EE-334 Digital System Design

Organization and Outline of the Course

Andreas Burg

Content and Focus of this Course

- Focus on the design of Digital Systems
 - based on hardware as opposed to software
 - using state-of-the-art abstraction to be able to design complex circuits
 - realize them on programmable logic (FPGAs) devices
 - Note that the same concepts also apply to ASICs
- To efficiently design and optimize such systems we need
 - A design methodology with corresponding theory

SYNCHRONOUS DESIGN

Suitable way to describe hardware

(V)HDL

Tools to expand the abstract description

XILINX Vivado

Specific Topics

Specifically we will

- See how to approach the design of a complex system from different components and on different levels of abstraction
- Introduction to register transfer level design
 - describe and control structures and datapaths
 - apply systematic transformations to explore tradeoffs between area and speed
- Introduce the principles and rules of synchronous digital design
 - determine, optimize, and verify the speed of a design
 - investigate tradeoff between different metrics
- Introduce VHDL as a language for simulation, synthesis, and verification HW
 - have a library of useful VHDL models and templates to build digital systems
- Practice the steps for verifying and implementing a system on FPGAs
- Topics will be interleaved to be able to apply theory early on

Organization of the Class

- The class comprises
 - Theory lectures on
 - Theoretical background and the methodology
 - Hardware description language VHDL
 - Theoretical pen & paper homework partially to prepare for the lab
 - Solving the exercises BEFORE the lab will make things much easier (believe me ©)
 - Small labs to practice VHDL and get warm with the tools
 - In groups of two (max 3)
 - A project
 - In groups of two (max 3)
- Exercises and labs built on each other, so try not to fall behind!

Schedule

- 4 ECTS credit course: 4h in class (+ up to 4h homework)
 - Allocate some time to work on the project outside the class hours

Semester
Fall
Credits
4

Lecture
2 Hour(s) per week x 14
weeks

Exam form
Written
Subject examined
Digital systems design

Exercises
2 Hour(s) per week x 14
weeks

- Lectures/Labs/Q&A:
 - Lectures:BS 170
 - Lab sessions:
 INF 3

In groups of two (max 3)

Q&A sessions: On Site during Lecture/Labs

Fr CO260 8-9 9-10 GCC330 CO260 10-11 11-12 GCC330 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22

Schedule:

Wednesday 08:15-12:00

- CHECK SCHEDULE (Lecture/Lab) REGULARLY ON MOODLE
- ATTEND ALL LECTURE AND LAB SESSIONS as scheduled

Exams and Grading

- Grading is based on
 - Final project
 - project report in form of a presentation & code
 - Final exam
 - Pen and Paper & on computer
 - Skills from exercises/labs/project help you significantly for the exam (similar tasks)

Weight

Project: Final Exam 50% 50%

during the semester during the exam session

Logistics

- Labs require access to an FPGA board and FPGA design tools
- Labs and projects in groups of two (max 3)
- Access to FPGA boards
 - We provide at least one board per group of two (to be returned by end of the semester)
 - Collection of the boards:
 - Week 2 of the semester during the class (pls. be there).
- Access to XILINX Software: details / instructions on Moodle
 - Installation on your personal computer (best, but resource expensive... 20GByte on disk)
 - Use computers in any EPFL computer room
 - Program FPGAs with your laptop and a light version of the tools (or on the computers in ELG 022)

