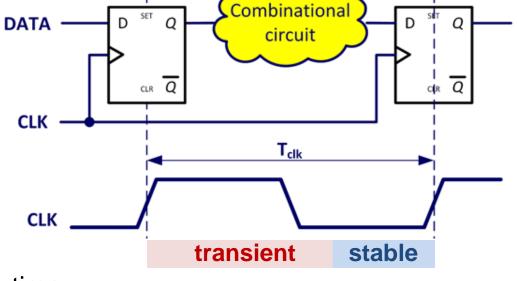
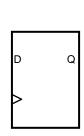
EE-334 Digital System Design

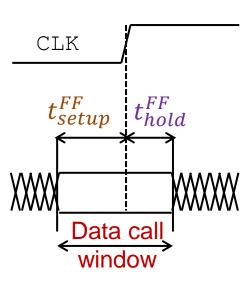
Custom Digital Circuits


Timing Analysis and Constraints in Synchronous Circuits

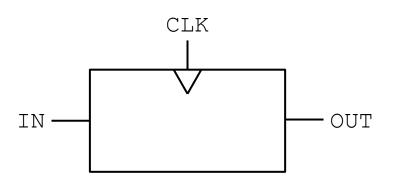
Andreas Burg

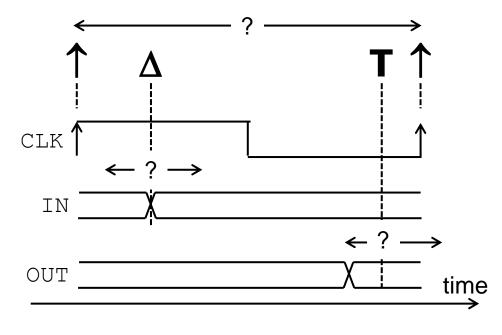
Reminder: Principle of Synchronous RTL Design


- Synchronous circuits are composed of
 - Registers that store the current state and
 - Combinational logic that defines the next state
- A single global clock signal triggers all registers at the same time
 - Registers capture all outputs of the combinational logic at the same time when they are stable
 - Inputs of all combinational circuits change at the same time
- After the positive clock edge
 - the circuit enters a transient state and
 - stabilizes again after some time, ready for the next clock edge


How can we verify that data is always captured safely?

Register Timing Requirements

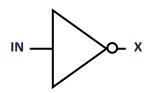

- Requirements for safely capturing the next state/data are set by the registers
- Input must be stable during the data call window around the active clock edge
- Formal register timing requirements:
 - Setup time t_{setup}^{FF} : time the data must be stable before the active clock edge
 - Hold time t_{hold}^{FF} : time the data must remain stable after the active clock edge



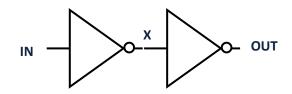
Static Timing Analysis (STA)

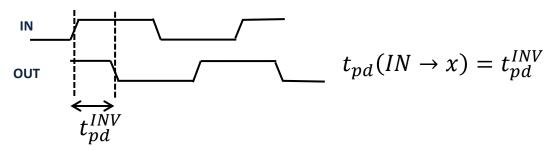
- Static Timing Analysis characterizes a digital circuit in terms of its timing parameters and verifies the timing requirements of a circuit and its registers
- Questions answered by static timing analysis
 - How fast can we clock a circuit?
 - What is the time window in which we can safely
 - apply signals to the input? (stimuli application)
 - sample the output of a circuit? (response acquisition)

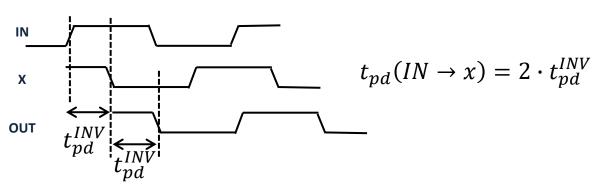
 Δ ... Stimuli application

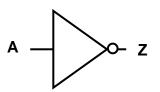

T...Response acquisition

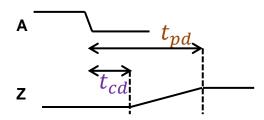
↑...Active clock edge



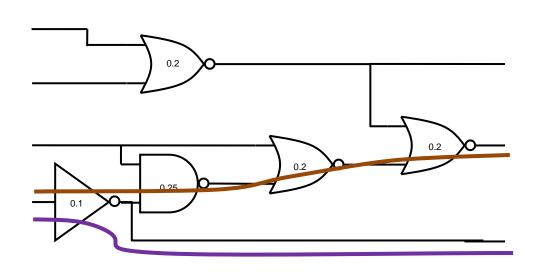

Modelling the Delay of Combinational Circuits


- Combinational Circuits are composed of combinational logic gates
 - Logic gates have a propagation delay


