ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334
Digital System Design

Custom Digital Circuits
From Algorithms to Architectures

Andreas Burg
(Alain Vachoux)

EE-334: Digital System Design




Isomorphic Architecture

* Isomorphic architecture: straightforward mapping of an algorithm to hardware
= Corresponds to the data flow graph of the algorithm
» Vertices correspond to operations, edges route intermediate results to other vertices
= Every operation is mapped to a dedicated combinational hardware unit

 Loops are unrolled: loop counter must be computable (known) at design time
« Conditional statements become multiplexers

int sigproc(int a[]) {
int q, r;
int sum = a[@]; a(0) —> suml q
. a(l) — +
for (int i=1; i<=3;i++) { + sum2
sum += a[i]; a(2) = __1_*
b a(3)
q sum/8;
r sum % 8; & r >3
if (r > 3) q += 1;
return q;

+1

R0
A 4

<+ sum3

A 4

A 4

A 4

(A

OLYTECHNIQUE EE-334: DIgIta' System Design 2 (((m




Sequential Processing in Custom Hardware

« Separation between computations and control

= Datapath : performs (arithmetic or other) operations on data and keeps intermediate resultsin
memory elements. Control inputs (from control logic) define what should be done in each cycle

= Control : controls datapath and manages the sequence of operations (potentially based on
feedback from the datapath), but does not manipulate data itself

datapath section | control section

input data |} : higher-level
: ! control input
control signals
v 9 b ( v/ RV
] C ""‘" * V =] C F\h\:J )
@ RAM| A\MUX/ | FSM| [ROM L4
! > L\__\_F_,."r\—_.l
ALU status signals
|
: higher-level
output data l | i status output
data processing (arithmetic) Finite state machines,
units, data switches, random (programmable or hardwired)
logic for data manipulation, instruction sequences, counters,
data storage hardwired control logic

ECOLE POLYTECHNIQUE 3 (( H
FEDERALE DE LAUSANNE




Assessing Efficiency of the Hardware

* To assess the efficiency of a hardware architecture we need some metrics
« The most relevant metrics are:

Timing and throughput:

 Time per data item or throughput: defined by
— Cycles per data item: number of computation cycles between releasing two subsequent data items.
— Minimum clock period (max. freq.): defined by the longest path (Static Timing Analysis)

« Latency: number of computation cycles from a data item entering a circuit until the pertaining result
becomes available.

Circuit complexity: usually proportional to circuit size or area (for FPGAs: resource utilization)

Size-time AT-product (efficiency): the hardware resources spent to obtain a given throughput
« Combines circuit complexity and throughput in a figure of merit (FOM)

Power and energy consumption
« Very important, but also very difficult to estimate

(A

OLYTICHNIOUE EE-334: Digital System Design 4 (((m

DE LAUSANN



Characteristics of the Isomorphic Architecture

* Generic statements are difficult, but some general remarks are straightforward
assuming an algorithm with N operations

= Timing and throughput: 0(1) — O(N)
« Critical path length: determined by the algorithm, but generally long: 0(1) — O(N)
- Cycles per data item: purely combinational logic, hence, single cycle: 0(1)

= Circuit complexity: often prohibitively high: O(N)
» (dedicated resources for every operation)

= Sjze-time product AT (efficiency): O(N) — O(N?)

= Power and energy consumption: don'’t even try to estimate...
« Good: no power for registers, bad: lots of glitching due to long combinational paths

Isomorphic architecture is rarely attractive due to large area and only OK timing,
BUT it provides a great starting point for optimization

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 5 (((H




Systematic Approach to Steps 2-4: optimization

P - . D)
ECOLE POLYTECHNIQUE EE-334: Dlglta| System Design 6

Defining hardware resources, followed by scheduling, binding, and register
allocation is a crucial optimization process

= Determines the area of the circuit (more resources, more area)

= Determines the number of cycles and the cycle time, i.e., the time per data item (throughput)

How to design and optimize a datapath for different area/throughput objectives?

