level entity for simulation

• A basic testbench performs the following tasks:

▪ Instantiation of the DUT

▪ Generation of the Clock

▪ Asynchronous (power-up) Reset

▪ Application of stimuli (DUT inputs)

▪ Checking of responses (DUT outputs)
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The Simulation Schedule for Synchronous Circuits

• In (positive edge triggered) synchronous systems, stimuli application and 

response acquisition follows a specific cycle-by-cycle schedule and timing

▪ Each cycle starts with the positive clock edge

▪ Stimuli are applied in the beginning of each cycle (Δ), after a fixed, short delay

▪ Responses are checked at the end of each cycle (T), a fixed, short delay before the next edge
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Simulation Strategies: Cycle-by-Cycle

• Define cycle accurate stimuli inputs and expected outputs obtained

▪ from a cycle-accurate golden model of the circuit 

▪ manually by interpreting the design specification

• Stimuli and expected outputs can be stored

▪ As part of the code of the testbench OR

▪ In files that are read by the testbench

• Very simple testbench proceeds cycle-by-cycle

▪ Applies the stimuli to the DUT (in the beginning of every cycle)

▪ Checks the expected outputs (before the end of every cycle)

• This approach is only convenient for very small blocks since 

 Cycle accurate golden models are usually not available

 Manual design of stimuli and expected responses is very tedious

 Changes in the timing (not the function) of the design requires re-design of the stimuli/testbench
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Cycle INPUT OUTPUT
1 0100010 01010
2 0101110 01001
3 0100011 01011
…

p_tb : PROCESS
BEGIN

-- CYCLE 1
… 

-- CYCLE 2
… 

END PROCESS p_tb;
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Cycle-Accurate vs. …

DUT

p_ALL : PROCESS (  )
BEGIN

-- APPLY STIMULI
-- CHECK RESPONSES
-- GO to NEXT CYCLE

END PROCESS p_ALL;

Cycle INPUT OUTPUT
1 0100010 01010
2 0101110 01001
3 0100011 01011
…



Simulation Strategies: Non-Cycle-Accurate

• Define only the functional stimuli and responses, but not their exact timing

▪ Manually based on the specifications

▪ Through a purely behavioural model 

• Stimuli and expected outputs can be stored

▪ As part of the code of the testbench OR

▪ In files that are read by the testbench

• Complex testbench handles the cycle-by-cycle interaction with the DUT

▪ Applies the stimuli to the and checks the expected outputs

▪ Reacts to control outputs of the DUT and generates by itself all control inputs to the DUT

• This approach is much more flexible and easy for complex DUTs

▪ Focuses on the functionality 

▪ Does not require anticipation of the exact timing of inputs/outputs
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Cycle-Accurate vs. Non-Cycle-Accurate

IF 1
Process

IF 2
Process

IF 3 Process

DUTDUT p_IF2 : PROCESS (  )
BEGIN

-- BEHAVIORAL CODE 
END PROCESS p_IF2;

p_IF1 : PROCESS (  )
BEGIN

-- BEHAVIORAL CODE 
END PROCESS p_IF1;

p_IF3 : PROCESS (  )
BEGIN

-- BEHAVIORAL CODE 
END PROCESS p_IF3;

p_ALL : PROCESS (  )
BEGIN

-- APPLY STIMULI
-- CHECK RESPONSES
-- GO to NEXT CYCLE

END PROCESS p_ALL;

Cycle INPUT OUTPUT
1 0100010 01010
2 0101110 01001
3 0100011 01011
…



VHDL for Simulations: Introducing Time

• RTL design descriptions for synthesis are discrete time models

▪ Concept of time (in seconds)  is not supported by synthesis

• However, for simulation, we need to model time and delays

▪ Examples: generate a clock signal with a given period or model circuit delays

• VHDL offers two main options to introduce time and delays
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Delayed Signal Assignments in VHDL