Delays of subsequent gates add up

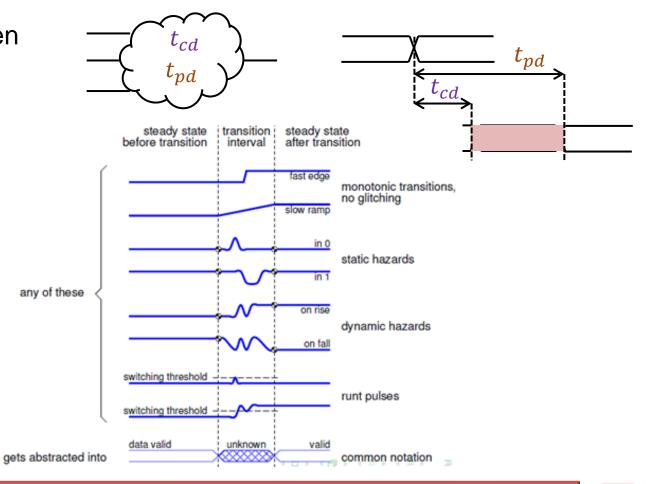


- To abstract transient effects it is convenient to define a minimum and a maximum delay
 - Contamination delay (min): t_{cd}
 Propagation delay (max): t_{pd}



Characterizing the Delay of Combinational Circuits

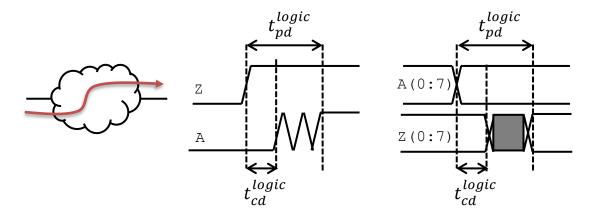
- Combinational circuits have multiple inputs and multiple outputs
 - Different inputs may cause changes in the same output
 - The same input may cause changes in different outputs
- Consider all paths from all inputs to all outputs and define
 - Contamination delay: shortest path t_{cd}
 - Based on contimination delays of the gates
 - Earliest change of an output after a change on any input
 - Propagation delay: longest path t_{pd}
 - Based on propagation delays of the gates
 - Latest change of an output after a change on any input

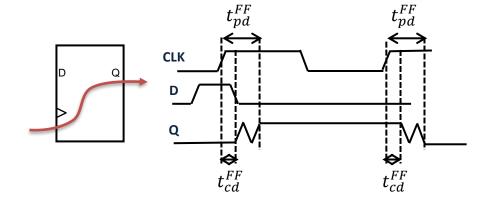


Delays of Complex Gates and Sub-Circuits

- Contamination delay and propagation delay determine the time when the output of a combinational circuit is guaranteed to be stable
 - Transition window (transient time between contamination and propagation delay):
 - Outputs do not match Boolean equations
 - Must assume outputs are unknown
- Example

 1->0


 1

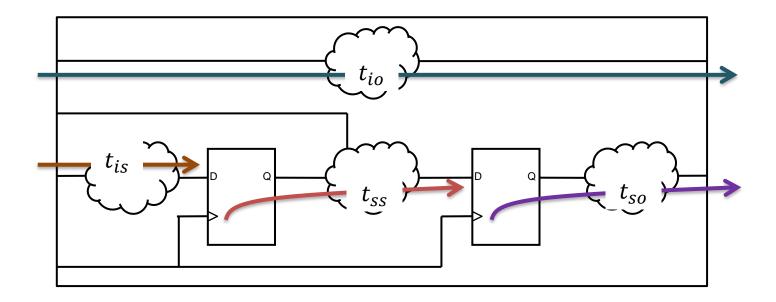


Static Timing Analysis

STA is based on delays of combinational logic and sequential elements

Combinational logic

- Timing arc from input to output
 - Propagation delay t_{pd}^{logic}
 - Contamination delay t_{cd}^{logic}
 - Entire circuit (multiple paths)
 - Critical path $t_{crit}^{logic} = max(t_{pd}^{logic})$


Sequential elements

- Timing arc from clock to output (between clock and data)
 - Propagation delay t_{pd}^{FF}
 - Contamination delay t_{cd}^{FF}

