ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334
Digital System Design

Custom Digital Circuits

From Algorithms to Architectures
Tips & Tricks

Andreas Burg

EE-334: Digital System Design

Resource Sharing for Area in Combinational Logic

« Strict isomorphic mapping of an algorithm often implies redundant logic

 Example: selection of one of multiple identical operations with different operands
» Software: sequential execution naturally avoids unnecessary operations

» Hardware: careless mapping generates redundant INIXD <= AxDI when SELxSI = @' else
resources CxDI;
IN2xD <= BxDI when SELXSI = ‘@' else
ZxDO <= AxDI + BxDI when SELXSI = ‘0' else DxDI;
CxDI + DxDI; ZxDO <= IN1xD + IN2xD;
AXDI BxDI CxDI DxDI
Resource sharing by re-ordering P! &P BxDl - DxDI

selection and operations

%iSELXDI

In obvious cases performed
automatically during RTL synthesis

IN2xD
Shared
SELXDI “adder”
ZxDO ZxDO
)
A - . (5F
ECOLE POLYTECHNIQUE EE-334: Dlgltal System Design 2

Resource Sharing for Area in Combinational Logic

 RTL synthesis performs resource sharing only in obvious cases (with fully
identical operators)

« Similar operators can often be shared manually with little or no additional effort

. Examp|e: different word Iengths INIXD <= ‘@’ & AXDI when SELXSI = ‘@' else
CxDI;
IN2xD <= ‘@’ & BxDI when SELxSI = ‘@' else

ZxDO <= ‘@’ & (AxDI + BxDI) when SELXSI = ‘@' else

CxDI + DXDI; DXDI;

ZxDO <= IN1xD + IN2xD;

AxDI BxDI CxDI DxDI AxDI CxDI BxDIl DxDI
7.8
) ‘0, io!
resource sharing 8
requires explicit manual SELXDI
description
_________________________ »
IN2xD

Shared
“adder”

AxDI, BxDI: 7 bit unsigned

CxDI, DxDI: 8 bit unsigned SELXDI

ZxDO
ZxDO

-(I’fl-

OLE POLYTECHNIQUE EE-334: Digital System Design 3 (((ﬁ

Algebraic Transformations

« The mathematical specification of an algorithm is typically not an
unambiguous description of a suitable isomorphic datapath
= Expressions can be re-written as other equivalent expressions

* Equivalent (ideally more simple) expressions can be derived using algebraic
properties of the operators

Commutativity Associativity Distributivity
implies symmetry with allows re-ordering allows re-ordering
functional equivalence of the same operator of different operators

a+beb+a (a+b)+ceob+(b+rc) d(a+b) & da+db

= Note: parentheses “(...)” and operator priorities define data dependencies in the dataflow
graph (i.e., in the isomorphic datapath)

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 4 (((ﬁ

Tree Re-Structuring for Timing with Associativity

* Objective: by avoiding data dependencies between
Intermediate results

 Re-structuring: prioritize operations to
» Changing the order using associativity

Linear (serial) structure Tree (parallel) structure
a+b+c+d ((@a+b)+b)+c (@a+b)+(c+d)

Order not explicitly |
defined (only implicitly —
from left-to-right)

Same number of operations (area)
Depth (delay) only grows as log, N
Balanced delays

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 5 (((

Algebraic Reordering for Timing

« The longest path to the output of a datapath component (with identical
delays from all its inputs) is determined by the latest arriving operand

 Operand arrival time is determined by

» the delay of the previous logic and Q S }

» the arrival time of the input to this K

previous logic

« Operand re-ordering B 1
assigns available XX —— K XX_” &
slack to late arriving ROR_E | XX
inputs oy :_’: XXXX

= Late arriving inputs are

used later in the datapath W XXXXX):

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 6 (((ﬁ)))

Area Reduction with Distributivity/Factoring

* Objective: by reducing the number of complex operations

Re-structuring / Factoring expressions: re-order operations of different
complexity to

= Changing the order using distributivity

a-c + b-c (a+b):-c

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

Common Subexpression Sharing

 Multiple results (outputs) often share common sub-expressions

« Common sub-expression sharing: implement identical expressions (hardware)

only once and re-use the result
X=c-a + d-b y=d-b + e-f

X y
« CAVE: even if obvious, it is not uncommon to find the same operation multiple
times (redundant) in a complex (especially hierarchical) HDL description
» Synthesis tools can identify such common sub-expressions only if extremely obvious
= Even irrelevant differences prevent automatic sharing of common sub-expressions

