ECOLE POLYTECHN
FEDERALE DE LAUS

HOUE Fall 2020

EE-334
Digital System Design

Custom Digital Circuits
Intro to VHDL

Andreas Burg

EE-334: Digital System Design

Background on VHDL

 VHDL is a language for describing the behaviour of digital circuits

V ery High Speed Digital Integrated Circuits
H ardware

D escription
L anguage

« VHDL is used extensively by industry and academia (especially in Europe)

 VHDL is supported by all relevant commercial and free EDA tools

Q. - | («
[COLE POLYTICHNIQUE Fall 2022 EE-334: Digital System Design 2

Some VHDL History

 VHDL was developed by the VHSIC (Very High Speed Integrated Circuits)

Program in the late 1970s and early 1980s

= Development triggered by inadequate tools/methods to describe complex circuits

 VHDL has evolved over the years, with few major revisions
= 1981

1986/87:
1993:
2002:
2008:

first proposal of the language

proposed and accepted as IEEE standard (IEEE-1076-1987)
first revision (IEEE-1076-1993)

second revision (IEEE-1076-2002)

third revision (IEEE-1076-2002)

 VHDL language is extended by several “packages” that are described in their
own individual standards (e.g., IEEE 1164-1993)

ECOLE POLYTECHMN
FEDERALE DE LAUSAN

N1auE Fall 2022

EE-334: Digital System Design

s (¢

it

VHDL i1s NOT a Programming Language

VHDL is different from a classical software programming language
= |t describes the behaviour of hardware and is NOT a sequence of instructions

« VHDL supports many concepts that are essential to HW design:
= parallelism,
= hierarchy,
= statements to model time/delay,
= structural and behavioural modelling,
libraries and design reuse, ...

 VHDL code can always be simulated, but
only a subset of the language can be translated to hardware

« Some code may translate to hardware, but may not function or be inefficient

ECOLE POLYTECHMN
FEDERALE DE LAUSA

nout Fall 2022 EE-334: Digital System Design 4 (((m

Preamble: The VHDL Library System

 VHDL is built around design libraries that contain ((eating)
» Packages: collections of constants, types, and functions ¢
= Components: hardware blocks UE“F\I
* An analysis step checks the syntax and translates
VHDL code into a binary representation that is stored (Analysis)
In the specified design library

= Default library is typically called “work”

<>
Design
 An elaborate step expands the binary representation
and prepares it for simulation or synthesis

) _ _ _ _ Elaboration
» This step is often hidden in the simulator
» |tis more complex for synthesis

ECOLE POLYTECHMN
FEDERALE DE LAUSAN

N1auE Fall 2022

it

(Simulation) (Synthesis)

EE-334: Digital System Design 5 (((

)

Reminder: The VHDL Library System

 VHDL is built around design libraries that contain ((eating)
= Packages: collections of constants, types, and functions ¢
= Components: hardware blocks UE“F\I
« Packages and components can be compiled into
different libraries (_ anaysis)

» HOWEVER: In most cases, user-defined packages will be compiled
iInto the same library as your design

= Additional libraries are typically language extensions or

<=
Design
_ _ Library
technology libraries

 The default library is the usually called WORK —
: :
= This library contains your design and is used when no library | (horation] |
Is explicitly specified when compiling
(Simulation) (Synthesis)

- ()

DEFAULT: is
called WORK

B CPA - |
[COLE POLYTICHNIQUE Fall 2022 EE-334: Digital System Design

VHDL Packages

 VHDL packages are similar to INCLUDE files in C/C#
» They include often used declarations to avoid the need to repeat them in many files

 VHDL packages can include for example
CONSTANTS that are used throughout a design
COMPONENT declarations

DATA TYPE definitions

= Common FUNCTIONS and PROCEDURES

« HINT: Packages are convenient, to avoid the need to change design-wide
parameters in one common place to avoid inconsistencies and simplify changes

ECOLE POLYTECH
FEDERALE DE LAL

vt Fall 2022 EE-334: Digital System Design 7 (((

Us

Ing Libraries and Packages

« VHDL components and packages can “use” the content of other packages

 To use a package, we need to specify | LIBRARY library name;

