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Isomorphic Architecture

• Isomorphic architecture: straightforward mapping of an algorithm to hardware

▪ Corresponds to the data flow graph of the algorithm

• Vertices correspond to operations, edges route intermediate results to other vertices

▪ Every operation is mapped to a dedicated combinational hardware unit

• Loops are unrolled: loop counter must be computable (known) at design time

• Conditional statements become multiplexers
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int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}



Sequential Processing in Custom Hardware

• Separation between computations and control

▪ Datapath : performs (arithmetic or other) operations on data and keeps intermediate resultsin

memory elements. Control inputs (from control logic) define what should be done in each cycle

▪ Control : controls datapath and manages the sequence of operations (potentially based on 

feedback from the datapath), but does not manipulate data itself
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Assessing Efficiency of the Hardware

• To assess the efficiency of a hardware architecture we need some metrics

• The most relevant metrics are:

▪ Timing and throughput:

• Time per data item or throughput: defined by 

– Cycles per data item: number of computation cycles between releasing two subsequent data items.

– Minimum clock period (max. freq.): defined by the longest path (Static Timing Analysis)

• Latency: number of computation cycles from a data item entering a circuit until the pertaining result 

becomes available.

▪ Circuit complexity: usually proportional to circuit size or area (for FPGAs: resource utilization)

▪ Size-time AT-product (efficiency): the hardware resources spent to obtain a given throughput

• Combines circuit complexity and throughput in a figure of merit (FOM)

▪ Power and energy consumption

• Very important, but also very difficult to estimate
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Characteristics of the Isomorphic Architecture

• Generic statements are difficult, but some general remarks are straightforward 

assuming an algorithm with 𝑁 operations

▪ Timing and throughput: 𝑂 1 − 𝑂 𝑁

• Critical path length: determined by the algorithm, but generally long: 𝑂 1 − 𝑂 𝑁

• Cycles per data item: purely combinational logic, hence, single cycle: 𝑂 1

▪ Circuit complexity: often prohibitively high: 𝑂 𝑁

• (dedicated resources for every operation)

▪ Size-time product AT (efficiency): 𝑂 𝑁 − 𝑂 𝑁2

▪ Power and energy consumption: don’t even try to estimate… 

• Good: no power for registers, bad: lots of glitching due to long combinational paths

Isomorphic architecture is rarely attractive due to large area and only OK timing,

BUT it provides a great starting point for optimization

EE-334: Digital System Design 5



Systematic Approach to Steps 2-4: optimization

• Defining hardware resources, followed by scheduling, binding, and register 

allocation is a crucial optimization process

▪ Determines the area of the circuit (more resources, more area) 

▪ Determines the number of cycles and the cycle time, i.e., the time per data item (throughput)

• How to design and optimize a datapath for different area/throughput objectives?

• We use a transform approach to optimization

▪ Isomorphic architecture is the starting point: easy to obtain and unique

• Straightforward representation as a block diagram with no overhead or control

▪ Systematic (reversible) transformations improve some design metrics, while worsening others

• Each transformation results in a new block diagram 

• Evaluation of the main performance metrics shows if the transformation was beneficial and hints to 

further transformations
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Datapath Representation as Data Flow Graph

• There are six main transformations that allow for moving around in the design 

space, while optimizing area (𝑨), time per data item (𝑻), and the 𝑨𝑻 product.

▪ Iterative decomposition

▪ Loop unrolling

▪ Resource sharing

▪ Replication

▪ Pipelining

▪ Retiming

• Pareto-optimal design: a design where 

you can not make one metric better without making another one worse
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Iterative Decomposition and (Loop) Unrolling

• Applicable to sequences of dependent identical (or similar) operations

▪ Iterative decomposition: spread subsequent combinational operations across multiple cycles

▪ (Loop) unrolling: map operations from multiple cycles into a single combination operation
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Time (Resource) Sharing and Replication

• Applicable to independent (parallel) identical (or similar) operations

▪ Time (resource) sharing: distribute parallel operations across multiple cycles

▪ Replication: replicate a resource that is shared for independent operations over multiple cycles 

to carry these out in parallel
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Pipelining

• Applicable to long (slow) sequences of combinational logic

▪ Pipelining: split a combinational path into segments that operate independently and in parallel 

on different data by inserting pipeline registers
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Retiming