• Signal assignments normally happen without a physical delay

• Assignments can be delayed artificially using 

▪ An inertial delay model: pulses shorter than the delay are swallowed

• Time is specified in s, ms, us, ns, ps

signal <= expression AFTER time;

▪ A transport delay model: all signal changes are retained and propagated after the given delay 

signal <= TRANSPORT expression AFTER time;
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AxS <= INxS AFTER 7.5ns;
BxS <= TRANSPORT INxS AFTER 7.5ns;

BxS

AxS

INxS
5ns 10ns



Delaying Sequential Statement Execution

• Sequential statements in a process are carried out in zero physical time

• Execution of a process can be suspended with a WAIT-statement to

▪ Wait for any change in any of the signals in a list of signals

WAIT ON signal_1, signal_2, … ;

▪ Wait for a given boolean condition to be fulfilled

WAIT UNTIL boolean_expression ;

▪ Wait for a specified amount of time

WAIT FOR waiting_time ;

▪ Wait forever

WAIT ;
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Checking for Expected Responses

• VHDL provides dedicated statements to check conditions and issue different 

levels of warning or error messages in the simulator console

▪ Used often to compare signals against expected responses

▪ Can also be used to check complex conditions, computed within a testbench

• The ASSERT-statement

ASSERT boolean_expression REPORT string SEVERITY severity_level;

▪ checks if a boolean-expression and if the condition evaluates to FALSE 

▪ outputs a REPORT string to the console of the simulator

▪ with one of four SEVERITY levels: NOTE, WARNING, ERROR or FAILURE

(FAILURE normally aborts the simulation)
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Testbench: Creating Clock and Reset

• CLOCK signal: periodic and runs forever

▪ Best practice: define clock parameters as constants

▪ Realized with a process and wait statements

▪ Exploits that once a process without sensitivity list 

ends it is called again 

• RESET signal: asserted once in the 

beginning of the simulation

▪ Realized with a process and wait statements

▪ Reset removal aligned with the CLOCK
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CONSTANT CLK_PERIOD  : time := 10ns;
CONSTANT CLK_HIGH    : time := CLK_PERIOD / 2;
CONSTANT CLK_LOW     : time := CLK_PERIOD / 2;
…
BEGIN -- architecture

-- Clock Generation
p_clk : PROCESS
BEGIN

CLKxC <= ‘0’;
WAIT FOR CLK_LOW;
CLKxC <= ‘1’;
WAIT FOR CLK_HIGH;

END PROCESS p_clk;

-- Async Reset Generation
p_rst : PROCESS
BEGIN

RSTxRB <= ‘0’;
WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT FOR 1ns;
RSTxRB <= ‘1’;
WAIT;

END PROCESS p_rst;



Applying Stimuli & Checking Responses

• Stimuli application and response acquisition can be done in 

▪ a common process if both steps are tightly related with short response latency

▪ independent processes when latencies are large and timing of inputs and outputs is decoupled

• Example for hard-coded stimuli and responses:
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-- Stimuli Application
p_stim : PROCESS
BEGIN

INPUTxS <= ‘0’; -- Initial Input during Reset

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’ and RSTxRB = ‘1’;
WAIT FOR STIM_APPL_DELAY;
INPUTxS <= ‘1’; -- First cycle

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT FOR STIM_APPL_DELAY;
INPUTxS <= ‘0’; -- Second cycle

WAIT;
END PROCESS p_stim;

-- Response Checking
p_resp : PROCESS
BEGIN

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’ and RSTxRB = ‘1’;
WAIT FOR RESP_CHK_DELAY;
ASSERT OUTxS = exp_response_1 REPORT “Mismatch 1”    

SEVERITY FAILURE;

WAIT UNTIL CLKxC’EVENT and CLKxC=‘1’;
WAIT FOR RESP_CHK_DELAY;
ASSERT OUTxS = exp_response_2 REPORT “Mismatch 2”    

