EE-334 Digital System Design

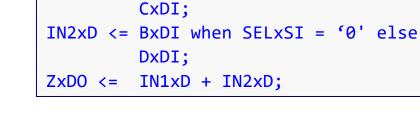
Custom Digital Circuits

From Algorithms to Architectures
Tips & Tricks

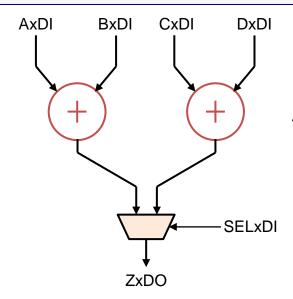
Andreas Burg

Resource Sharing for Area in Combinational Logic

- Strict isomorphic mapping of an algorithm often implies redundant logic
- **Example:** selection of one of multiple identical operations with different operands
 - Software: sequential execution naturally avoids unnecessary operations
 - Hardware: careless mapping generates redundant resources

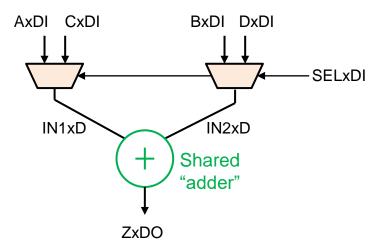


IN1xD <= AxDI when SELxSI = '0' else</pre>



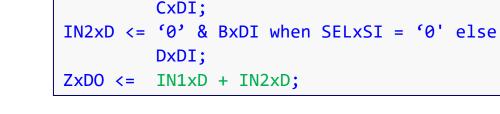
Resource sharing by re-ordering selection and operations

In obvious cases performed automatically during RTL synthesis

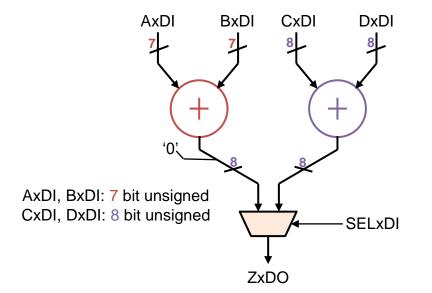


Resource Sharing for Area in Combinational Logic

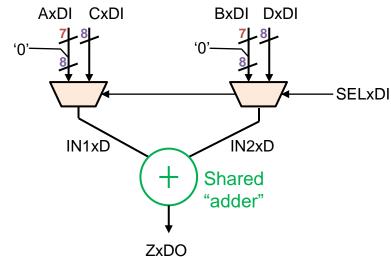
- RTL synthesis performs resource sharing only in obvious cases (with fully identical operators)
- Similar operators can often be shared manually with little or no additional effort
- Example: different word lengths



IN1xD <= '0' & AxDI when SELxSI = '0' else



resource sharing requires explicit manual description



Algebraic Transformations

- The mathematical **specification of an algorithm is** typically **not** an unambiguous description of a suitable isomorphic datapath
 - Expressions can be re-written as other equivalent expressions
- Equivalent (ideally more simple) expressions can be derived using algebraic properties of the operators

Commutativity

implies symmetry with functional equivalence

$$a + b \leftrightarrow b + a$$

Associativity

allows re-ordering of the same operator

$$(a+b)+c \leftrightarrow b+(b+c)$$
 $d(a+b) \leftrightarrow da+db$

Distributivity

allows re-ordering of different operators

$$d(a+b) \leftrightarrow da+db$$

Note: parentheses "(...)" and operator priorities define data dependencies in the dataflow graph (i.e., in the isomorphic datapath)

Tree Re-Structuring for Timing with Associativity

- Objective: reduce the longest path by avoiding data dependencies between intermediate results
- Re-structuring: prioritize operations to avoid/reduce data dependencies
 - Changing the order using associativity

Linear (serial) structure
$$a+b+c+d$$
 $((a+b)+b)+c$ Order not explicitly defined (only implicitly from left-to-right)

TREE

Tree (parallel) structure

(a + b) + (c + d)

Same number of operations (area)