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 8 (((

ldentifying Common Subexpressions by Expansion

« Common sub-expressions are not always immediately visible
» Hidden especially after factoring expressions

 Expanding expressions helps to isolate common sub-expressions
» Expanding = Inverse operation of factoring

 Example: consider computation of three different results
x=(@a+Db)f y=(a+c)-f z=Mb+c) f
x=a-f+b-f y=a-f+c-f z=b-f+c-f
Three common sub-expressions:a-f,b-f,c-f

» This example: no immediately visible advantages

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

» (¢

ldentifying Trivial Common Subexpressions by Expansion

« Common sub-expressions are not always immediately visible

 Expanding expressions helps to isolate common sub-expressions, BUT
advantages are not always immediately visible
= Number of operations is often not reduced or even increases

« HOWEVER: some sub-expressions (factors) can sometimes be significantly
less complex than others, especially when constants are involved

« Example: consider computation of three different results

Iﬁzrlif)lflcjgtions X = (a+1).f y= (a+2).f Z = (a—Z)'f
Only ONE full x=a.f_|_f y=a'f+2'f Z=a'f_2'f

multiplication

Three common sub-expressions: a-f, f,2-f

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 10 (((ﬁ

Special Operations and Special Cases

« Some arithmetic operations can be realized without any hardware:
 Popular examples:

= Multiplication by powers of two: x- 2N left shift by N bits
= Division by powers of two: x/2N right shift by N bits
= Modulo with powers of two: x % 2N keep only N least-significant bits
« Example: serializing a 2D array index LinIDXxD <= RoWIDXxD * #Columns + ColIDXxD
(R X C) into a linear (1D) array of R - C _ |
th R d C = ZC I signal RowIDXxD : unsigned(r-1 downto 0);
Wi rows an T columns signal ColIDXxD : unsigned(c-1 downto ©);
:;'?]Ler;lgr;'ryof- signal LinIDXxD : unsigned(r+c-1 downto 0);

columns is *e
power of 2 LinIDXxD <= RowIDXxD & ColIDXxD

(P

YTECHNIQUE EE-334: Digital System Design 11 (((ﬁ

ELAUSANN

Constant Operator Elimination & Operator Simplification

are evaluated during synthesis and

= Operations between signals and constants can not be evaluated during synthesis

« Constant isolation: Re-ordering operations
1o
to avoid dedicated hardware

« Operator simplification: modify constants
to allow for using simpler operators

ZxDO <= AxDI + BxDI when (XxDI-1 > 5) else
CxDI + DxDI;

ZxD0O <= AxDI + BxDI when else
CxDI + DxDI;

CNTXDN <= CNTxXDP + 1 when CNTxDP < 5 else
(others => €0°);

Not_e: only =
= Modifying conditions for less Saunvaent f
complex hardware (timing & area) never > 5 [

CNTXDN <= (others => €0’) when else
CNTxDP + 1;

= CAVEAT: sometimes, additional knowledge is required as modified conditions are not always
fully equivalent without additional information (e.g., “counter will never exceed a specific value”)

f

ECOL 4
FEDEI D

ELAUSANN

YTECHNIQUE EE-334: D|g|tal System Design 12 (((

e

Simplifying Expressions for Relational Operators

 Conditions are often based on algebraic relational operators (<, >, <, >, =)

 Relational operators are invariant to the application of the same monotonous
functions to both of its parameters (sides)

XmYy < > f(x)mf(y) B {<[|[>|=|=]|=}
f(-) monotonous function

x,y algebraic expressions

* Objective: simplify the algebraic expressions x and y to reduce their complexity
by finding an appropriate function f(-)
« Example: checking if a point |a, b] lies in a circle of a constant radius R

Note: highly X) = x2 Note: no square
complex square \/az + b2 < R [0 > Clz + bZ < R? root requires and
root operation R? is a constant

ECOLE POLYTECHMN
FEDERALE DE LAUSAN

cue - Fall 2023 EE-334: Digital System Design 13 (((ﬁ

Approximations

« Complex functions are often difficult to calculate precisely
 Hardware-friendly approximations often provide sufficient accuracy

- Example: Euclidean norm f(|al, |b|) = Va? + b?

f(al, |bl)
£1-norm lal + [D]
£°-norm max(|al, |b])
3 5
Approx. 1 g(lal + |b]) +§maX(|al, |b])
7 1
Approx. 2 max (max(lal, |b|),§max(|a|, |b|) + Emin(lal, |b|)>

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 14 (((

