
EE-334

Digital System Design

Custom Digital Circuits

From Algorithms to Architectures

EE-334: Digital System Design 1

Andreas Burg

(Alain Vachoux)

Starting from Specifications as Sequential Code

• Algorithms are usually specified as mathematical expressions or as

sequential programs

• Mathematical representation must be written with care to avoid ambiguities

• Representation as sequential programs

▪ usually remove already significant amounts of overhead (re-use)

▪ often imply a step by step execution on few shared computing resources

• Longer programs generally take only more time on a sequential processor

• Sequential execution may resolve ambiguities (imply priority)

• Example algorithm

EE-334: Digital System Design 2

int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

𝑞 =

1

8
෍

𝑖=0

3

𝑎[𝑖] + 1 mo𝑑8 ෍

𝑖=0

3

𝑎[𝑖] > 3

1

8
෍

𝑖=0

3

𝑎[𝑖] 𝑒𝑙𝑠𝑒

Isomorphic Architecture

• Isomorphic architecture: straightforward mapping of an algorithm to hardware

▪ Corresponds to the data flow graph of the algorithm

• Vertices correspond to operations, edges route intermediate results to other vertices

▪ Every operation is mapped to a dedicated combinational hardware unit

• Loops are unrolled: loop counter must be computable (known) at design time

• Conditional statements become multiplexers

EE-334: Digital System Design 3

int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

Sequential code in process statements Explicit modelling with concurrent statements

Isomorphic Architecture in VHDL

• VHDL offers multiple options to describe an isomorphic architecture:

EE-334: Digital System Design 4

process (a) is

variable acc, q, r : unsigned(7 downto 0);

begin

acc := unsigned(a(0));

for i in 1 to 3 loop

acc := acc + unsigned(a(i));

end loop;

q := "000" & acc(7 downto 3); -- /8

r := "00000" & acc(2 downto 0); -- rem 8

if r > 3 then

q := q + 1;

end if;

outp <= std_logic_vector(q);

end process;

architecture dfl of sigproc is

signal sum0, sum1 : unsigned(7 downto 0);

signal sum2, sum3, q, r : unsigned(7 downto 0);

begin

sum0 <= unsigned(a(0));

sum1 <= sum0 + unsigned(a(1));

sum2 <= sum1 + unsigned(a(2));

sum3 <= sum2 + unsigned(a(3));

q <= "000" & sum3(7 downto 3); -- /8

r <= "00000" & sum3(2 downto 0); -- rem 8

outp <= std_logic_vector(q + 1) when r > 3 else

std_logic_vector(q);

end architecture dfl;

Isomorphic Architecture in VHDL

• VHDL offers multiple options to describe an isomorphic architecture:

• Sequential code in process statements

▪ Compact code is interpreted and expanded automatically

in the elaboration phase of the hardware synthesis

• Loops are unrolled automatically

• Hardware resources are automatically allocated and connected

▪ Variables are used instead of signals to pass results

between sequential statements

• Variables are similar to signals, but are assigned immediately

and can be re-used. They only exist until the end of the process.

• Convenient, but dangerous approach : IDEALLY DO NOT USE!

▪ Many pitfalls for code that can not be synthesized (e.g., non-constant loop counters)

▪ Often hides complexity: loops do not imply reuse of resources!!!

EE-334: Digital System Design 5

Isomorphic Architecture in VHDL

• VHDL offers multiple options to describe an isomorphic architecture:

• Explicit modelling with concurrent statements

▪ Sequential code must be expanded manually

▪ Components connected with signals

• Need for many signals that must be defined explicitly

▪ Does not use many of the features that render

sequential code compact

• A bit more tedious to write, but much more close to the architecture

▪ All statements map directly to corresponding hardware

EE-334: Digital System Design 6

Efficiency of Combinational Circuits

• Combinational circuits are actually very inefficient:

▪ Every element has only a very small delay (time in which it performs useful computations)

▪ Synchronous paradigm requires every gate to wait almost 1 complete cycle for the next input

• Useful activity propagates like a wave through the combinational circuit

EE-334: Digital System Design 7

useful
activity

unstable result

sum1

sum2

sum3

• Single-cycle (combinational) processing is not efficient and not flexible

▪ Algorithm defines both circuit complexity and computation time (throughput)

• Multi-cycle computation architecture enables

▪ Decomposition of computations into multiple steps

▪ Re-use of computation resources between the steps

▪ Flexibility in scheduling operations in time and

binding them to different resources

• Distribution of computations over multiple

cycles (time steps) provides more flexibility

to trade time for complexity (area)

▪ Ability to design for given requirements (area or throughput)

▪ Often better overall efficiency (AT-product)

Sequential Processing in Custom Hardware

8

Op1a Op1b Op1c Op1d

CLK

1 resource

Op1a
Op1b

Op1c
Op1d

CLK

R
e
s
o
u
rc

e
s

Op1a
Op1b

CLK

2 resources
Op1c

Op1d

Sequential Processing in Custom Hardware

• Separation between computations and control

▪ Datapath : performs (arithmetic or other) operations on data and keeps intermediate resultsin

memory elements. Control inputs (from control logic) define what should be done in each cycle