SEVERITY FAILURE;

WAIT;
END PROCESS p_stim;



“Interactive” Stimuli Application

• Consider a simple REQ / ACK protocol at the DUT input

▪ REQ signal (provided by the TB) 

indicates that input is ready

▪ ACK signal from the DUT indicates 

that data was accepted
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p_DIN: PROCESS IS  
BEGIN  -- PROCESS p_DIN

WAIT UNTIL RSTxR='1’;
DINxD <= "0000";
DIN_REQxS <= ‘0’;

WAIT UNTIL CLKxC'event AND CLKxC=‘1’ AND RSTxR='0’;
WAIT FOR CLK_STIM;
DINxD <= "0000";
DIN_REQxS <= ‘1’;

WAIT UNTIL CLKxC'event AND CLKxC=‘1’ AND DIN_ACKxS='1’;
WAIT FOR CLK_STIM;
DIN_REQxS <= '0’;
DINxD <= "XXXX";

WAIT UNTIL CLKxC'event AND CLKxC='1’;
WAIT UNTIL CLKxC'event AND CLKxC='1’;
WAIT FOR CLK_STIM;
DIN_REQxS <= '1’;
DINxD <= "0101";

WAIT UNTIL CLKxC'event AND CLKxC='1’ 
AND DIN_ACKxS='1’;

WAIT FOR CLK_STIM;
DIN_REQxS <= '0’;
DINxD <= "XXXX";

WAIT;
END PROCESS p_DIN;

DUT

DIN_REQxS

DIN_ACKxS

DINxD



“Interactive” Response Acquisition/Check

• Consider a simple REQ / ACK protocol at a DUT input

▪ REQ signal (provided by the TB) 

indicates that input is ready

▪ ACK signal from the DUT indicates 

that data was accepted
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p_DOUT_ACK: PROCESS (DOUT_REQxS) IS  
BEGIN  -- PROCESS p_DIN

IF DOUT_REQxS = '1' THEN
DOUT_ACKxS <= '1' AFTER 24ns;

ELSIF DOUT_REQxS = '0' THEN
DOUT_ACKxS <= '0' AFTER 2ns;

ELSE
DOUT_ACKxS <= 'X’;

END IF;
END PROCESS p_DOUT_ACK;

p_DOUT: PROCESS IS
BEGIN  -- PROCESS p_DIN

WAIT UNTIL RSTxR=‘1’;

WAIT UNTIL CLKxC'event AND CLKxC='1' AND RSTxR='0’;
WAIT UNTIL CLKxC'event AND CLKxC='1' AND DOUT_REQxS='1’;
ASSERT DOUTxD = "0000" REPORT "OK" SEVERITY warning;

WAIT UNTIL CLKxC'event AND CLKxC='1' AND DOUT_REQxS='1’;
ASSERT DOUTxD = "0000" REPORT "OK" SEVERITY warning;

WAIT;
END PROCESS p_DOUT;  

DUT

DOUT_REQxS

DOUT_ACKxS
DOUTxD



How to Debug VHDL Code

• To debug the DUT, we look at the evolution of signals over time as waveforms

▪ Consider not only the inputs and outputs, but also the internal signals of your code
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Interpreting “std_logic” Signal Waveforms

• The type “std_logic” supports values other than just ‘0’ and ‘1’ which provide 

useful hints to potential “issues” or “intents” in the code

▪ ‘X’ indicates a signal that has conflicting assignments

▪ ‘U’ indicates a signal that was never (in the entire simulation) assigned any value

(appear sometimes in the beginning of a simulation in signals from the testbench)

• Within a design, all ‘U’ should have disappeared after the asynchronous reset or after the first clock edge

▪ ‘-’ is a signal that was assigned as “DON’T CARE”, i.e., it could be either ‘0’ or ‘1’

(this is usually done on purpose to give the synthesis tool more freedom to optimize)
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