
EE-334

Digital System Design

Custom Digital Circuits

From Algorithms to Architectures

Tips & Tricks

EE-334: Digital System Design 1

Andreas Burg

Resource Sharing for Area in Combinational Logic

• Strict isomorphic mapping of an algorithm often implies redundant logic

• Example: selection of one of multiple identical operations with different operands

▪ Software: sequential execution naturally avoids unnecessary operations

▪ Hardware: careless mapping generates redundant

resources

EE-334: Digital System Design 2

ZxDO <= AxDI + BxDI when SELxSI = ‘0' else

CxDI + DxDI;

AxDI BxDI CxDI DxDI

ZxDO

SELxDI

IN1xD <= AxDI when SELxSI = ‘0' else

CxDI;

IN2xD <= BxDI when SELxSI = ‘0' else

DxDI;

ZxDO <= IN1xD + IN2xD;

AxDI BxDICxDI DxDI

ZxDO

SELxDI

IN1xD IN2xD

Resource sharing by re-ordering

selection and operations

In obvious cases performed

automatically during RTL synthesis

Shared

“adder”

Resource Sharing for Area in Combinational Logic

• RTL synthesis performs resource sharing only in obvious cases (with fully

identical operators)

• Similar operators can often be shared manually with little or no additional effort

• Example: different word lengths

EE-334: Digital System Design 3

ZxDO <= ‘0’ & (AxDI + BxDI) when SELxSI = ‘0' else

CxDI + DxDI;

AxDI BxDI CxDI DxDI

ZxDO

SELxDI

IN1xD <= ‘0’ & AxDI when SELxSI = ‘0' else

CxDI;

IN2xD <= ‘0’ & BxDI when SELxSI = ‘0' else

DxDI;

ZxDO <= IN1xD + IN2xD;

AxDI BxDICxDI DxDI

ZxDO

SELxDI

IN1xD IN2xD

resource sharing

requires explicit manual

description

Shared

“adder”

7 7 8 8

8
‘0’

8

‘0’ ‘0’
8 877

8 8

AxDI, BxDI: 7 bit unsigned

CxDI, DxDI: 8 bit unsigned

Algebraic Transformations

• The mathematical specification of an algorithm is typically not an

unambiguous description of a suitable isomorphic datapath

▪ Expressions can be re-written as other equivalent expressions

• Equivalent (ideally more simple) expressions can be derived using algebraic

properties of the operators

▪ Note: parentheses “(...)” and operator priorities define data dependencies in the dataflow

graph (i.e., in the isomorphic datapath)

EE-334: Digital System Design 4

Commutativity
implies symmetry with

functional equivalence

𝑎 + 𝑏 ↔ 𝑏 + 𝑎

Associativity
allows re-ordering

of the same operator

𝑎 + 𝑏 + 𝑐 ↔ 𝑏 + 𝑏 + 𝑐

Distributivity
allows re-ordering

of different operators

𝑑 𝑎 + 𝑏 ↔ 𝑑𝑎 + 𝑑𝑏

Tree Re-Structuring for Timing with Associativity

• Objective: reduce the longest path by avoiding data dependencies between

intermediate results

• Re-structuring: prioritize operations to avoid/reduce data dependencies

▪ Changing the order using associativity

EE-334: Digital System Design 5

𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐 + 𝑑

Order not explicitly

defined (only implicitly

from left-to-right)

TREE

Restructuring

• Same number of operations (area)

• Depth (delay) only grows as 𝐥𝐨𝐠𝟐𝑵

• Balanced delays

Linear (serial) structure Tree (parallel) structure

Algebraic Reordering for Timing

• The longest path to the output of a datapath component (with identical

delays from all its inputs) is determined by the latest arriving operand

• Operand arrival time is determined by

▪ the delay of the previous logic and

▪ the arrival time of the input to this

previous logic

• Operand re-ordering

assigns available

slack to late arriving

inputs

▪ Late arriving inputs are

used later in the datapath

EE-334: Digital System Design 6

Area Reduction with Distributivity/Factoring

• Objective: reduce area by reducing the number of complex operations

• Re-structuring / Factoring expressions: re-order operations of different

complexity to “share” complex operations

▪ Changing the order using distributivity

EE-334: Digital System Design 7

𝑎 ∙ 𝑐 + 𝑏 ∙ 𝑐 𝑎 + 𝑏 ∙ 𝑐

Distributivity for

Sharing Complex

Operators

Common Subexpression Sharing

• Multiple results (outputs) often share common sub-expressions

• Common sub-expression sharing: implement identical expressions (hardware)

only once and re-use the result

• CAVE: even if obvious, it is not uncommon to find the same operation multiple

times (redundant) in a complex (especially hierarchical) HDL description

▪ Synthesis tools can identify such common sub-expressions only if extremely obvious

▪ Even irrelevant differences prevent automatic sharing of common sub-expressions

