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Background on VHDL

 VHDL is a language for describing the behaviour of digital circuits

V ery High Speed Digital Integrated Circuits
H ardware

D escription
L anguage

« VHDL is used extensively by industry and academia (especially in Europe)

 VHDL is supported by all relevant commercial and free EDA tools
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Some VHDL History

 VHDL was developed by the VHSIC (Very High Speed Integrated Circuits)

Program in the late 1970s and early 1980s

= Development triggered by inadequate tools/methods to describe complex circuits

 VHDL has evolved over the years, with few major revisions
= 1981

1986/87:
1993:
2002:
2008:

first proposal of the language

proposed and accepted as IEEE standard (IEEE-1076-1987)
first revision (IEEE-1076-1993)

second revision (IEEE-1076-2002)

third revision (IEEE-1076-2002)

 VHDL language is extended by several “packages” that are described in their
own individual standards (e.g., IEEE 1164-1993)
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VHDL i1s NOT a Programming Language

VHDL is different from a classical software programming language
= |t describes the behaviour of hardware and is NOT a sequence of instructions

« VHDL supports many concepts that are essential to HW design:
= parallelism,
= hierarchy,
= statements to model time/delay,
= structural and behavioural modelling,
libraries and design reuse, ...

 VHDL code can always be simulated, but
only a subset of the language can be translated to hardware

« Some code may translate to hardware, but may not function or be inefficient
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Preamble: The VHDL Library System

 VHDL is built around design libraries that contain (( eating )
» Packages: collections of constants, types, and functions ¢
= Components:  hardware blocks UE“F\I
* An analysis step checks the syntax and translates
VHDL code into a binary representation that is stored ( Analysis )
In the specified design library

= Default library is typically called “work”

<>
Design
 An elaborate step expands the binary representation
and prepares it for simulation or synthesis

) _ _ _ _ Elaboration
» This step is often hidden in the simulator
» |tis more complex for synthesis
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Reminder: The VHDL Library System

 VHDL is built around design libraries that contain (( eating )
= Packages: collections of constants, types, and functions ¢
= Components:  hardware blocks UE“F\I
« Packages and components can be compiled into
different libraries (_ anaysis )

» HOWEVER: In most cases, user-defined packages will be compiled
iInto the same library as your design

= Additional libraries are typically language extensions or

<=
Design
_ _ Library
technology libraries

 The default library is the usually called WORK —
: :
= This library contains your design and is used when no library | ( horation ] |
Is explicitly specified when compiling
( Simulation ) ( Synthesis )

- ()

DEFAULT: is
called WORK

B CPA - |
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VHDL Packages

 VHDL packages are similar to INCLUDE files in C/C#
» They include often used declarations to avoid the need to repeat them in many files

 VHDL packages can include for example
CONSTANTS that are used throughout a design
COMPONENT declarations

DATA TYPE definitions

= Common FUNCTIONS and PROCEDURES

« HINT: Packages are convenient, to avoid the need to change design-wide
parameters in one common place to avoid inconsistencies and simplify changes
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Us

Ing Libraries and Packages

« VHDL components and packages can “use” the content of other packages

 To use a package, we need to specify | LIBRARY library name;

USE library name.package name.function name ALL;

The library from which it is included
The name of the package
The function/constant to be used (or all)

* Project specific packages are usually compiled into the default WORK library
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The WORK library is always already declared by default and can be referred to without
explicitly declaring it

To include a package from the WORK library use: USE WORK.my_package.ALL;
» Note: packages included in that package are not visible in the design
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Using Libraries and Packages

« Example: packages from ieee library
= for multi-valued logic (std_logic 1164) and
= signed/unsigned arithmetic (numeric_std)

LIBRARY ieee;

USE ieee.std logic_1164.ALL;

USE ieee.numeric_std.all;

HINT: this will be the first
three lines of almost any
VHDL code you write

« NOTE: components are “included” in a different way than packages, through

Instantiation (see later)

-(I’fl-
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VHDL Package Declaration

 Packages are described in .vhd/.vhdl files, same as design entities

= HINT: always use a separate file for each package
= The file name is not relevant, but should match the package name specified in the file