USE library name.package name.function name ALL;

The library from which it is included
The name of the package
The function/constant to be used (or all)

* Project specific packages are usually compiled into the default WORK library

ECOLE POLYTECE
FEDERALE DE LAL

The WORK library is always already declared by default and can be referred to without
explicitly declaring it

To include a package from the WORK library use: USE WORK.my_package.ALL;
» Note: packages included in that package are not visible in the design

rmoue Fall 2022 EE-334: Digital System Design 8 (((

1
JSANNE

Using Libraries and Packages

« Example: packages from ieee library
= for multi-valued logic (std_logic 1164) and
= signed/unsigned arithmetic (numeric_std)

LIBRARY ieee;

USE ieee.std logic_1164.ALL;

USE ieee.numeric_std.all;

HINT: this will be the first
three lines of almost any
VHDL code you write

« NOTE: components are “included” in a different way than packages, through

Instantiation (see later)

-(I’fl-

oLt pouyTechnioue Fall 2022 EE-334: Digital System Design

. (e

VHDL Package Declaration

 Packages are described in .vhd/.vhdl files, same as design entities

= HINT: always use a separate file for each package
= The file name is not relevant, but should match the package name specified in the file

 The package name is the name LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

under which the package is accessible | use ieee.numeric_std.ALL;
frOm the Ilbrary PACKAGE package_name IS

-- PACKAGE CONTENT

. -- DECLARATION of CONSTANTS, TYPES, FUNCTIONS, ..
 Packages can themselves include

other packages from any library END PACKAGE package_name;

» Typical example: packages from the IEEE library

» NOTE: a package included by a package is only visible in that package, not in the level above
(visibility of package inclusions is limited to same package or design file)

P - | («
[COLE POLYTICHNIQUE Fall 2022 EE-334: Digital System Design 10

b

Components: ENTITY and ARCHITECTURE

« Multiple alternative architectures can be provided for the same entity
» Used for abstraction and refinement: e.g., behavioural, RTL, and gate-level netlist

library ieee;
opa Entity declaration result use ieee.std_logic_1164.all;
opb zero
pd alug_comb £l entity alu8 comb is
-) ENTITY o

D5

external interface o
A of a component s |
ARCHITECTURE1 ARCHITECTURE2 ARCHITECTURES3
Implementation

of the component

 CONFIGURATIONS define which architecture is used if multiple exist

ECOLE POLY
FEDERALE >

viicnnioue Fall 2022 EE-334: Digital System Design 11 (((ﬁ)))

ENTITY Declaration Syntax

 VHDL entity defines the interfaces of a VHDL component

« Entity declaration defines ENTITY en?&ﬁfﬁ"ze e
» the name of the component generic_1 name : generic_1_type;
i) generic_2_name : generic_2_type
= ports : interface (inputs and outputs))3
of the component PORT (.
. . o port_1_name : port_1_dir port_1_type;
= generics : instance specific parameters port_2_name : port_2_dir port_2_type

: :)5
* NOTE: generics must resolve to a constant | gxp entity name;

(be known) at compile-time

Port directions can be

: IN Input only
* PORT and GENERIC sections
_ ouT Output only
are optlonal INOUT Input/output for tristate
BUFFER Output that can also be read

P - . G
tcoLe poLyrecunioue Fall 2022 EE-334: Digital System Design 12

b

ENTITY Declaration Example

 Example: 8-bit ALU, purely combinational (no clock signal), no parameters

ALU8_COMB
8 8
opa result
8
opb
zero
3
cmd ovfl

ENTITY alu8 comb IS
PORT (
opa, opb : IN std logic vector(7 downto 0);
cmd : IN std logic vector(2 downto 9);
result : OUT std_logic_vector(7 downto 9);
zero : OUT std_logic;
ovfl : OUT std logic
)
END alu8 comb;
)
&g!&;ffg@ Fall 2022 EE-334: Digital System Design 13 (((

