
EE-334

Digital System Design

Custom Digital Circuits

Principles of Synchronous

Register Transfer Level (RTL) Design

Fall 2020 EE-334: Digital System Design 1

Andreas Burg

Focus on the Design of Custom Digital Circuits

• Where do we need custom digital circuits in a digital system?

▪ Interface logic between standard components that

speak different protocols

▪ Dedicated hardware for digital signal processing

with high performance or low power

▪ Microprocessors that execute software code

• Implementation options for custom digital circuits

▪ Custom integrated circuits

▪ Field Programmable Gate Arrays (FPGAs)

Fall 2020 EE-334: Digital System Design 2

M
o

re
 d

e
ta

il
s

Implementing Algorithms with Registers and Logic

• Design process visualized by the Y-Diagram
[Gajski and Kuhn,1983]

• Similar to the system design, we can

establish multiple views, representing

different domains

▪ Behavioral

▪ Structural

▪ Physical

• For each domain, we also define

different levels of abstraction

(amount of visible details)

• Design process brings us from the behavioral domain to the center of the

chart, i.e., a physical circuit with all its details

]]

Digital

circuit

design

Lets Now Clarify the Title of this Lecture…

• What is “Synchronous Register Transfer Level (RTL) Design”?

▪ An intermediate representation

between the behavioural and structural

perspective

▪ Close enough to the algorithm view to

• allow convenient mapping of algorithm

operations into hardware resources

▪ Close enough to the structural view to

• represent complexity tradeoffs and

• allows to automate the step to more details

Fall 2020 EE-334: Digital System Design 4

M
o

re
 d

e
ta

il
s

Always Start with a Block Diagram

• Circuits are a concatenation of components that are connected by wires

▪ Components receive input signals and generate output signals

▪ Wires connect the components (can be hierarchical)

• Block diagrams are the natural way to describe and discuss circuits

Fall 2020 EE-334: Digital System Design 5

B
lo

c
k
 D

ia
g

ra
m

 e
x
a

m
p

le
s
 f
ro

m
 I
S

S
C

C
 p

a
p

e
rs

• Block diagrams have many advantages

▪ They show the components you use: basis for

area (complexity) estimate

▪ They are essential to estimate the “longest path”

and the maximum clock frequency

▪ They show the connections: basis for estimating

communication requirements

▪ The are the starting point for writing VHDL

▪ They help to avoid severe mistakes in your VHDL

▪ They are the best way to discuss circuits

Fundamental Components of Digital Circuits

• Combinatorial logic: memoryless

▪ Built from basic Boolean logic gates

▪ Output is only a function of the current input

▪ Combinational logic has no state

• Nets (wires): memoryless

▪ Connect components, carrying logic signals

▪ One input (driver) and one or multiple outputs

• Storage (sequential) elements: memory

▪ Output depends on an internal state, defined by previous inputs

Fall 2020 EE-334: Digital System Design 6

D Q

QB

CLK D Q QB

0 - Q QB

1 - Q QB

↑ 0 0 1

↑ 1 1 0
Q

D

CLK
D Q

QB

CLK D Q QB

0 - Q QB

1 1 1 0

1 0 0 1
Q

D

CLK

Flip-Flop (positive-edge triggered) ➔ Register

Latch

(high transparent)

 ✓

A B Z

0 0 0

0 1 0

1 0 0

1 1 1

A B Z

0 0 0

0 1 1

1 0 1

1 1 1

A B Z

0 0 0

0 1 1

1 0 1

1 1 0

A Z

0 1

0 0

NOT

AND OR XOR

A B Z

. . .

. . .

. . .

. . .

Any arbitrary

Boolean function

Lets Now Further Clarify the Title of this Lecture…

• “Synchronous Register Transfer Level (RTL) Design” is both an architecture

template and a design methodology

▪ Register Transfer Level (RTL): refers to how data is processed

Data is modified with combinational logic or processed while

it is moved between registers (for us only Flip-Flops).

▪ Synchronous Digital Circuits: refers to the timing

In synchronous circuits, all state changes happen instantly

at the same time under the control of one common clock.