We use a transform approach to optimization
= [somorphic architecture is the starting point: easy to obtain and unique
« Straightforward representation as a block diagram with no overhead or control
= Systematic (reversible) transformations improve some design metrics, while worsening others

« Each transformation results in a new block diagram

« Evaluation of the main performance metrics shows if the transformation was beneficial and hints to
further transformations

DE LAUSANN



ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Datapath Representation as Data Flow Graph

« There are six main transformations that allow for moving around in the design

space, while optimizing area (4), time per data item (T), and the AT product.

= [terative decomposition
= Loop unrolling

» Resource sharing
= Replication

» Pipelining
= Retiming

Pareto-optimal design: a design where

AREA

DESIGN SPACE

faster &
larger

A

faster

faster & slower &
smaller Smaller — smaller

TIME per data item

you can not make one metric better without making another one worse

EE-334: Digital System Design

; ()




Iterative Decomposition and (Loop) Unrolling

« Applicable to sequences of dependent identical (or similar) operations

= [terative decomposition: spread subsequent combinational operations across multiple cycles
= (Loop) unrolling: map operations from multiple cycles into a single combination operation

+ Iterative decomposition —Y\\—j;, —Y\d}
O f > v
— )
o | f1 ©
o >
- & fuf
‘E 4 f ™ 1}3 27
f (Loop) unrolling !
~ | f -I— — -I—
v v
f | a=aEm +ZA(fn) A = A(FF) + A(f) + AMMUX) A = A(FF) +ZA(fn) + A(MUX)
f3
-1- = tpr + z tpd(fn)
r=r: (tFF + tyux + tpd(f)) r=r- (tFF t tyyx + max tpd(fn))
)
&g!&ﬂf‘!{@ EE-334: Digital System Design m)))




Time (Resource) Sharing and Replication

« Applicable to independent (parallel) identical (or similar) operations
= Time (resource) sharing: distribute parallel operations across multiple cycles
= Replication: replicate a resource that is shared for independent operations over multiple cycles

to carry these out in parallel
Time sharing % %

S i
S I I :
VT i 4 o f1fa
! L f2 k Replication / I S
A =A(FF) + ZA(fn) A= A(FF) + A(f) + AlMUX) A =A(FF)+ ZA(fn) + AMUX)
r=b r=D

= tpp + mr?x tpd(In) +
| T=T. (tFF + tyyx + tpd(f)) T>T - (tFF tyyx + max tpd(in))
- - n

EE-334: Digital System Design 9 (((m)))

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Pipelining

* Applicable to long (slow) sequences of combinational logic

» Pipelining: split a combinational path into segments that operate independently and in parallel
on different data by inserting pipeline registers

l Balanced pipeline (maximum 1
clock frequency: all stages
/ have the same delay /
f1 f1
2 pipelining : —1— <
> [ ¢ F ] 3
T f2 f2 ‘E
- —l— -
p A = A(FF) + zA(fn) A=P-AFF) + ZA(fn) ;
fs T=trr+ Y t,a(f) s
+ — L'FF pd fn T = (tFF + mT?X tpd(fn)) +
&g!iﬁg@ EE-334: Digital System Design 10 (((H




Retiming
* Pipelines are not always well balanced: not all stages have the same delay

L

« Unbalanced pipelines originate from fi _ _ 51
_ f1 > thg = Ins =t
= Careless placement of the registers
= Attempts to minimize the number of registers T fi 5
to be inserted when pipelining f1 > tpa = 1ns = 1pg
= From new critical paths created when '1'
iInserting shimming registers £ > tgld = 1ns
l tgz = 3ns
* Clock period of a pipelined design is f2 > t,?d = 2ns
determined by the longest pipeline -+

stage (pipeline stage with the longest path) _ (tFF + max{¢S1, ¢52 tsg}) — tpp + 305
n pa’ “pa’ ~p

