ECOLE POLYTECHMN]
FEDERALE DE LAUSA

nout Fall 2020

EE-334
Digital System Design

Custom Digital Circuits
Principles of Synchronous
Register Transfer Level (RTL) Design

Andreas Burg

EE-334: Digital System Design

Focus on the Design of Custom Digital Circuits

« Where do we need custom digital circuits in a digital system?

» |nterface logic between standard components that
speak different protocols

» Dedicated hardware for digital signal processing
with high performance or low power

= Microprocessors that execute software code

 Implementation options for custom digital circuits
= Custom integrated circuits
* Field Programmable Gate Arrays (FPGAS)

ECOLE POLYTECH
FEDERALE DE LAL

INJQUE Fall 2020 EE-334: Digital System Design

Implementing Algorithms with Registers and Logic

gystem

levels of abstré[ﬂ-:-t-inn

* Design process visualized by the Y-Diagram | e N
[Gajski and Kuhn,1983] boavorsl 7 N \ peﬂ.gggw&é
. . . HHH{E&F{’; - pa— ‘ \, -
» Similar to the system design, we can TN s \ \
establish multiple views, representing L e mLuS legisters memoris
. . truth tables; electrical P ates, latches, fijp-flops |
different domains | LT S ;’ e |
_ behavioral front-end stﬁructu_ral | . 1Iunctv=-ﬂsl_ T .. |
= Behavioral POPEGe. desgn persbectve |||\ Lt /) Digita} |
= Stru Ctural E&x/—\\; ~ ‘\\i)A detailed [gfout CII’ CU|.-t
_ |" \“‘\wr’/‘ K“\\ Tl = cadcell }’j eSIQn
= Physical bck-ond T
N deaian O\ ° '{Sﬁﬁﬁ?ﬁ‘g / /
* For each domain, we also define \\H sl p
different levels of abstraction ' I
. . . = chip or board
(amount of visible details) perspeciive E"*T
pers ective

« Design process brings us from the behavioral domain to the center of the
chart, i.e., a physical circuit with all its details

ECPr (-) (GED)

Lets Now Clarify the Title of this Lecture...

 What is “Synchronous Register Transfer Level (RTL) Design”?

» An intermediate representation

between the behavioural and structural

perspective

» Close enough to the algorithm view to

 allow convenient mapping of algorithm
operations into hardware resources

= Close enough to the structural view to
* represent complexity tradeoffs and

- allows to automate the step to more details

(|

ECC)lL[UL‘t]l(_.IINJ(!_LL Fa” 2020

FEDERALE DE LAUS

EE-334: Digital System Design

system

levels of abstré&tinn
architecture
behavioral) ,‘ gusEEEy, . structural
perspeciive P p° register transfer & perspective
Hmmstan‘,« P > = L

algorithrhﬁ;& ;// ¢ "unmn -ﬂ\ \\ ﬁ t:up blocks

/ logic (aka gate-level) \ x:&"’SLTI;bI:EEg "

[and Q‘peratmng N rd “,)r ALLIS FEu:.lstnrs "nﬂrrnnns

trtL;tP tamﬁ\me.le_drical H/‘g,atﬂs latches, pr flops |
state grap o R .
g transfer .. A tran sm‘;rs mrﬂﬁ '

functions ™ 7

S'.letas ks

I / ' [
| \ giat mask polygfhs, '
s detailed Igifout |
\ c_,U_ N P /:, _J.-"'
™, standard cells, .~
"q_)' macro cells ~
A © placement o y
™, ()] and routing .
» \ I e e
N —f— #
o floorplan,
. > partitioning -~
""-._____ L _._____.-"
chip or board
physical
pars eciive

Always Start with a Block Diagram

« Circuits are a concatenation of components that are connected by wires

= Components receive input signals and generate output signals
= Wires connect the components (can be hierarchical)

* Block diagrams are the natural way to describe and discuss circuits

 Block diagrams have many advantages

TR = They show the components you use: basis for

“““““““ ? a;(F;;;e:;r;;S;o:n:a}.;;‘F;{{““““““““““““' : :

L TS area (complexity) estimate

i s g]w HER s » They are essential to estimate the “longest path”
and the maximum clock frequency

e = They show the connections: basis for estimating

IPre—opI FFT | MEL | ocT | Dscan]

G e e crouin communication requirements
*» The are the starting point for writing VHDL
* They help to avoid severe mistakes in your VHDL
» They are the best way to discuss circuits