• Pipelines are not always well balanced: not all stages have the same delay

• Unbalanced pipelines originate from 

▪ Careless placement of the registers

▪ Attempts to minimize the number of registers 

to be inserted when pipelining

▪ From new critical paths created when 

inserting shimming registers

• Clock period of a pipelined design is 

determined by the longest pipeline 

stage (pipeline stage with the longest path)
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Retiming

• Moving pipeline registers to reduce the length of the relevant longest stage 

while increasing the delay of shorter (irrelevant) stages reduces clock period
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Systematic Retiming

• Pipelines registers can be moved (retiming) “forward” and “backward”, step-by-

step to rebalance an unbalanced pipeline

• Retiming: applied to a node in the schematic (data-dependency graph)

▪ Nodes can only be retimed if all inputs/outputs have sufficient registers to remove one
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Backward

▪ Remove a registers from every output of the node
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▪ Remove a registers from every input of the node
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Comparison of Architectural Transformations

• Comparison with standard metrics for area, time per data item and efficiency (AT)

▪ Most transformations have their pros and cons.

▪ Strong differences even for a given transformation depending on how well it can be applied
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Operation
Factor Cycles Clock period Time per data item Area AT

product

min max min max min max

It. Decomp. D D Τ1 𝐷 + 𝛿 1 + 𝛿 1 + 𝐷𝛿 𝐷 + 𝐷𝛿 Τ1 𝐷 + 𝛿 1 + 𝛿 Τ1 𝐷 + 𝛿

Unrolling D 1 < 𝐷 𝐷 < 𝐷 𝐷 𝐷 𝐷 𝐷2

Time sharing D D 1 1 + 𝛿 D 𝐷 + 𝐷𝛿 Τ1 𝐷 1 + 𝛿 1

Replication 𝐷 1 1 1 1 1 𝐷 𝐷 D

Pipelining P 1 Τ1 𝑃 + 𝛿 1 + 𝛿 Τ1 𝑃 + 𝛿 1 + 𝛿 1 + 𝛿 1 + 𝛿 Τ1 𝑃 + 𝛿



Architectural Transformations in the Design Space

• Architectural transformations allow to 

move around in the design space
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Mult-4 Example: Isomorphic Architecture

• Array multiplier algorithm

EE-334: Digital System Design 16

+

+

+

≪ 𝟏

≪ 𝟐

≪ 𝟑

a3 a2 a1 a0

x b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0 -- bp0

a3b1 a2b1 a1b1 a0b1 -- bp1

a3b2 a2b2 a1b2 a0b2 -- bp2

a3b3 a2b3 a1b3 a0b3 -- bp3

p7 p6 p5 p4 p3 p2 p1 p0

int mult-4(a,b) {

if(b[0] == 1) q = a;

else q = 0;

for (i=1; i<=3;i++) {

if(b[i] == 1) q += a<<i;

else q += 0;

}

return q;

}
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b[1]

b[2]

b[3]

a b
0

0

0

0



Mult-4 Example: Pipelining

• Array multiplier PIPELINING

1. Identify critical path

2. Cut the critical path into P ~equal pieces 

by inserting pipeline registers

3. Equalize the latency of all paths by 

• Enclosing all down-stream vertices of each 

pipeline register in a separate box

• Inserting additional shimming registers (for 

each pipeline register) on the input of each 

box
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Mult-4 Example: Iterative Decomposition (1/2)

• Array multiplier ITERATIVE 

DECOMPOSITION

1. Identify largest common sub-circuits 

across subsequent logic stages
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Mult-4 Example: Iterative Decomposition (2/2)

• Array multiplier ITERATIVE 

DECOMPOSITION

1. Identify largest common sub-circuits 

across subsequent logic stages

2. Keep only a single instance

• Allocate/add registers to store the output

• Add MUXes to select the inputs from the 

ones used previously for the different 

instances
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FIR Filter Example

• Construct a Finite Impulse Response (FIR) filter from its equation
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FIR Filter Example (Retimed)

• Construct a Finite Impulse Response (FIR) filter from its equation
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FIR Filter Example (Retimed & Pipelined)

• Construct a Finite Impulse Response (FIR) filter from its equation
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FIR Filter Example (Iterative Decomposition)

• Construct a Finite Impulse Response (FIR) filter from its equation
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