• Common clock provides the time-reference for RTL operations

▪ We consider only Positive Edge Triggered Synchronous Circuits

• State changes happen instantly only on the positive edge of the clock

Fall 2020 EE-334: Digital System Design 7

D QD Q
Combinatorial

Circuits

0 1 2

Clock

Clock

Synchronous RTL Design Follows a Template

• Including Primary inputs and outputs, we arrive at a generic design template

▪ Sequential elements (memory) keep the present state (data)

▪ Combinational logic (CL) defines

• Next state, i.e., content of data registers in the next cycle

• Primary outputs

based on the inputs and the present state (e.g., as boolean or arithmetic expression)

• The state is kept in registers:

▪ Present state: output (Q) of registers

▪ Next state: input (D) of registers

(stored on next positive clock edge)

8

D QCL D QCL CL

RTL design defines the storage elements and the

logic that modifies the data as it is transferred between

these storage elements

Sync. Design Abstracts from Component Delays

• Problem: real circuits (logic gates) have (different) delays

▪ When an input changes, the circuit goes to a transient state

▪ Time for a change to propagate from an input to is different for each input and output

▪ During the transient period, the output of a circuit is invalid

• Solution: store new state only when circuit is back in steady state

9

Steady

state

Steady

state

Steady

state

transient

period

Synchronous Design: Abstraction to Discrete Time

• Basic idea: operation in discrete time steps

▪ Start from a coherent (aligned) set of inputs and state variables

▪ Wait until all outputs have stabilized (system in steady state)

▪ Store the results and new state -> triggers a change in the inputs

• A clock signal provides the timing reference (heartbeat)

▪ Sufficiently long clock period ensures correct operation

• Changing the state any other time than the positive clock edge is dangerous

10

“Combinational Loops” are Forbidden

• A combinational loop exists in your RTL circuit if

▪ a signal path that goes through a combinational circuit

▪ arrives back at an input of the same gate

▪ without passing “through” a register

• Combinational loops do not fit the synchronous design paradigm

▪ They have no start and no end

▪ They are not synchronized with the clock

• Hence, it is difficult (impossible) to guarantee that they reach a stable state

• Combinatorial loops are not allowed under no circumstances, even when

they are “deactivated”

Fall 2020 EE-334: Digital System Design 11

D Q





Guaranteeing an Known Initial State

• At power-up, the content/state of storage elements is unknown

▪ Further evolution of the stats is also unknown

• Initial asynchronous RESET solves the problem

Fall 2020 EE-334: Digital System Design 12

D QCL
Cycle 0 0 0 1 2 3 4

S ‘X’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’

SN ‘X’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’

In ‘0’ ‘0’ ‘0’ ‘1’ ‘0’ ‘1’ ‘0’

SSN
In

D Q

RST

CL

Cycle 0 0 0 1 2 3 4

RST ‘0’ ‘1’ ‘1’ ‘0’ ‘0’ ‘0’ ‘0’

S ‘X’ ‘0’ ‘0’ ‘1’ ‘0’ ‘1’ ‘0’

SN ‘X’ ‘-’ ‘0’ ‘0’ ‘1’ ‘1’ ‘0’

In ‘-’ ‘-’ ‘0’ ‘1’ ‘0’ ‘1’ ‘0’

SSN
In

Signal Classes in Synchronous Design

There are three types of signals in a synchronous circuit

• Asynchronous reset: brings all bistables (flip-flops), i.e., the entire system, into a

known and stable state, independent of their inputs or the clock signal; they are

used only once at power up

• Clock: only signal that triggers state transitions and storage of results in

memory elements; determines the duration of the work phases and thereby also

the speed of the operation (limited by the speed of the combinational elements)

• Data/control: represent data and control information in the circuit; they can be

used in logic and can be stored in sequential elements (determine the value of

state variables), but they never trigger any state transition by themselves

Each signal belongs to one and only one of the above categories.

13

Synchronous Design: The Golden Rule(s)

• Separate the design of the logic from timing (see static timing analysis)

▪ Clear-cut separation between signals that decide

• When a state transitions should take place (clocks)

• What data values should be stored

▪ Clock and asynchronous reset signals never participate in logic operations (exception: clock

gating, but only if you know what you are doing)

▪ Data/control signals never trigger a state transition

▪ Combinational Loops are not allowed

• Conservative side:

▪ All storage elements do have an asynchronous reset

▪ Do not use clock gating unless really needed and if so adhere to its special rules

▪ Use only a single clock in the entire circuit; if you need multiple clocks, keep them

synchronized and use frequencies that are integer multiples of each other

14

RTL Design Abstraction Summary

• RTL description of a synchronous digital system fully describes

▪ directly

• The hardware as collection of storage elements and combinational logic

• completely and unambiguously all hardware resources and their connections

▪ indirectly (not visible in the block diagram, but deterministic given by the RTL design)

• the discrete-time behaviour of a synchronous circuit

• But is does not contain any information on

▪ The delay of the combinational logic or the timing requirements of sequential elements

• RTL design is done with block diagrams!

▪ Golden rule: if you can not draw it, something is wrong!