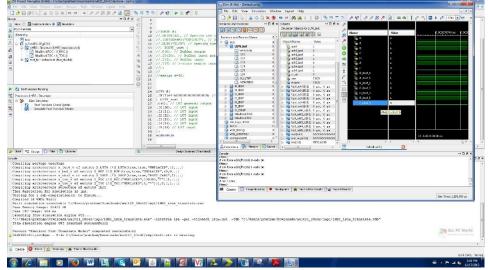
Detailed Course Schedule 2024

Wk	Date	Room	Time	Content
1	11 Sep		8h15 - 11h00 11h15 - 12h00	Organization of the Course Introduction to Digital Systems and Components Fundamentals of Synchronous Design Exercises: System Level Design & RTL Design Basics (drawing block diagrams)
2	18 Sep		8h15 - 09h00 9h15 - 10h00 10h15 - 12h00	FPGA Background Introduction to VHDL: HDLs, MODELING & DESIGN, HDL-based Design Flow VHDL for RTL Design and Synthesis (Fundamental Structure) & Packages Vivado Tutorial: get to know the tools
3	25 Sep		8h15 - 11h00 11h15 - 12h00	VHDL for Synthesis (Part 1): Concurrent statements More VHDL for Synthesis: (Part 2) Processes and Sequential Statements Exercise: Block Diagram of PWM Controller
4	02 Oct		8h15 – 12h00	RTL to VHDL and Vice-Versa VHDL Introductory example: PWM Controller
5	09 Oct		8h15 - 10h00 10h15 - 11h00 11h15 - 12h00	Finite State Machines VHDL for Simulation and Testbenches Exercise (preparation): Finite State Machine on paper: Door Lock
6	16 Oct		8h15-10h00 10h15-12h00	Timing of Synchronous Circuits From Algorithms to Architecture (Part 1) Exercise on Static Timing Analysis

Detailed Course Schedule 2024

Wk	Date	Room	Time	Content
	23 Oct			VACATION
7	30 Oct		08h15 – 12h00	FSMs in VHDL: Door Lock RTL & Testbenches
8	06 Nov		8h15 -11h00 11h15 - 12h00	From Algorithms to Architecture (Part 2) Fixed Point Arithmetic and Datapath in VHDL Exercise from Algorithms to Architectures using Mandelbrot
9	13 Nov		08h15 – 12h00	Exercise: Lab on Simulating and Debugging VHDL
10	20 Nov		8h15 - 9h00 9h15 - 12h00	Project Intro, Video Interface & VGA Project: VGA Interface
11	27 Nov		8h15 – 12h00	Project: Pong (Video Memory & Pong Game)
12	04 Dec		8h15 - 10h00 8h15 - 12h00	Mandelbrot Data Paths Project: Pong (Mandelbrot)
13	11 Dec		8h15 – 12h00	Project: Pong
14	18 Dec		8h15 – 12h00	Project: Pong PRESENTATIONS

THEORY CLASS


VHDL LANGUAGE CLASS

LAB/EXERCISE SESSION

EDA Tools

- Xilinx VIVADO FPGA tool suite (all-in-one)
 - Project management and design flow automation
 - Design entry (editor)
 - VHDL simulation
 - Synthesis
 - Place & Route
 - FPGA programming
 - (In-system) debug

https://www.xilinx.com/products/design-tools/vivado.html

- EMACS (with <u>VHDL mode</u>) Text editor
 - Design entry with LOTS OF SUPPORT for easy typing and VHDL language
 - Optional: initially painful, but will make your life so much easier after a while http://doc.endlessparentheses.com/Fun/vhdl-mode.html
 https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

| Compared | Compared

See Moodle for links to installers and manuals

Literature

- Slides from the lecture will be weekly available on Moodle
- Videos from previous editions of the course (Note: not all material may be included in the recordings and the exam and course requirements are based on the in-presence course from this year)
- Hubert Kaeslin, "Digital Integrated Circuit Design: From VLSI
 Architectures to CMOS Fabrication", Cambridge Univ Press, 2008,
 ISBN:9780521882675 (available in the Rolex-Center Library)
- P. Ashenden, "The Designer's Guide to VHDL", 3rd ed.: Morgan Kaufmann (MK), 2008.
- P. Ashenden, "Digital Design An Embedded Systems Approach Using VHDL", MK, 2008.
- P. Ashenden, J. Lewis, "VHDL-2008 Just the New Stuff", MK, 2008.
- P. P. Chu, "RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability", Wiley-Interscience, 2006.
- S. Moutault, J. Weber, M. Meaudre, "Le langage VHDL Du langage au circuit, du circuit au langage", 4e éd.: Dunod, 2011.
- A. Rushton, "VHDL for Logic Synthesis", 3rd ed.: Wiley, 2011.
- A. Vachoux, "VHDL Instant", EPFL, 2013.
- IEEE, "1076-2008: IEEE Standard VHDL Language Reference Manual", IEEE, 2009.