Architecture Declaration

« VHDL architecture specifies the model or implementation of a component

* ArChIteCture deCIarathn deflnes ARCHITECTURE architecture_name OF entity name IS

= the name of the architecture -- signals to be used are declared here

BEGIN
» the name of the associated entity -- Insert VHDL statements to assign outputs to
i] -- each of the output signals defined in the
» the architecture body that includes -- entity declaration.
signal declarations and the actual code END architecture_name;

o Examp|e: and_gate ENTITY and_gate IS

PORT (a: IN std logic;
b: IN std logic;
c: OUT std logic);
END and_gate;
-- Architecture
ARCHITECTURE comb_logic OF and gate IS
BEGIN
C <= a AND b;
END comb_logic;

ECOLE I
FEDERALE [

ovmicnnious Fall 2022 EE-334: Digital System Design 14 (((m

Signals

Signals represent (are) wires

« Signals are defined only inside an architecture

 The ports of an entity allow signals to be connected from outside a component
= The ports of an entity can be treated as signals inside its architecture

- Signals are declared in the preamble of the architecture

o Signa|s are associlated with data ARCHITECTURE architecture name OF entity name IS
. : : -- signals to be used are declared here
types which abstract electrical behaviour SIGNAL signal 1 name : signal 1 type;

SIGNAL signal_2 name : signal_2_type;
BEGIN

-- VHDL statements
END architecture_name;

P

ovmicnnious Fall 2022 EE-334: Digital System Design 15 (((m

b

Constants

« Constants serve two purposes (but as the same object)

= Definition of fixed values that are known at compile-time
(i.e., before e.qg., hardware is constructed during elaboration)

« Examples: width of signals, number of instances of a component, iterations of a generate-loop
= Definition of fixed electrical signals that can be thought of as connections to VDD or GND

. ARCHITECTURE architecture name OF entity name IS
« Constants can be declared In -- constants to be used are declared here
CONSTANT constant_1 name : constant_1_type := expression;
» Packages -- EXAMPLE
- CONSTANT WIDTH_A : integer := 8-1;
- AS GENERICS In an ENTITY CONSTANT WIDTH_B : integer := WIDTH_A + 1;
= As CONSTANTS in the preamble H3eh.
. -- VHDL statements
of the architecture END architecture_name;

e Constants can be derived with
valid expressions from other
constants

P

ovmicnnious Fall 2022 EE-334: Digital System Design 16 (((m

b

Built-In Data Types

 VHDL knows several standard built-in data types

 VHDL supports 6 native scalar (singe value) data types

Bit

Boolean
Integer
Char
Real
Time

: 1/0

: true/fals

: defined by a range (default is 32-bit)
: 8-bit

: floating point

: for modeling of delays [ps,ns]

* Not all types are equally well suited for synthesis
= Time has no hardware equivalent

» Real leads to excessive complexity and is often not understood by tools

ECOLE POLYTECE
FEDERALE DE LAL

INTQUE
JSANNE

Fall 2022

EE-334: Digital System Design

o (¢

Extended Multi-Value Data Types: std logic

* Binary 0/1 representation of the basic bit type is often insufficient to

= describe complex electrical states of wires (driver conflicts)
= model design intent that provides flexibility for optimization

« |EEE standardized of more capable data types in ieee.std logic 1164
with up to nine possible values (encoded as characters in ‘...°)

* Values for std _logic are encoded as CHARACTERS: ‘...’

ECOLE POLYTECHMN]
FEDERALE DE LAUSA

nout Fall 2022

std logic
Logic-0 ‘9’ Weak-0 ‘L’
Logic-1 ‘1° Weak-1 ‘H’
Don’t Care €7 Weak-X ‘W’
High Impedance | €2’ Uninitialized ‘U’
Unknown ‘X’

EE-334: Digital System Design

e (¢

Extended Multi-Value Data Types: std logic

 For synthesis:

= Logic-0 and Logic-1: straightforward binary value
= Don’t care ‘-’: heavily used for synthesis to specify no preference for a particular value.
= High impedance ‘Z’: used to define tri-state drivers (ONLY USE IN EXCEPTIONAL CASES and with greatest care)

e For simulation:

