
EE-334

Digital System Design

Custom Digital Circuits

Intro to VHDL

Fall 2020 EE-334: Digital System Design 1

Andreas Burg

Background on VHDL

• VHDL is a language for describing the behaviour of digital circuits

• VHDL is used extensively by industry and academia (especially in Europe)

• VHDL is supported by all relevant commercial and free EDA tools

Fall 2022 EE-334: Digital System Design 2

V ery High Speed Digital Integrated Circuits

H ardware

D escription

L anguage

Some VHDL History

• VHDL was developed by the VHSIC (Very High Speed Integrated Circuits)

Program in the late 1970s and early 1980s

▪ Development triggered by inadequate tools/methods to describe complex circuits

• VHDL has evolved over the years, with few major revisions

▪ 1981: first proposal of the language

▪ 1986/87: proposed and accepted as IEEE standard (IEEE-1076-1987)

▪ 1993: first revision (IEEE-1076-1993)

▪ 2002: second revision (IEEE-1076-2002)

▪ 2008: third revision (IEEE-1076-2002)

• VHDL language is extended by several “packages” that are described in their

own individual standards (e.g., IEEE 1164-1993)

Fall 2022 EE-334: Digital System Design 3

VHDL is NOT a Programming Language

• VHDL is different from a classical software programming language

▪ It describes the behaviour of hardware and is NOT a sequence of instructions

• VHDL supports many concepts that are essential to HW design:

▪ parallelism,

▪ hierarchy,

▪ statements to model time/delay,

▪ structural and behavioural modelling,

▪ libraries and design reuse, …

• VHDL code can always be simulated, but

only a subset of the language can be translated to hardware

• Some code may translate to hardware, but may not function or be inefficient

Fall 2022 EE-334: Digital System Design 4

Preamble: The VHDL Library System

• VHDL is built around design libraries that contain

▪ Packages: collections of constants, types, and functions

▪ Components: hardware blocks

• An analysis step checks the syntax and translates

VHDL code into a binary representation that is stored

in the specified design library

▪ Default library is typically called “work”

• An elaborate step expands the binary representation

and prepares it for simulation or synthesis

▪ This step is often hidden in the simulator

▪ It is more complex for synthesis

Fall 2022 EE-334: Digital System Design 5

Reminder: The VHDL Library System

• VHDL is built around design libraries that contain

▪ Packages: collections of constants, types, and functions

▪ Components: hardware blocks

• Packages and components can be compiled into

different libraries

▪ HOWEVER: In most cases, user-defined packages will be compiled

into the same library as your design

▪ Additional libraries are typically language extensions or

technology libraries

• The default library is the usually called WORK

▪ This library contains your design and is used when no library

is explicitly specified when compiling

Fall 2022 EE-334: Digital System Design 6

DEFAULT: is

called WORK

VHDL Packages

• VHDL packages are similar to INCLUDE files in C/C#

▪ They include often used declarations to avoid the need to repeat them in many files

• VHDL packages can include for example

▪ CONSTANTS that are used throughout a design

▪ COMPONENT declarations

▪ DATA TYPE definitions

▪ Common FUNCTIONS and PROCEDURES

• HINT: Packages are convenient, to avoid the need to change design-wide

parameters in one common place to avoid inconsistencies and simplify changes

Fall 2022 EE-334: Digital System Design 7

Using Libraries and Packages

• VHDL components and packages can “use” the content of other packages

• To use a package, we need to specify

▪ The library from which it is included

▪ The name of the package

▪ The function/constant to be used (or all)

• Project specific packages are usually compiled into the default WORK library

▪ The WORK library is always already declared by default and can be referred to without

explicitly declaring it

▪ To include a package from the WORK library use:

• Note: packages included in that package are not visible in the design

Fall 2022 EE-334: Digital System Design 8

LIBRARY library name;
USE library name.package_name.function_name¦ALL;

USE WORK.my_package.ALL;

Using Libraries and Packages

• Example: packages from ieee library

▪ for multi-valued logic (std_logic_1164) and

▪ signed/unsigned arithmetic (numeric_std)

• NOTE: components are “included” in a different way than packages, through

instantiation (see later)

Fall 2022 EE-334: Digital System Design 9

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

HINT: this will be the first

three lines of almost any

VHDL code you write

VHDL Package Declaration

• Packages are described in .vhd/.vhdl files, same as design entities

▪ HINT: always use a separate file for each package

▪ The file name is not relevant, but should match the package name specified in the file

• The package name is the name

under which the package is accessible

from the library

• Packages can themselves include

other packages from any library

▪ Typical example: packages from the IEEE library

▪ NOTE: a package included by a package is only visible in that package, not in the level above

(visibility of package inclusions is limited to same package or design file)