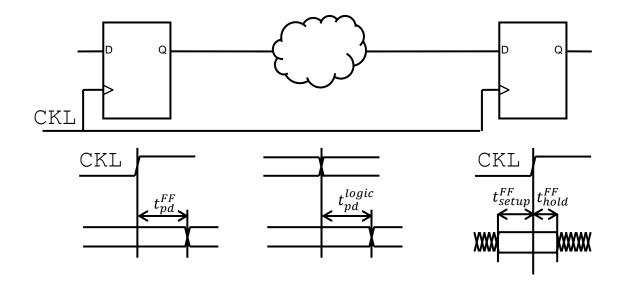
Static Timing Analysis: Path Groups

- STA considers four path groups, defined by the type of start- and end-points
 - Input-to-Register (t_{is}) : from a primary input to a register data input
 - Register-to-Register (t_{SS}) : from clock input of a register to the data input of a register
 - Register-to-Output (t_{SO}) : from clock input of a register to a primary output
 - Input-to-Output (t_{io}) : direct path from a primary input to a primary output

STA: Checking Timing Conditions

- Timing requirements for all register-to-register paths
 - Path starts from the clock pin of a register and ends on the data pin of a register
 - Setup condition: latest arrival

$$t_{pd}^{FF} + t_{pd}^{logic} < t_{clk} - t_{setup}^{FF}$$


$$t_{ss}^{max}$$

Determines maximum frequency

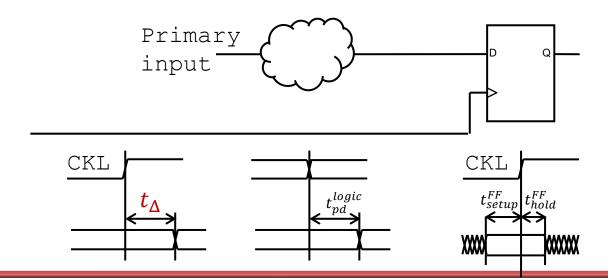
Hold condition: earliest arrival

$$t_{cd}^{FF} + t_{cd}^{logic} > t_{hold}^{FF}$$

$$t_{ss}^{min}$$

Critical Path

- The critical path is the path within a circuit that limits its clock frequency
- The critical path contains
 - For reg->reg: the Clk->Q delay delay of the register from which it starts
 - The delay of the subsequent logic
- The critical path does not include:
 - For in->reg: the stimuli application delay (if known, otherwise 0)
 - For reg->out: the output sampling time (if known, otherwise 0)
 - The setup time of the register at the end

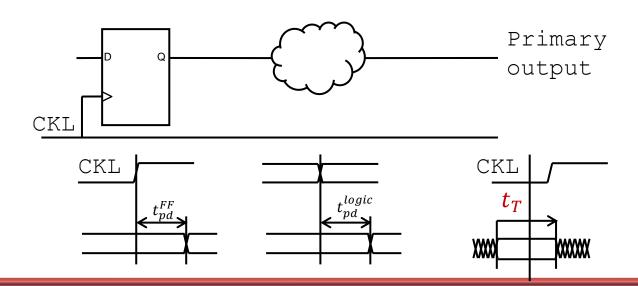

STA: Checking Timing Conditions

- Timing requirements for all input-to-register paths
 - Path starts from primary input and ends on the data pin of a register
 - Setup condition: latest arrival $t_{\Delta} + t_{pd}^{logic} < t_{clk} t_{setup}^{FF}$

Determine setup window for primary inputs

Hold condition: earliest arrival

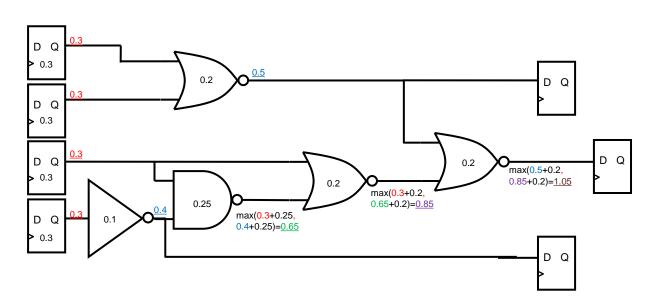
$$t_{\Delta} + t_{cd}^{logic} > t_{hold}^{FF}$$