ECOLE POLYTECE
FEDERALE DE LAL

rmioue — Fall 2020 EE-334: Digital System Design 11 (((H

1
JSANNE




Retiming

 Moving pipeline registers to reduce the length of the relevant longest stage
while increasing the delay of shorter (irrelevant) stages reduces clock period

| |
tgld = Ins < f1 t,‘i}z = 1ns f1 tgé = 1ns
tI1 = 1ns S2 _
pd f1 tpa = 1ns f1

t£1d=1ns < f1 l f1

fi — S3 _
thg = 2ns < f fo tha = 2ns
_ S1 152 .S3 _ S1 152 .S3
T = (tFF + mﬁx{tpd, = tpd}) T = (tFF + mr?x{tpd, = tpd})
= tpr + 3105 = tpr + 2n5S

ECOLE POLYTECH
FEDERALE DE LAL

mvout Fall 2020 EE-334: Digital System Design 12 (((ﬁ




Systematic Retiming

* Pipelines registers can be moved (retiming) “forward” and “backward”, step-by-
step to rebalance an unbalanced pipeline

* Retiming: applied to a node in the schematic (data-dependency graph)

Forward
R " = Remove a registers from every input of the node
( ) » Insert a register at every output of the same node
\\_\ L’/ >

7 AN Backward
{ Y = Remove a registers from every output of the node
\ /

* / » Insert a register at every input of the same node

A

= Nodes can only be retimed if all inputs/outputs have sufficient registers to remove one

-(I’fl-

oue rorvrecunioue  Fall 2020 EE-334: Digital System Design 13 (((ﬁ)))




Comparison of Architectural Transformations

« Comparison with standard metrics for area, time per data item and efficiency (AT)

Factor | Cycles Clock period Time per data item Area AT
Operation product
min max min max min max
It. Decomp. D D 1/D + 6 1+6 1+ D6 D + D6 1/D + 6 1+6 1/D + 6
Unrolling D 1 <D D <D D D D D?
Time sharing D D 1 1+6 D D+ D6 1/D 14+6
Replication D 1 1 1 1 1 D D D
Pipelining P 1 1/P+6 146 1/P+6 14+6 14+6 14+6 1/P+6
» Most transformations have their pros and cons.
= Strong differences even for a given transformation depending on how well it can be applied
P\ (@




Architectural Transformations in the Design Space

muliinhe repicatod
veeTant

o pecassing U

 Architectural transformations allow to
move around in the design space

e

AREA

E‘EI” “ ,

actual
replication effect

® _—

\ ideal effect
QN *

towards -
[hrﬂughpu‘t G @ _ @ -
pipelining - .
iterative e
decom- |
position ' time sharing o A
@ e
®

L]
p)
dime-sivanad' A 13
ievaive and Le ¥ ,ﬁ
towards T e }‘“

i mfiiie wqdLypm =)=
Pullilie mdlDom  =( )

i
i

-P- -a—Jp-
-ljj]- -d—p-

A
L)

§ 'ﬂ]ImIU' -ﬂmD- -
ey TyrE

i om

t / e
={h

D=3
£rr

_@E@@_
D[IIEIIII(]

PP a-[TD- -d—p-

s -
i
&
L §

DLEJG

hardware )
efficiency Il Il
towards [l L1
hardware s ctarsa —= o 1 A -
economy miEE [ piie [ TIME per
i )

" data item

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 15 (((m)))




Mult-4 Example: Isomorphic Architecture

la b
. . . O
 Array multiplier algorithm ﬁ ble] |
/
as C) d; de v 1
x by, b, b, b, «1
asby  abp  aby  Agby bp, 0 b[1]
a;b;  ab;  a;b;  aghy bp, ¢—o 1
asb, a,b, ab, ayb, bp, vy v < 2
as;b; a,by; a;b;  agbs bp; n 0
b[2
P7 Pe Ps Pa P3 P> P1 Po e [ ]o
— o
!
v 3
int mult-4(a,b) { <3
if(b[@] == 1) g = a; + 0
else q = ©; b[3] |
for (i=1; i<=3;i++) {
if(b[i] == 1) g += a<<i; v
else q += 0;
} +
return q;
}
EE-334: Digital System Design 16 (((

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Mult-4 Example: Pipelining

« Array multiplier PIPELINING
1. Identify critical path

2. Cut the critical path into P ~equal pieces
by inserting pipeline registers

3. Equalize the latency of all paths by

» Enclosing all down-stream vertices of each
pipeline register in a separate box

* Inserting additional shimming registers (for
each pipeline register) on the input of each F b[3] ]
box —i _.l