 The package name is the name LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

under which the package is accessible | use ieee.numeric_std.ALL;
frOm the Ilbrary PACKAGE package_name IS

-- PACKAGE CONTENT

. -- DECLARATION of CONSTANTS, TYPES, FUNCTIONS, ..
 Packages can themselves include

other packages from any library END PACKAGE package_name;

» Typical example: packages from the IEEE library

» NOTE: a package included by a package is only visible in that package, not in the level above
(visibility of package inclusions is limited to same package or design file)
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Components: ENTITY and ARCHITECTURE

« Multiple alternative architectures can be provided for the same entity
» Used for abstraction and refinement: e.g., behavioural, RTL, and gate-level netlist

library ieee;
opa Entity declaration result use ieee.std_logic_1164.all;
opb zero
pd alug_comb £l entity alu8 comb is
- ) ENTITY o

D5

external interface o
A of a component s |
ARCHITECTURE1 ARCHITECTURE2 ARCHITECTURES3
Implementation

of the component

 CONFIGURATIONS define which architecture is used if multiple exist
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ENTITY Declaration Syntax

 VHDL entity defines the interfaces of a VHDL component

« Entity declaration defines ENTITY en?&ﬁfﬁ"ze e
» the name of the component generic_1 name : generic_1_type;
i ) generic_2_name : generic_2_type
= ports : interface (inputs and outputs) )3
of the component PORT ( .
. . o port_1_name : port_1_dir port_1_type;
= generics : instance specific parameters port_2_name : port_2_dir port_2_type

: : )5
* NOTE: generics must resolve to a constant | gxp entity name;

(be known) at compile-time

Port directions can be

: IN Input only
* PORT and GENERIC sections
_ ouT Output only
are optlonal INOUT Input/output for tristate
BUFFER Output that can also be read

P - . G
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ENTITY Declaration Example

 Example: 8-bit ALU, purely combinational (no clock signal), no parameters

ALU8_COMB
8 8
opa result
8
opb
zero
3
cmd ovfl

ENTITY alu8 comb IS
PORT (
opa, opb : IN std logic vector(7 downto 0);
cmd : IN std logic vector(2 downto 9);
result : OUT std_logic_vector(7 downto 9);
zero : OUT std_logic;
ovfl : OUT std logic
)
END alu8 comb;
)
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Architecture Declaration

« VHDL architecture specifies the model or implementation of a component

* ArChIteCture deCIarathn deflnes ARCHITECTURE architecture_name OF entity name IS

= the name of the architecture -- signals to be used are declared here

BEGIN
» the name of the associated entity -- Insert VHDL statements to assign outputs to
i ] -- each of the output signals defined in the
» the architecture body that includes -- entity declaration.
signal declarations and the actual code END architecture_name;

o Examp|e: and_gate ENTITY and_gate IS

PORT ( a: IN std logic;
b: IN std logic;
c: OUT std logic);
END and_gate;
-- Architecture
ARCHITECTURE comb_logic OF and gate IS
BEGIN
C <= a AND b;
END comb_logic;
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Signals

Signals represent (are) wires

« Signals are defined only inside an architecture

 The ports of an entity allow signals to be connected from outside a component
= The ports of an entity can be treated as signals inside its architecture

- Signals are declared in the preamble of the architecture

o Signa|s are associlated with data ARCHITECTURE architecture name OF entity name IS
. : : -- signals to be used are declared here
types which abstract electrical behaviour SIGNAL signal 1 name : signal 1 type;

SIGNAL signal_2 name : signal_2_type;
BEGIN

-- VHDL statements
END architecture_name;

P
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Constants

« Constants serve two purposes (but as the same object)

= Definition of fixed values that are known at compile-time
(i.e., before e.qg., hardware is constructed during elaboration)

« Examples: width of signals, number of instances of a component, iterations of a generate-loop
= Definition of fixed electrical signals that can be thought of as connections to VDD or GND