12 bits

@

Block Diagram examples from ISSCC papers

(|

LCOLE POLYTLCHNIQUE Fall 2020 EE-334: DIgIta' System Design 5 (((m

Fundamental Components of Digital Circuits

« Combinatorial logic: memoryless ~I>o ::)— D:D

= Built from basic Boolean logic gates G D I A8 2

= Qutputis only afunction of the current input 0 1} 10 0 0p10 0 0p 10 00 SN
0 O 0 1 0 0 1 1 0 1 1
= Combinational logic has no state NOT 1 0 0ppr o0 1pj1 01
1 1 1 1 1 1 1 1 0 . . .
* Nets (wires): memoryless AND OR XOR Any arbitrary
_ o . Boolean function
= Connect components, carrying logic signals _> _
= One input (driver) and one or multiple outputs
« Storage (sequential) elements: memory
= QOutput depends on an internal state, defined by previous inputs
D 0 - Q QB : i P 0O - Q B | I
x 1 1 1 0 m 1 - aqas| D/ :I\ i
B 1 0 0 1 i I > QB 1 0 0 1 | |
Latch Q_/{_\ :{_ r 110 Q—r{ ‘}_
L (high transparent) ' ' y Flip-Flop (positive-edge triggered) = Register

ECOLE POLYTECE
FEDERALE DE LAL

inioue Fall 2020 EE-334: Digital System Design 6 (((ﬁ)))

Lets Now Further Clarify the Title of this Lecture...

« “Synchronous Register Transfer Level (RTL) Design” is both an architecture
template and a desigh methodology

= Register Transfer Level (RTL): refers to how data is processed —pP ° o o
Data is modified with combinational logic or processed while S >

It is moved between registers (for us only Flip-Flops).

Clock
= Synchronous Digital Circuits: refers to the timing
In synchronous circuits, all state changes happen instantly o0 ' 1 ' 2 |
at the same time under the control of one common clock. Clock ‘ i
« Common clock provides the time-reference for RTL operations | | | !
= We consider only Positive Edge Triggered Synchronous Circuits
« State changes happen instantly only on the positive edge of the clock x@ Z

PP

Fall 2020 EE-334: Digital System Design 7 (((ﬁ

QUE

NNE

Synchronous RTL Design Follows a Template

* Including Primary inputs and outputs, we arrive at a generic design template

= Sequential elements (memory) keep the present state (data)
= Combinational logic (CL) defines

* Next state, i.e., content of data registers in the next cycle
* Primary outputs

based on the inputs and the present state (e.g., as boolean or arithmetic expression)

D

« The state is kept in registers:

= Present state: output (Q) of registers

= Next state: input (D) of registers
(stored on next positive clock edge)

RTL design defines the storage elements and the
logic that modifies the data as it is transferred between
these storage elements

(A

OLY TECHNIQUE 8 ((m
E DE LAUSANNE

Sync. Design Abstracts from Component Delays

 Problem: real circuits (logic gates) have (different) delays
= When an input changes, the circuit goes to a transient state
= Time for a change to propagate from an input to is different for each input and output

Steady Steady Steady
state State State
L}_D*:DO | s s
% : : :
NS e e e e e e e - ——C > D i D i D i
= During the transient period, the output of a circuit is invalid trsgﬁloedm

« Solution: store new state only when circuit is back in steady state
M CPF\—

N

Synchronous Design: Abstraction to Discrete Time

« Basic idea: operation in discrete time steps

= Start from a coherent (aligned) set of inputs and state variables
= Wait until all outputs have stabilized (system in steady state)
= Store the results and new state -> triggers a change in the inputs

* A clock signal provides the timing reference (heartbeat)
= Sufficiently long clock period ensures correct operation

]]]]]]
h A A A /

7
~
7

 Changing the state any other time than the positive clock edge is dangerous

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

o (G

“Combinational Loops” are Forbidden

« Acombinational loop exists in your RTL circuit if
= asignal path that goes through a combinational circuit I_ x
= arrives back at an input of the same gate _:)“/_Dc o o
= without passing “through” a register >

Combinational loops do not fit the synchronous design paradigm L%

= They have no start and no end {10
CK

= They are not synchronized with the clock _
o

Hence, it is difficult (impossible) to guarantee that they reach a stable state

Combinatorial loops are not allowed under no circumstances, even when
they are “deactivated”

ECOLE POLYTECHMN L
FEDERALE DE LAUSANN

ioue - Fall 2020 EE-334: Digital System Design 11 (((H)))

Guaranteeing an Known Initial State

« At power-up, the content/state of storage elements is unknown
= Further evolution of the stats is also unknown