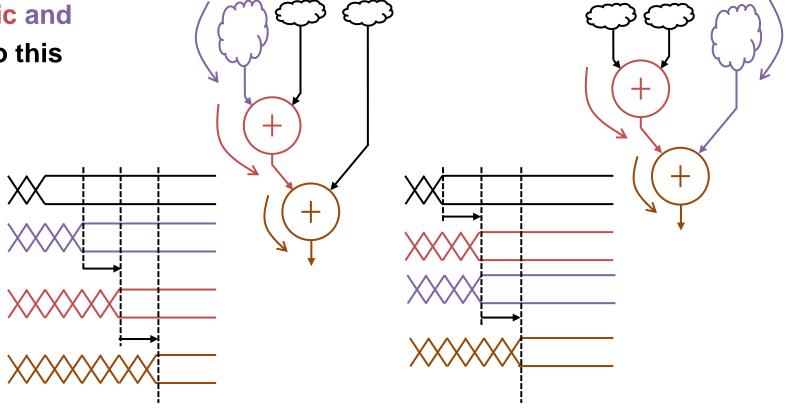
Restructuring

Depth (delay) only grows as log₂ N

Balanced delays

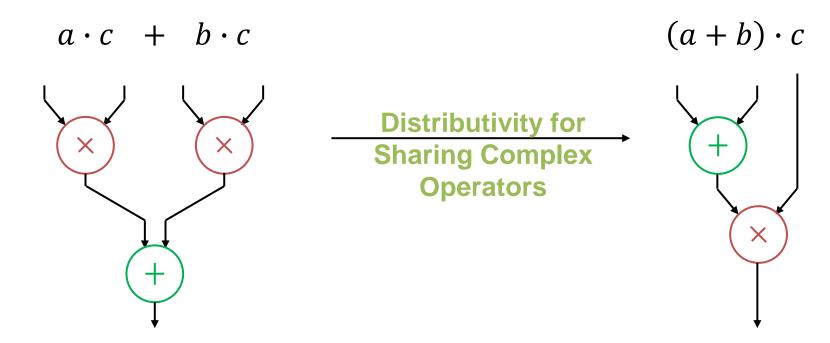
Algebraic Reordering for Timing

- The longest path to the output of a datapath component (with identical delays from all its inputs) is determined by the latest arriving operand
- Operand arrival time is determined by
 - the delay of the previous logic and
 - the arrival time of the input to this previous logic
- Operand re-ordering assigns available slack to late arriving inputs
 - Late arriving inputs are used later in the datapath



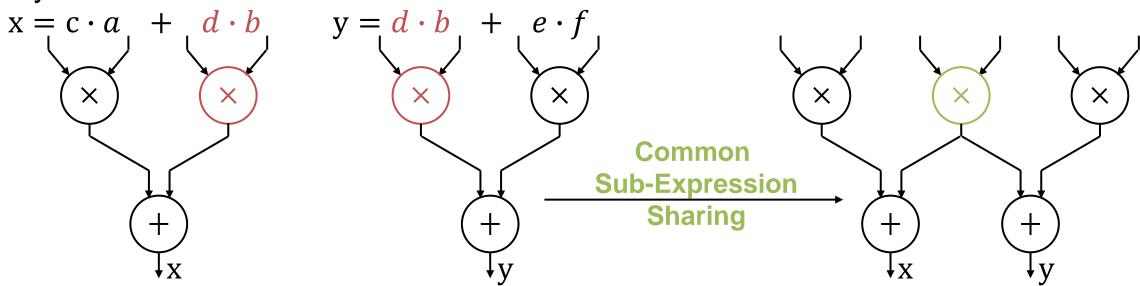
Area Reduction with Distributivity/Factoring

- Objective: reduce area by reducing the number of complex operations
- Re-structuring / Factoring expressions: re-order operations of different complexity to "share" complex operations
 - Changing the order using distributivity



Common Subexpression Sharing

- Multiple results (outputs) often share common sub-expressions
- Common sub-expression sharing: implement identical expressions (hardware)
 only once and re-use the result



- CAVE: even if obvious, it is not uncommon to find the same operation multiple times (redundant) in a complex (especially hierarchical) HDL description
 - Synthesis tools can identify such common sub-expressions only if extremely obvious
 - Even irrelevant differences prevent automatic sharing of common sub-expressions