-(I’fl-

OLE POLYTECHNIQUE EE-334: Digital System Design 17 (((




Mult-4 Example: Iterative Decomposition (1/2)

. }2 b
« Array multiplier ITERATIVE OTQ ble] |
7
DECOMPOSITION I 3
1. Identify largest common sub-circuits <<|1
across subsequent logic stages b[1]
— 1
! <2
+ —
g
—_— 1/ [
K3
. N
. b[3] |
— 1
EE-334: Digital System Design 18 (((

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Mult-4 Example: Iterative Decomposition (2/2)

« Array multiplier ITERATIVE %*7 be]
DECOMPOSITION | ?

1. Identify largest common sub-circuits <1
across subsequent logic stages 1

2. Keep only a single instance
« Allocate/add registers to store the output L3

- Add MUXes to select the inputs from the
ones used previously for the different
Instances

b[3]

¢
Ut

[ 0 1

I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 19 (((




FIR Filter Example

Construct a Finite Impulse Response (FIR) filter from its equation

4 bl b2 b3 b4
ylkl = )" by - xlk 7]
n=1
_|_
:@:
T > Tpr + T, +2T,
ylk]
. — (((
[COLE POLYTECHNIQUE Fall 2020 EE-334: Digital System Design 20




FIR Filter Example (Retimed)

« Construct a Finite Impulse Response (FIR) filter from its equation

............
.
.....
L
L

<
<

@) @
5 5

ylk] ylk]
T > TFF + T* +2T+ T > TFF + maX{T*, 2T+}
- S (
icour royrichniour  Fall 2020 EE-334: Digital System Design 21




FIR Filter Example (Retimed & Pipelined)

« Construct a Finite Impulse Response (FIR) filter from its equation

by b, bs by bs
ylk] ylk]
T > TFF + maX{T*, 2T+} T > TFF + maX{T*, T_|_}
)
%ﬂiﬁf‘!{@ Fall 2020 EE-334: Digital System Design 22 (((H




FIR Filter Example (Iterative Decomposition)

« Construct a Finite Impulse Response (FIR) filter from its equation

A= 4AFF + 414* +3A+ A= SAFF + 3AMUX + A* + A_|_
Ix[k— 1] I x[k — 2] x[k — 3] x[k — 4] x[k — 1] x[k — 2] x[k — 3] x[k — 4]
e — | [ | | | | N
b1 b4-
N/
b1—>
bz—b X
bz —
ylk] bi—»}
4 O—:}
ylkl = > by - x[k =7l '
>
I'=Tpp + 1. 214 T>4(Tpp + Tyux +T. +T4)
)
%g!gfé{@ Fall 2020 EE-334: Digital System Design 23 (((m)))




	Slide 1: EE-334 Digital System Design
	Slide 2: Isomorphic Architecture
	Slide 3: Sequential Processing in Custom Hardware
	Slide 4: Assessing Efficiency of the Hardware
	Slide 5: Characteristics of the Isomorphic Architecture
	Slide 6: Systematic Approach to Steps 2-4: optimization
	Slide 7: Datapath Representation as Data Flow Graph
	Slide 8: Iterative Decomposition and (Loop) Unrolling
	Slide 9: Time (Resource) Sharing and Replication
	Slide 10: Pipelining
	Slide 11: Retiming
	Slide 12: Retiming
	Slide 13: Systematic Retiming
	Slide 14: Comparison of Architectural Transformations
	Slide 15: Architectural Transformations in the Design Space
	Slide 16: Mult-4 Example: Isomorphic Architecture
	Slide 17: Mult-4 Example: Pipelining
	Slide 18: Mult-4 Example: Iterative Decomposition (1/2)
	Slide 19: Mult-4 Example: Iterative Decomposition (2/2)
	Slide 20: FIR Filter Example
	Slide 21: FIR Filter Example (Retimed)
	Slide 22: FIR Filter Example (Retimed & Pipelined)
	Slide 23: FIR Filter Example (Iterative Decomposition)