15

Common Complex Components

• Components are not limited to basic logic gates and single-bit Flip-Flops

▪ RTL Synthesis allows to describe combinational logic in a compact way

▪ Not all details (e.g., internals of an adder) need always to be worked out

▪ Multi-bit signals (e.g., busses) can typically be collapsed into one signal

• Choose the level of detail based on

▪ what you want to show

▪ what is necessary to show to understand

the circuit

16

D Q

RST

D Q

RST

D Q

RST

Nx

D Q

RST

QN
==x
><x

Managing Structural Complexity with Hierarchy

• Most systems are too complex and too heterogeneous to be considered as one

big piece and must be broken up into sub-circuits (divide-et-impera)

▪ Partition design into functional blocks

(instances of design entities)

▪ Specify how these blocks communicate with each

other (interfaces: signals and protocols)

▪ Define clear and informative names for all blocks,

signals, and ports and annotate them in the block diagram

• Design Hierarchy: recursive partitioning of design entities into smaller units

▪ Hierarchy is useful for:

• functional partitioning

• hiding details

• reducing complexity

• re-use of components

17

• Top-down design: start from top
▪ Partitioning of a (sub-)unit into further/smaller

sub-units
▪ Refinement: implementation of sub-units

• Bottom-up design: start from bottom
▪ Assemble pieces to build up a larger design/unit

Synchronous Design: A Famous Example

• Flip-flop with enable

18

D Q

SET

EN

CLK

CLKx

D
Q

A

B

B

C

C ???

D

D

A C D

EN

CLK

CLKx

D

Q

Desired

output

A

B C

C

D

D

A C D

EN

CLK

D

Q

Desired

output

A B C DDxDN

D Q

QB

SET
0

1

Dnxt Q

EN

CLK
D





Synchronous Design: Another Famous Example

• Counter with RESET:

▪ 4-bit counter that skips “1111” and return immediately to “0000”

• How would you realize this in a fully synchronous design style??

19



RTL Design Example

• Counter

▪ Count from 0 to 15 and wrap around to 0

• What do you need:

▪ 16 possible states (0-15) => 4 bits to store the state => 4 registers

▪ Adder to increment the counter by 1 in each clock cycle

▪ Some means to recognize when to add and when to reset

▪ Some means to reset the state(counter)

20

D Q

1

0

==15

1
+

0

Find the Design Issues

21

Pros and Cons of Synchronous RTL Design

• “Synchronous RTL Design” is the industry standard design style for digital

integrated circuits (and FPGAs)

• Advantages:

▪ Easy to abstract complex circuits with simple rules

▪ Well defined design methodology with very few ingredients

▪ Compatible with electronic design automation (EDA) tools to

translate an abstract description into a circuit with all the details

▪ Circuits are relatively easy to verify and debug

▪ Provides a very high level of robustness and reliability

Fall 2020 EE-334: Digital System Design 22

Pros and Cons of Synchronous RTL Design

• “Synchronous RTL Design” is the industry standard design style for digital

integrated circuits (and FPGAs)

• Disadvantages and dangers:

▪ Simple, but (at first sight) very restrictive rules

▪ Essential to strictly adhere to the rules at all costs,

even though it is sometimes tempting to break them

▪ Verification fails to detect issues when rules are broken

▪ Breaking the rules even once jeopardizes the entire design

▪ Significant differences to programming software

Fall 2020 EE-334: Digital System Design 23

DO NOT BREAK

THE RULES

	Slide 1: EE-334 Digital System Design
	Slide 2: Focus on the Design of Custom Digital Circuits
	Slide 3: Implementing Algorithms with Registers and Logic
	Slide 4: Lets Now Clarify the Title of this Lecture…
	Slide 5: Always Start with a Block Diagram
	Slide 6: Fundamental Components of Digital Circuits
	Slide 7: Lets Now Further Clarify the Title of this Lecture…
	Slide 8: Synchronous RTL Design Follows a Template
	Slide 9: Sync. Design Abstracts from Component Delays
	Slide 10: Synchronous Design: Abstraction to Discrete Time
	Slide 11: “Combinational Loops” are Forbidden
	Slide 12: Guaranteeing an Known Initial State
	Slide 13: Signal Classes in Synchronous Design
	Slide 14: Synchronous Design: The Golden Rule(s)
	Slide 15: RTL Design Abstraction Summary
	Slide 16: Common Complex Components
	Slide 17: Managing Structural Complexity with Hierarchy
	Slide 18: Synchronous Design: A Famous Example
	Slide 19: Synchronous Design: Another Famous Example
	Slide 20: RTL Design Example
	Slide 21: Find the Design Issues
	Slide 22: Pros and Cons of Synchronous RTL Design
	Slide 23: Pros and Cons of Synchronous RTL Design