SN
In—>< ;)—>D
>

S
>

ﬂﬂﬂ-ﬂﬂﬂ
XAC A8 8 A8 A
SN X’ X’ X’ ¢ X’ X’ X’

In lol IOI IOI Ill IOI Ill lol

 Initial asynchronous RESET solves the problem

ﬂﬂﬂ-ﬂﬂﬂ

SN | uri [S
In taus > I 7 lll Ill I I
v

> S lxl lo) Iol 111 lol 11) lo)
AV} ¢I] \I 4 \I i \I 4 \l ’ \I]

SN X r 0 0 1 1 0

In I_I I_I (OI 111 IOI Ill IOI

-(I’fl-

CHNIOUE Fall 2020

EE-334: Digital System Design

12 (((

Signal Classes in Synchronous Design

There are three types of signals in a synchronous circuit

 Asynchronous reset: brings all bistables (flip-flops), I.e., the entire system, into a
known and stable state, independent of their inputs or the clock signal; they are
used only once at power up

- Clock: only signal that triggers state transitions and storage of results in
memory elements; determines the duration of the work phases and thereby also
the speed of the operation (limited by the speed of the combinational elements)

« Data/control: represent data and control information in the circuit; they can be
used in logic and can be stored in sequential elements (determine the value of
state variables), but they never trigger any state transition by themselves

Each signal belongs to one and only one of the above categories.

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

5 ()

Synchronous Design: The Golden Rule(s)

Separate the design of the logic from timing (see static timing analysis)

» Clear-cut separation between signals that decide
 When a state transitions should take place (clocks)
 What data values should be stored

Clock and asynchronous reset signals never participate in logic operations (exception: clock
gating, but only if you know what you are doing)

Data/control signals never trigger a state transition
Combinational Loops are not allowed

Conservative side:
= All storage elements do have an asynchronous reset
= Do not use clock gating unless really needed and if so adhere to its special rules

= Use only a single clock in the entire circuit; if you need multiple clocks, keep them
synchronized and use frequencies that are integer multiples of each other

ECOLE POLYTECHNIQUE 14 ((
FEDERALE DE LAUSANNE

DE LAUSANN

RTL Design Abstraction Summary

« RTL description of a synchronous digital system fully describes

= directly
 The hardware as collection of storage elements and combinational logic
« completely and unambiguously all hardware resources and their connections

= indirectly (not visible in the block diagram, but deterministic given by the RTL design)
» the discrete-time behaviour of a synchronous circuit

 Butis does not contain any information on
» The delay of the combinational logic or the timing requirements of sequential elements

« RTL design is done with block diagrams!
= Golden rule: if you can not draw it, something is wrong!

E(PA

OLY TECHNIQUE
E DE LAUSANNE

15 (((

Common Complex Components

« Components are not limited to basic logic gates and single-bit Flip-Flops

» RTL Synthesis allows to describe combinational logic in a compact way

= Not all details (e.g., internals of an adder) need always to be worked out

= Multi-bit signals (e.g., busses) can typically be collapsed into one signal

e Choose the level of detail based on

D

>

RST

Q

ID

>

RST

Q

ON

D

>

= what you want to show

= what is necessary to show to understand

the circuit
B¢\

RST

NX

Q

7
i
1

adder

multiplier

LUT

{

==X

><X

shiﬂ right /

multiplexer \ shift left \ @

i (¢

Managing Structural Complexity with Hierarchy

Most systems are too complex and too heterogeneous to be considered as one
big piece and must be broken up into sub-circuits (divide-et-impera)
»= Define clear and informative names for all blocks,

= Partition design into functional blocks
signals, and ports and annotate them in the block diagram

(instances of design entities)
Design Hierarchy: recursive partitioning of design entities into smaller units

= Specify how these blocks communicate with each
other (interfaces: signals and protocols)

u Hierarchy Is useful for: * Top-down design: start from top
- functional partitioning = SPSEtll"urﬁ:;ng of a (sub-)unit into further/smaller
* hiding details = Refinement: implementation of sub-units
« reducing complexity * Bottom-up design: start from bottom
= Assemble pieces to build up a larger design/unit
* re-use of components