EE-334: Digital System Design 8

x = c ∙ 𝑎 + 𝑑 ∙ 𝑏 y = 𝑑 ∙ 𝑏 + 𝑒 ∙ 𝑓

x yyx

Common

Sub-Expression

Sharing

Identifying Common Subexpressions by Expansion

• Common sub-expressions are not always immediately visible

▪ Hidden especially after factoring expressions

• Expanding expressions helps to isolate common sub-expressions

▪ Expanding = Inverse operation of factoring

• Example: consider computation of three different results

▪ This example: no immediately visible advantages

EE-334: Digital System Design 9

𝑥 = 𝑎 + 𝑏 ∙ 𝑓 y = 𝑎 + 𝑐 ∙ 𝑓 𝑧 = 𝑏 + 𝑐 ∙ 𝑓

𝑥 = 𝑎 ∙ 𝑓 + 𝑏 ∙ 𝑓 y = 𝑎 ∙ 𝑓 + 𝑐 ∙ 𝑓 𝑧 = 𝑏 ∙ 𝑓 + 𝑐 ∙ 𝑓

Three common sub-expressions: 𝑎 ∙ 𝑓, 𝑏 ∙ 𝑓, 𝑐 ∙ 𝑓

Identifying Trivial Common Subexpressions by Expansion

• Common sub-expressions are not always immediately visible

• Expanding expressions helps to isolate common sub-expressions, BUT

advantages are not always immediately visible

▪ Number of operations is often not reduced or even increases

• HOWEVER: some sub-expressions (factors) can sometimes be significantly

less complex than others, especially when constants are involved

• Example: consider computation of three different results

EE-334: Digital System Design 10

𝑥 = 𝑎 + 1 ∙ 𝑓 y = 𝑎 + 2 ∙ 𝑓 𝑧 = 𝑎 − 2 ∙ 𝑓

𝑥 = 𝑎 ∙ 𝑓 + 𝑓 y = 𝑎 ∙ 𝑓 + 2 ∙ 𝑓 𝑧 = 𝑎 ∙ 𝑓 − 2 ∙ 𝑓

Three common sub-expressions: 𝑎 ∙ 𝑓, 𝑓, 2 ∙ 𝑓
whereof two are trivial (constant multiplications with 1 and 2)

Three full

multiplications

Only ONE full

multiplication

Special Operations and Special Cases

• Some arithmetic operations can be realized without any hardware:

• Popular examples:

▪ Multiplication by powers of two: 𝒙 ∙ 𝟐𝑵 left shift by N bits

▪ Division by powers of two: 𝒙/𝟐𝑵 right shift by N bits

▪ Modulo with powers of two: 𝒙% 𝟐𝑵 keep only N least-significant bits

• Example: serializing a 2D array index

(𝑅 × 𝐶) into a linear (1D) array of 𝑅 ∙ 𝐶
with 𝑅 rows and 𝐶 = 2𝑐 columns

EE-334: Digital System Design 11

signal RowIDXxD : unsigned(r-1 downto 0);

signal ColIDXxD : unsigned(c-1 downto 0);

signal LinIDXxD : unsigned(r+c-1 downto 0);

...

LinIDXxD <= RowIDXxD & ColIDXxD

LinIDXxD <= RowIDXxD * #Columns + ColIDXxD

Note: only

if number of
columns is
power of 2

Constant Operator Elimination & Operator Simplification

• Operations between constants are evaluated during synthesis and require no

dedicated hardware resources

▪ Operations between signals and constants can not be evaluated during synthesis

• Constant isolation: Re-ordering operations

to group operations between only constants

to avoid dedicated hardware

• Operator simplification: modify constants

to allow for using simpler operators

▪ Modifying conditions for less

complex hardware (timing & area)

▪ CAVEAT: sometimes, additional knowledge is required as modified conditions are not always

fully equivalent without additional information (e.g., “counter will never exceed a specific value”)

EE-334: Digital System Design 12

ZxDO <= AxDI + BxDI when (XxDI-1 > 5) else

CxDI + DxDI;

ZxDO <= AxDI + BxDI when (XxDI > 5-1) else

CxDI + DxDI;

CNTxDN <= CNTxDP + 1 when CNTxDP < 5 else

(others => ‘0’);

CNTxDN <= (others => ‘0’) when CNTxDP = 5 else

CNTxDP + 1;

Note: only

equivalent if
CNTxDP is
never > 5

Simplifying Expressions for Relational Operators

• Conditions are often based on algebraic relational operators (<,>,≤,≥,=)

• Relational operators are invariant to the application of the same monotonous

functions to both of its parameters (sides)

• Objective: simplify the algebraic expressions 𝒙 and 𝒚 to reduce their complexity

by finding an appropriate function 𝑓 ∙

• Example: checking if a point 𝑎, 𝑏 lies in a circle of a constant radius 𝑅

Fall 2023 EE-334: Digital System Design 13

𝒙 ∎ 𝒚 𝑓 𝒙 ∎ 𝑓 𝒚 ∎ < | > | ≤ | ≥ | =
𝑓 ∙ monotonous function

𝒙, 𝒚 algebraic expressions

𝑎2 + 𝑏2 < 𝑅
𝑓 𝑥 = 𝑥2

𝑎2 + 𝑏2 < 𝑅2
Note: highly

complex square

root operation

Note: no square

root requires and

𝑅2 is a constant

Approximations

• Complex functions are often difficult to calculate precisely

• Hardware-friendly approximations often provide sufficient accuracy

• Example: Euclidean norm 𝑓 𝑎 , 𝑏 = 𝑎2 + 𝑏2

EE-334: Digital System Design 14

𝑓 𝑎 , 𝑏

ℓ1-norm 𝑎 + 𝑏

ℓ∞-norm max 𝑎 , 𝑏

Approx. 1
3

8
𝑎 + 𝑏 +

5

8
max 𝑎 , 𝑏

Approx. 2 max max 𝑎 , 𝑏 ,
7

8
max 𝑎 , 𝑏 +

1

2
min 𝑎 , 𝑏