▪ Control : controls datapath and manages the sequence of operations (potentially based on

feedback from the datapath), but does not manipulate data itself

9

data processing (arithmetic)

units, data switches, random

logic for data manipulation,

data storage

Finite state machines,

(programmable or hardwired)

instruction sequences, counters,

hardwired control logic

higher-level

control input

higher-level

status output

Sequential Processing in Custom Hardware

• Architectural template follows the RTL principle

▪ FSM for control with connections to

and from the datapath

▪ Datapath: organized similar to processors

• Storage elements keep partial results

for subsequent clock cycle

• Functional units perform computations

– Reconfigurable with control signals

• Routing networks connect

– Functional units and storage elements

– Functional units with other functional units

EE-334: Digital System Design 10

Routing
network

Routing
network

Datapath Design Procedure

• Datapath determines complexity and throughput

▪ Many degrees of freedom render finding optimal the design difficult

• Datapath design in five steps

▪ Leads to an RTL diagram of the datapath with various control inputs

• Control path: follows from the design of the datapath

11

Decide on the type
of functional units
that are required

Define an
“appropriate”

number of instances
for each functional

unit type

Schedule and bind
operations across

clock cycles (when to
do what on which

unit)

Determine required
storage elements for
intermediate results

Define interconnect
between functional
units and registers

(Block Diagram)

Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1

EE-334: Digital System Design 12

int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1

• Step-2: define hardware resources

▪ One instance for each type of resource (max reuse)

EE-334: Digital System Design 13

int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1

• Step-2: define hardware resources

▪ One instance for each type of resource (max reuse)

• Can be used only once in each cycle

• Step-3: schedule operations across cycles

and bind to hardware resources

▪ For-loop in cycles 0-3, update of q in cycle 4

▪ Binding with 1 operation

• Step-4: determine storage elements

▪ Registers (2) for interediate sum and redult q

EE-334: Digital System Design 14

int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

Operations REG

0 sum_nxt=0+a[0] sum

1 sum_nxt=sum+a[1] sum

2 sum_nxt=sum+a[2] sum

3 sum_nxt=sum+a[3] sum

4 q=sum/8; q’=q+1;
r=sum%8; cond=r>3
out_nxt=sel(q,q’;cond) out

Datapath Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1

• Step-2: define hardware resources

▪ One instance for each type of resource (max reuse)

• Step-3: schedule operations across cycles

and bind to hardware resources

▪ For-loop in cycles 0-3, update of q in cycle 4

▪ Binding with 1 operation

• Step-4: determine storage elements

▪ Registers (2) for interediate sum and redult q

• Step-5: define interconnect (MUXes)

EE-334: Digital System Design 15

int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

0

Example Implementation in VHDL

entity sigproc is

port (

signal clk : in std_logic;

signal rst : in std_logic;

signal a : in std_logic_vector(31 downto 0);

signal outp : out std_logic_vector(7 downto 0)

signal done : out std_logic);

end entity sigproc;

architecture rtl of sigproc is

-- for structuring the input a

type au_vector is array (0 to 3) of unsigned(7 downto 0);

signal acc_next, acc_reg : unsigned(7 downto 0);

signal outp_next, outp_reg : unsigned(7 downto 0);

signal count_next, count_reg : unsigned(2 downto 0);

signal q, r : unsigned(7 downto 0);

signal au : au_vector;

...continued next slide...

0

Example Implementation in VHDL

...continued from previous slide...

begin -- architecture rtl

REG : process (clk, rst) is

begin

if rst = '1' then

acc_reg <= (others => '0');

outp_reg <= (others => '0');

count_reg <= (others => '0');

elsif rising_edge(clk) then

acc_reg <= acc_next;

outp_reg <= outp_next;

count_reg <= count_next;

end if;

end process REG;

...continued next slide ...

0

Example Implementation in VHDL

...continued from previous slide...

count_next <= count_reg + 1 when count_reg <= 3 else

(others => '0');

done <= '1' when count_reg = 0 else

'0';

A_SPLIT : for i in 0 to 3 generate

au(i) <= unsigned(a((i+1)*8-1 downto i*8));

end generate A_SPLIT;

acc_next <= acc_reg + au(to_integer(count_reg))

when count_reg <= 3 else

(others => '0');

q <= "000" & acc_reg(7 downto 3); -- /8

r <= "00000" & acc_reg(2 downto 0); -- % 8

outp_next <= q + 1 when r > 3 else

q;

outp <= std_logic_vector(outp_reg);

end architecture rtl;

0

	Slide 1: EE-334 Digital System Design
	Slide 2: Starting from Specifications as Sequential Code
	Slide 3: Isomorphic Architecture
	Slide 4: Isomorphic Architecture in VHDL
	Slide 5: Isomorphic Architecture in VHDL
	Slide 6: Isomorphic Architecture in VHDL
	Slide 7: Efficiency of Combinational Circuits
	Slide 8: Sequential Processing in Custom Hardware
	Slide 9: Sequential Processing in Custom Hardware
	Slide 10: Sequential Processing in Custom Hardware
	Slide 11: Datapath Design Procedure
	Slide 12: Design Procedure Example
	Slide 13: Design Procedure Example
	Slide 14: Design Procedure Example
	Slide 15: Datapath Design Procedure Example
	Slide 16: Example Implementation in VHDL
	Slide 17: Example Implementation in VHDL
	Slide 18: Example Implementation in VHDL