Identifying Common Subexpressions by Expansion

- Common sub-expressions are not always immediately visible
 - Hidden especially after factoring expressions
- Expanding expressions helps to isolate common sub-expressions
 - Expanding = Inverse operation of factoring
- Example: consider computation of three different results

$$x = (a + b) \cdot f$$
 $y = (a + c) \cdot f$ $z = (b + c) \cdot f$ $z = a \cdot f + b \cdot f$ $z = a \cdot f + c \cdot f$ $z = b \cdot f + c \cdot f$

Three common sub-expressions: $a \cdot f$, $b \cdot f$, $c \cdot f$

This example: no immediately visible advantages

Identifying Trivial Common Subexpressions by Expansion

- Common sub-expressions are not always immediately visible
- Expanding expressions helps to isolate common sub-expressions, BUT advantages are not always immediately visible
 - Number of operations is often not reduced or even increases
- HOWEVER: some sub-expressions (factors) can sometimes be significantly less complex than others, especially when constants are involved
- Example: consider computation of three different results

Three full multiplications
$$x = (a+1) \cdot f$$
 $y = (a+2) \cdot f$ $z = (a-2) \cdot f$

Only ONE full multiplication $x = a \cdot f + f$ $y = a \cdot f + 2 \cdot f$ $z = a \cdot f - 2 \cdot f$

Three common sub-expressions: $a \cdot f$, f, $2 \cdot f$ whereof two are trivial (constant multiplications with 1 and 2)

Special Operations and Special Cases

- Some arithmetic operations can be realized without any hardware:
- Popular examples:

• Multiplication by powers of two: $x \cdot 2^N$ left shift by N bits

■ Division by powers of two: $x/2^N$ right shift by N bits

■ Modulo with powers of two: $x \% 2^N$ keep only N least-significant bits

• Example: serializing a 2D array index $(R \times C)$ into a linear (1D) array of $R \cdot C$ with R rows and $C = 2^c$ columns

```
Note: only if number of columns is power of 2
```

```
LinIDXxD <= RowIDXxD * #Columns + ColIDXxD

signal RowIDXxD : unsigned(r-1 downto 0);
signal ColIDXxD : unsigned(c-1 downto 0);
signal LinIDXxD : unsigned(r+c-1 downto 0);
...
LinIDXxD <= RowIDXxD & ColIDXxD</pre>
```

Constant Operator Elimination & Operator Simplification

- Operations between constants are evaluated during synthesis and require no dedicated hardware resources
 - Operations between signals and constants can not be evaluated during synthesis
- Constant isolation: Re-ordering operations to group operations between only constants to avoid dedicated hardware

- Operator simplification: modify constants to allow for using simpler operators

 Note: only and are in the properties of the pro
 - Modifying conditions for less complex hardware (timing & area)

```
Note: only equivalent if CNTxDP is never > 5
```

 CAVEAT: sometimes, additional knowledge is required as modified conditions are not always fully equivalent without additional information (e.g., "counter will never exceed a specific value")

Simplifying Expressions for Relational Operators

- Conditions are often based on algebraic relational operators (<, >, ≤, ≥, =)
- Relational operators are invariant to the application of the same monotonous functions to both of its parameters (sides)

$$x \blacksquare y \longleftrightarrow f(x) \blacksquare f(y) \blacksquare \{<|>|\leq|\geq|=\}$$
 $f(\cdot)$ monotonous function
 x, y algebraic expressions

- **Objective**: simplify the algebraic expressions x and y to reduce their complexity by finding an appropriate function $f(\cdot)$
- **Example:** checking if a point [a, b] lies in a circle of a constant radius R

Note: highly complex square root operation
$$\sqrt{a^2 + b^2} < R \qquad f(x) = x^2 \qquad a^2 + b^2 < R^2$$

Note: no square root requires and R^2 is a constant

Approximations

- Complex functions are often difficult to calculate precisely
- Hardware-friendly approximations often provide sufficient accuracy
- Example: Euclidean norm $f(|a|,|b|) = \sqrt{a^2 + b^2}$

	f(a , b)
ℓ^1 -norm	a + b
ℓ^{∞} -norm	$\max(a , b)$
Approx. 1	$\frac{3}{8}(a + b) + \frac{5}{8}\max(a , b)$
Approx. 2	$\max\left(\max(a , b),\frac{7}{8}\max(a , b)+\frac{1}{2}\min(a , b)\right)$