= Unknown ‘X’: useful in simulations to identify driver conflicts or unknown logic levels (e.g., during signal rise time)
= Uninitialized ‘Z’: indicates that a signal was never assigned a value
= Weak-0, Weak-1, Weak-X: mostly unused and appear only in simulation to resolve conflicts

« Multi-value data types can resolve driver conflicts
» This feature should not be used for design intent during synthesis

P

ovmicnnious Fall 2022 EE-334: Digital System Design 19 (((m

Concurrent Signal Assignments

« Concurrent assignments are part of the architecture body

 To assign the value of ar.h.s. expression to asignal on the |.h.s. use

signal <= expression;

» [nterpret as driving the signal with the output of the circuit that evaluates the expression

« Concurrent assignments are always carried out in parallel
ARCHITECTURE DONT DO THIS OF BAD DESIGN IS
-- signal declaration
SIGNAL A : std_logic;

 Asignal should never have more than one driver
BEGIN
-- DRIVER CONFLICT

» Only assigned in one single concurrent statement
. . ._ . . A <= fe); — ‘ ,
= EXxceptions: tri-state signals (ideally do not use) e Q => ‘X
END DONT_DO_THIS;
EE-334: Digital System Design 20 (((m)))

P

OLY TECHNIQUE
E DE LAUSANNE

Fall 2022

Boolean Expressions and Constant Assignments

- Valid values can be assigned directly to a signal with a compatible data type
Signal 1 <= <valid value>;

 VHDL supports all common Boolean operators between signals

<boolean_operator>
AND NAND |[NOT
OR NOR
XOR XNOR

Signal 3 <= Signal 1 <boolean_operator> Signal 2;

ECOLE POLYTECHMN]
FEDERALE DE LAUSA

nout Fall 2022 EE-334: Digital System Design 21 (((m

General Remarks

 VHDL is not case sensitive. Nevertheless, be consistent in your names

* Many naming styles are OK, here is one recommendation
= Write VHDL keywords in ALL UPPER CASE
= Write signals in CamelCase

« Comments are initiated by a leading -- until the end of the line
-- This is a VHDL comment

ECOLE YTECI
FEDER E LAL

mvoue Fall 2022 EE-334: Digital System Design

22 (((

VHDL Naming Conventions

« Motivation: signal name describes clearly the origin and nature of the signal

= VHDL code is often long. Hints where a signal comes from are incredibly useful

<Name>x<Signal Class>[<State>][<Low Active>][<PortDirection>]

P

OLY TECHNIQUE
E DE LAUSANNE

Fall 2022

Class Label Example Active | Label | Example

Clock c CLKXCI LOW B ENXSB

Async Reset R RSTXRBI HIGH ENXS

Control/status S ClearCNTxS State Label | Example Direction | Label | Example
Data/address D SamplexDN Present P REGxDP IN I AxDI

Test signals T ScanENXT Next N REGxDN ouT O ZxDO

s (¢

	Slide 1: EE-334 Digital System Design
	Slide 2: Background on VHDL
	Slide 3: Some VHDL History
	Slide 4: VHDL is NOT a Programming Language
	Slide 5: Preamble: The VHDL Library System
	Slide 6: Reminder: The VHDL Library System
	Slide 7: VHDL Packages
	Slide 8: Using Libraries and Packages
	Slide 9: Using Libraries and Packages
	Slide 10: VHDL Package Declaration
	Slide 11: Components: ENTITY and ARCHITECTURE
	Slide 12: ENTITY Declaration Syntax
	Slide 13: ENTITY Declaration Example
	Slide 14: Architecture Declaration
	Slide 15: Signals
	Slide 16: Constants
	Slide 17: Built-In Data Types
	Slide 18: Extended Multi-Value Data Types: std_logic
	Slide 19: Extended Multi-Value Data Types: std_logic
	Slide 20: Concurrent Signal Assignments
	Slide 21: Boolean Expressions and Constant Assignments
	Slide 22: General Remarks
	Slide 23: VHDL Naming Conventions