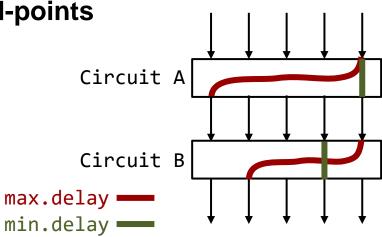

STA: Checking Timing Conditions

- Timing requirements for all register-to-output paths
 - Path starts from data pin of a register and ends on the sampling of the output
 - Setup condition: earliest (ideal) sampling

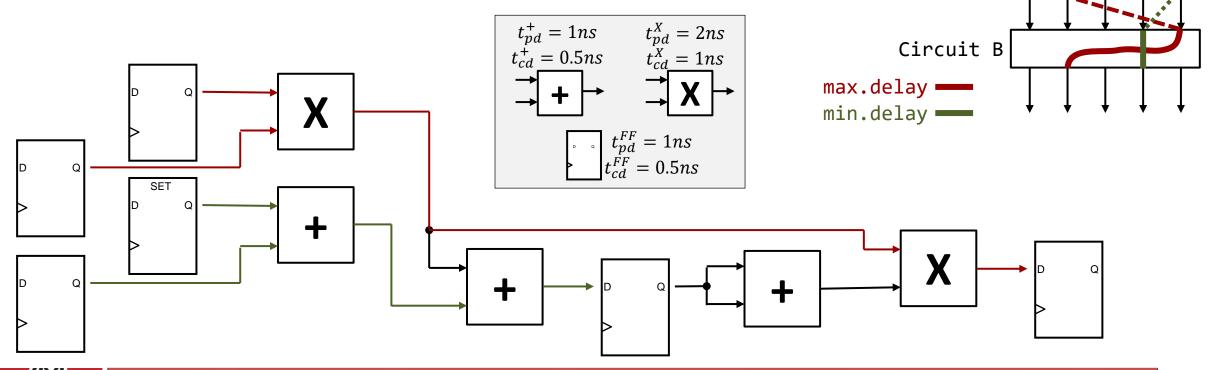
$$t_{pd}^{FF} + t_{nd}^{logic} < t_T$$

Determine the sampling window for primary outputs


$$t_{cd}^{FF} + t_{cd}^{logic} > t_T$$


Static Timing Analysis on Gate Level

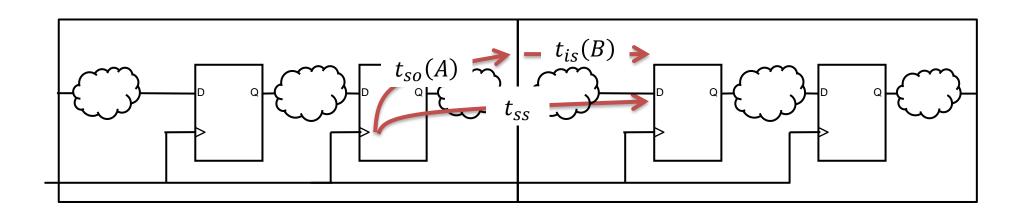
- The STA procedure identifies
 - the critical (longest) path t_{pd}^{logic} to verify setup
 - the shortest path t_{cd}^{logic} to verify hold
- Identify the shortes and the longest path for the data-input of each Flip-Flop
 - Annotate the circuit with the worst-case arrival times (delay) of the signal
 - Start from the clock input of the FFs
 - Keep only the longest (shortest) path (Add-Compare-Select)


Static Timing Analysis of Datapath Components

- STA of gate level circuits is tedious and therefore carried our by automatic tools
- Designers often want to have a quick estimate of complex circuits composed of arithmetic components or other well-studied combinational circuits
- Combinational sub-circuits have multiple inputs and multiple outputs
 - Critical paths of sub-circuits have different start and end-points
 - Critical end-point in one sub-circuit is often NOT the critical starting point in the next sub-circuit
- Accurate timing analysis is difficult
 - Needs to be done at the gate level or with complex models of the individual sub-circuits.

Static Timing Analysis of Datapath Components

- In practice, we are often only interested in a quick worst-case estimate
 - Model timing of each (combinational) component with its min. and max delay only
 - Worst case estimate obtained by
 - Approximating the longest path from the sum of the maximum delays
 - Approximating the shortest path from the sum of the minimum delays


Circuit A

Timing in Hierarchical Designs

- Concatenate two blocks A and B (design entities or chips)
 - Register-to-output path of block A and the input-to-register path of block B merge into a new register-to-register path

$$t_{so}^{max}(A) + t_{is}^{max}(B) < t_{clk} - t_{setup}^{FF}$$

$$t_{so}^{min}(A) + t_{is}^{min}(B) > t_{hold}^{FF}$$