Fall 2022 EE-334: Digital System Design 10

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

PACKAGE package_name IS

-- PACKAGE CONTENT
-- DECLARATION of CONSTANTS, TYPES, FUNCTIONS, …

END PACKAGE package_name;

Components: ENTITY and ARCHITECTURE

• Multiple alternative architectures can be provided for the same entity

▪ Used for abstraction and refinement: e.g., behavioural, RTL, and gate-level netlist

• CONFIGURATIONS define which architecture is used if multiple exist

Fall 2022 EE-334: Digital System Design 11

ENTITY
external interface

of a component

ARCHITECTURE2
implementation

of the component

ARCHITECTURE1 ARCHITECTURE3

ENTITY Declaration Syntax

• VHDL entity defines the interfaces of a VHDL component

• Entity declaration defines

▪ the name of the component

▪ ports : interface (inputs and outputs)

of the component

▪ generics : instance specific parameters

• NOTE: generics must resolve to a constant

(be known) at compile-time

• PORT and GENERIC sections

are optional

Fall 2022 EE-334: Digital System Design 12

ENTITY entity_name IS
GENERIC(

generic_1_name : generic_1_type;
generic_2_name : generic_2_type

);
PORT(

port_1_name : port_1_dir port_1_type;
port_2_name : port_2_dir port_2_type

);
END entity_name;

Port directions can be

IN Input only

OUT Output only

INOUT Input/output for tristate

BUFFER Output that can also be read

ENTITY Declaration Example

• Example: 8-bit ALU, purely combinational (no clock signal), no parameters

Fall 2022 EE-334: Digital System Design 13

ENTITY alu8_comb IS
PORT (

opa, opb : IN std_logic_vector(7 downto 0);
cmd : IN std_logic_vector(2 downto 0);
result : OUT std_logic_vector(7 downto 0);
zero : OUT std_logic;
ovfl : OUT std_logic

);
END alu8_comb;

Architecture Declaration

• VHDL architecture specifies the model or implementation of a component

• Architecture declaration defines

▪ the name of the architecture

▪ the name of the associated entity

▪ the architecture body that includes

signal declarations and the actual code

• Example: and_gate

Fall 2022 EE-334: Digital System Design 14

ARCHITECTURE architecture_name OF entity_name IS
-- signals to be used are declared here

BEGIN
-- Insert VHDL statements to assign outputs to
-- each of the output signals defined in the
-- entity declaration.

END architecture_name;

ENTITY and_gate IS
PORT (a: IN std_logic;

b: IN std_logic;
c: OUT std_logic);

END and_gate;
-- Architecture
ARCHITECTURE comb_logic OF and_gate IS
BEGIN

c <= a AND b;
END comb_logic;

Signals

• Signals represent (are) wires

• Signals are defined only inside an architecture

• The ports of an entity allow signals to be connected from outside a component

▪ The ports of an entity can be treated as signals inside its architecture

• Signals are declared in the preamble of the architecture

• Signals are associated with data

types which abstract electrical behaviour

Fall 2022 EE-334: Digital System Design 15

ARCHITECTURE architecture_name OF entity_name IS
-- signals to be used are declared here
SIGNAL signal_1_name : signal_1_type;
SIGNAL signal_2_name : signal_2_type;

BEGIN
-- VHDL statements

END architecture_name;

Constants

• Constants serve two purposes (but as the same object)

▪ Definition of fixed values that are known at compile-time

(i.e., before e.g., hardware is constructed during elaboration)

• Examples: width of signals, number of instances of a component, iterations of a generate-loop

▪ Definition of fixed electrical signals that can be thought of as connections to VDD or GND

• Constants can be declared in

▪ Packages

▪ As GENERICS in an ENTITY

▪ As CONSTANTS in the preamble

of the architecture

• Constants can be derived with

valid expressions from other

constants

Fall 2022 EE-334: Digital System Design 16

ARCHITECTURE architecture_name OF entity_name IS
-- constants to be used are declared here
CONSTANT constant_1_name : constant_1_type := expression;
-- EXAMPLE
CONSTANT WIDTH_A : integer := 8-1;
CONSTANT WIDTH_B : integer := WIDTH_A + 1;

BEGIN
-- VHDL statements

END architecture_name;

Built-In Data Types

• VHDL knows several standard built-in data types

• VHDL supports 6 native scalar (singe value) data types

▪ Bit : 1/0

▪ Boolean : true/fals

▪ Integer : defined by a range (default is 32-bit)

▪ Char : 8-bit

▪ Real : floating point

▪ Time : for modeling of delays [ps,ns]

• Not all types are equally well suited for synthesis

▪ Time has no hardware equivalent

▪ Real leads to excessive complexity and is often not understood by tools

Fall 2022 EE-334: Digital System Design 17

Extended Multi-Value Data Types: std_logic

• Binary 0/1 representation of the basic bit type is often insufficient to

▪ describe complex electrical states of wires (driver conflicts)