. ARCHITECTURE architecture name OF entity name IS
« Constants can be declared In -- constants to be used are declared here
CONSTANT constant_1 name : constant_1_type := expression;
» Packages -- EXAMPLE
- CONSTANT WIDTH_A : integer := 8-1;
- AS GENERICS In an ENTITY CONSTANT WIDTH_B : integer := WIDTH_A + 1;
= As CONSTANTS in the preamble H3eh.
. -- VHDL statements
of the architecture END architecture_name;

e Constants can be derived with
valid expressions from other
constants

P
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Built-In Data Types

 VHDL knows several standard built-in data types

 VHDL supports 6 native scalar (singe value) data types

Bit

Boolean
Integer
Char
Real
Time

: 1/0

: true/fals

: defined by a range (default is 32-bit)
: 8-bit

: floating point

: for modeling of delays [ps,ns]

* Not all types are equally well suited for synthesis
= Time has no hardware equivalent

» Real leads to excessive complexity and is often not understood by tools
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Extended Multi-Value Data Types: std logic

* Binary 0/1 representation of the basic bit type is often insufficient to

= describe complex electrical states of wires (driver conflicts)
= model design intent that provides flexibility for optimization

« |EEE standardized of more capable data types in ieee.std logic 1164
with up to nine possible values (encoded as characters in ‘...°)

* Values for std _logic are encoded as CHARACTERS: ‘...’
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std logic
Logic-0 ‘9’ Weak-0 ‘L’
Logic-1 ‘1° Weak-1 ‘H’
Don’t Care €7 Weak-X ‘W’
High Impedance | €2’ Uninitialized ‘U’
Unknown ‘X’
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Extended Multi-Value Data Types: std logic

 For synthesis:

= Logic-0 and Logic-1: straightforward binary value
= Don’t care ‘-’: heavily used for synthesis to specify no preference for a particular value.
= High impedance ‘Z’: used to define tri-state drivers (ONLY USE IN EXCEPTIONAL CASES and with greatest care)

e For simulation:

= Unknown ‘X’: useful in simulations to identify driver conflicts or unknown logic levels (e.g., during signal rise time)
= Uninitialized ‘Z’: indicates that a signal was never assigned a value
= Weak-0, Weak-1, Weak-X: mostly unused and appear only in simulation to resolve conflicts

« Multi-value data types can resolve driver conflicts
» This feature should not be used for design intent during synthesis

P
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Concurrent Signal Assignments

« Concurrent assignments are part of the architecture body

 To assign the value of ar.h.s. expression to asignal on the |.h.s. use

signal <= expression;

» [nterpret as driving the signal with the output of the circuit that evaluates the expression

« Concurrent assignments are always carried out in parallel
ARCHITECTURE DONT DO THIS OF BAD DESIGN IS
-- signal declaration
SIGNAL A : std_logic;

 Asignal should never have more than one driver
BEGIN
-- DRIVER CONFLICT

» Only assigned in one single concurrent statement
. . ._ . . A <= fe); — ‘ ,
= EXxceptions: tri-state signals (ideally do not use) e Q => ‘X
END DONT_DO_THIS;
EE-334: Digital System Design 20 (((m)))
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Boolean Expressions and Constant Assignments

- Valid values can be assigned directly to a signal with a compatible data type
Signal 1 <= <valid value>;

 VHDL supports all common Boolean operators between signals

<boolean_operator>
AND NAND |[NOT
OR NOR
XOR XNOR

Signal 3 <= Signal 1 <boolean_operator> Signal 2;
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General Remarks

 VHDL is not case sensitive. Nevertheless, be consistent in your names

* Many naming styles are OK, here is one recommendation
= Write VHDL keywords in ALL UPPER CASE
= Write signals in CamelCase

« Comments are initiated by a leading -- until the end of the line
-- This is a VHDL comment
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VHDL Naming Conventions

« Motivation: signal name describes clearly the origin and nature of the signal

= VHDL code is often long. Hints where a signal comes from are incredibly useful

<Name>x<Signal Class>[<State>][<Low Active>][<PortDirection>]

P
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Class Label Example Active | Label | Example

Clock c CLKXCI LOW B ENXSB

Async Reset R RSTXRBI HIGH ENXS

Control/status S ClearCNTxS State Label | Example Direction | Label | Example
Data/address D SamplexDN Present P REGxDP IN I AxDI

Test signals T ScanENXT Next N REGxDN ouT O ZxDO
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