ECOLE POLYTECHNIQUE 17 ((
FEDERALE DE LAUSANNE

DE LAUSANN

Synchronous Design: A Famous Example

* Flip-flop with enable

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

SET

D B XXX omm
CLK / ' \ }‘ \ I \

EN : .\)’ |
D N oV AN o
Q “AaX_ B XcX222 XD
Desired
output A A_C)@
D _B XXX NNE‘
CLK_/"__/" _/ \
w1V
DxDN 3<>po<x:¢:><x
Q A X_c Xb
Desired
output A A_C)@

e (¢

Synchronous Design: Another Famous Example

* Counter with RESET:
= 4-bit counter that skips “1111” and return immediately to “0000”

modulo-16 counter

" — . — . . o o o o o e Emasas

|I-'-' i

' ! CLKxC
N e
y

RSTxRE — ——
7—4? ! ! ! 11D1J
- I J J QJ DJ _I_- .
! BaT BET 5T TET transitory state
RST RST RST RST 1111
: CLK <] CLK <] CLK <7 CLK <] !,-' unaccounted for
: 1 I_ 1 - 1 I_ ;
| .
! co Cl co co CO Cl——& CNTENxS DT 1110
O R —a —{o —{o | —
: 1 L
! : unplanned (state intended
P, o T I S - t*la's. tion -"-‘ 111) tobe skipped
QxD(3) QxD(2) QxD(1) QxD(0)

%
% Y
_ ot
—ﬂ'f unaccountad for L\DDDG J
\ (" delay |
Y - — S

« How would you realize this in a fully synchronous design style??
B

s (¢

RTL Design Example

« Counter
= Count from O to 15 and wrap around to O

« What do you need:
» 16 possible states (0-15) => 4 bits to store the state => 4 registers
= Adder to increment the counter by 1 in each clock cycle
= Some means to recognize when to add and when to reset
= Some means to reset the state(counter)

ECOLE YTECHNIQUE (((
FEDER DE LAUSANNE 20

Find the Design Issues

clockmess CLK o ’ N

f\ :l:l /L\J

o |'II I'lj | 4?\‘

—
1
reset mess RST o L Al
V7 \ = ~ V
datapath D—,.f—; ‘,;_Ii\l\/\%;_r : B i Qi;g..ﬂ r—;’—::-
N > # N
N
N e N

ECOLE POLYTECHNIQUE 21 ((
FEDERALE DE LAUSANNE

Pros and Cons of Synchronous RTL Design

« “Synchronous RTL Design” is the industry standard design style for digital
Integrated circuits (and FPGAS)

 Advantages:

= Easy to abstract complex circuits with simple rules @
3
= Well defined design methodology with very few ingredients £ p4
<«
= Compatible with electronic design automation (EDA) tools to a.
translate an abstract description into a circuit with all the details a
= Circuits are relatively easy to verify and debug @
* Provides a very high level of robustness and reliability I
/| \

ECOLE POLYTECHMN
FEDERALE DE LAUSAN

woue Fall 2020 EE-334: Digital System Design 22 (((

Pros and Cons of Synchronous RTL Design

« “Synchronous RTL Design” is the industry standard design style for digital
Integrated circuits (and FPGAS)

 Disadvantages and dangers:

= Simple, but (at first sight) very restrictive rules

Essential to strictly adhere to the rules at all costs,

even though it is sometimes tempting to break them

Verification fails to detect issues when rules are broken
i | DO NOT BREAK

o THE RULES

Breaking the rules even once jeopardizes the entire design

» Significant differences to programming software

ECOLE POLYTECHMN
FEDERALE DE LAUSA

woue Fall 2020 EE-334: Digital System Design 23 (((

	Slide 1: EE-334 Digital System Design
	Slide 2: Focus on the Design of Custom Digital Circuits
	Slide 3: Implementing Algorithms with Registers and Logic
	Slide 4: Lets Now Clarify the Title of this Lecture…
	Slide 5: Always Start with a Block Diagram
	Slide 6: Fundamental Components of Digital Circuits
	Slide 7: Lets Now Further Clarify the Title of this Lecture…
	Slide 8: Synchronous RTL Design Follows a Template
	Slide 9: Sync. Design Abstracts from Component Delays
	Slide 10: Synchronous Design: Abstraction to Discrete Time
	Slide 11: “Combinational Loops” are Forbidden
	Slide 12: Guaranteeing an Known Initial State
	Slide 13: Signal Classes in Synchronous Design
	Slide 14: Synchronous Design: The Golden Rule(s)
	Slide 15: RTL Design Abstraction Summary
	Slide 16: Common Complex Components
	Slide 17: Managing Structural Complexity with Hierarchy
	Slide 18: Synchronous Design: A Famous Example
	Slide 19: Synchronous Design: Another Famous Example
	Slide 20: RTL Design Example
	Slide 21: Find the Design Issues
	Slide 22: Pros and Cons of Synchronous RTL Design
	Slide 23: Pros and Cons of Synchronous RTL Design