▪ model design intent that provides flexibility for optimization

• IEEE standardized of more capable data types in ieee.std_logic_1164
with up to nine possible values (encoded as characters in ‘…’)

std_logic

• Values for std_logic are encoded as CHARACTERS: ‘…’

Fall 2022 EE-334: Digital System Design 18

Logic-0 ‘0’ Weak-0 ‘L’

Logic-1 ‘1’ Weak-1 ‘H’

Don’t Care ‘-’ Weak-X ‘W’

High Impedance ‘Z’ Uninitialized ‘U’

Unknown ‘X’

Extended Multi-Value Data Types: std_logic

• For synthesis:
▪ Logic-0 and Logic-1: straightforward binary value

▪ Don’t care ‘-’: heavily used for synthesis to specify no preference for a particular value.

▪ High impedance ‘Z’: used to define tri-state drivers (ONLY USE IN EXCEPTIONAL CASES and with greatest care)

• For simulation:
▪ Unknown ‘X’: useful in simulations to identify driver conflicts or unknown logic levels (e.g., during signal rise time)

▪ Uninitialized ‘Z’: indicates that a signal was never assigned a value

▪ Weak-0, Weak-1, Weak-X: mostly unused and appear only in simulation to resolve conflicts

• Multi-value data types can resolve driver conflicts

▪ This feature should not be used for design intent during synthesis

Fall 2022 EE-334: Digital System Design 19

Concurrent Signal Assignments

• Concurrent assignments are part of the architecture body

• To assign the value of a r.h.s. expression to a signal on the l.h.s. use

signal <= expression;

▪ Interpret as driving the signal with the output of the circuit that evaluates the expression

• Concurrent assignments are always carried out in parallel

• A signal should never have more than one driver

▪ Only assigned in one single concurrent statement

▪ Exceptions: tri-state signals (ideally do not use)

Fall 2022 EE-334: Digital System Design 20

ARCHITECTURE DONT_DO_THIS OF BAD_DESIGN IS
-- signal declaration
SIGNAL A : std_logic;

BEGIN
-- DRIVER CONFLICT
A <= ‘0’;
A <= ‘1’;

END DONT_DO_THIS;
 => ‘X’

Boolean Expressions and Constant Assignments

• Valid values can be assigned directly to a signal with a compatible data type

Signal_1 <= <valid_value>;

• VHDL supports all common Boolean operators between signals

Signal_3 <= Signal_1 <boolean_operator> Signal_2;

Fall 2022 EE-334: Digital System Design 21

<boolean_operator>

AND NAND NOT

OR NOR

XOR XNOR

General Remarks

• VHDL is not case sensitive. Nevertheless, be consistent in your names

• Many naming styles are OK, here is one recommendation

▪ Write VHDL keywords in ALL UPPER CASE

▪ Write signals in CamelCase

• Comments are initiated by a leading -- until the end of the line

-- This is a VHDL comment

Fall 2022 EE-334: Digital System Design 22

VHDL Naming Conventions

• Motivation: signal name describes clearly the origin and nature of the signal

▪ VHDL code is often long. Hints where a signal comes from are incredibly useful

<Name>x<Signal Class>[<State>][<Low Active>][<PortDirection>]

23

Class Label Example

Clock C CLKxCI

Async Reset R RSTxRBI

Control/status S ClearCNTxS

Data/address D SamplexDN

Test signals T ScanENxT

State Label Example

Present P REGxDP

Next N REGxDN

Active Label Example

LOW B ENxSB

HIGH ENxS

Direction Label Example

IN I AxDI

OUT O ZxDO

Fall 2022

	Slide 1: EE-334 Digital System Design
	Slide 2: Background on VHDL
	Slide 3: Some VHDL History
	Slide 4: VHDL is NOT a Programming Language
	Slide 5: Preamble: The VHDL Library System
	Slide 6: Reminder: The VHDL Library System
	Slide 7: VHDL Packages
	Slide 8: Using Libraries and Packages
	Slide 9: Using Libraries and Packages
	Slide 10: VHDL Package Declaration
	Slide 11: Components: ENTITY and ARCHITECTURE
	Slide 12: ENTITY Declaration Syntax
	Slide 13: ENTITY Declaration Example
	Slide 14: Architecture Declaration
	Slide 15: Signals
	Slide 16: Constants
	Slide 17: Built-In Data Types
	Slide 18: Extended Multi-Value Data Types: std_logic
	Slide 19: Extended Multi-Value Data Types: std_logic
	Slide 20: Concurrent Signal Assignments
	Slide 21: Boolean Expressions and Constant Assignments
	Slide 22: General Remarks
	Slide 23: VHDL Naming Conventions

