ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334
Digital System Design

Custom Digital Circuits
From Algorithms to Architectures

Andreas Burg
(Alain Vachoux)

EE-334: Digital System Design

Starting from Specifications as Sequential Code

« Algorithms are usually specified as mathematical expressions or as

sequential programs

« Mathematical representation must be written with care to avoid ambiguities

* Representation as sequential programs
= usually remove already significant amounts of overhead (re-use)

= often imply a step by step execution on few shared computing resources
» Longer programs generally take only more time on a sequential processor

« Seguential execution may resolve ambiguities (imply priority)
« Example algorithm

int sigproc(int a[]) {

int q, r;

int sum = a[@];

for (int i=1; i<=3;i++) {
sum += a[i];

(3 3

1 . p }

§Z J+1 modg z“ q = sum/8;

g={ ° =0 r = sum % 8;
1 > if (r > 3) q += 1;
§Z else return q;
i=0 }
)
-(!\fu&E EE-334: Digital System Design 2 (((m

Isomorphic Architecture

* Isomorphic architecture: straightforward mapping of an algorithm to hardware
= Corresponds to the data flow graph of the algorithm
» Vertices correspond to operations, edges route intermediate results to other vertices
= Every operation is mapped to a dedicated combinational hardware unit

 Loops are unrolled: loop counter must be computable (known) at design time
« Conditional statements become multiplexers

int sigproc(int a[]) {

int q, r; a(0) ——> sum1l
int sum = a[0@]; a(1) —> + _|_> cuma » >>3 q +1
forsﬁ;nt_lzi[l;]%<=3;1++) { 2(2) R + _]_, T | outp
- ’ - sum3
} a(3) » F
q sum/8;
r = sum % 8; & 11
if (r > 3) q += 1;
return q;

w

>3

w

E(PA

OLYTECHNIQUE EE-334: Digital System Design 3 (((m

AUSANN

Isomorphic Architecture in VHDL

« VHDL offers multiple options to describe an isomorphic architecture:

al0) —» + suml

a(1) — _l—b sum2
a(2) L
a(3)

Sequential code in process statements

process (a) is
variable acc, q, r :
begin
acc := unsigned(a(@9));
for 1 in 1 to 3 loop
acc := acc + unsigned(a(i));
end loop;
g := "000" & acc(7 downto 3);
r := "00000" & acc(2 downto 0);
if r > 3 then
q:=q+1;
end if;
outp <= std_logic_vector(q);
end process;

-- /8

-- rem 8

unsigned(7 downto 0);

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

—» >>3 4 > +1

T outp
sum3

* F
g 11— >3

Explicit modelling with concurrent statements

begin
sumo
suml
sum2
sum3
q <=
r <=
outp

architecture dfl of sigproc is
signal sum@, suml
signal sum2, sum3, g, r :

: unsigned(7 downto 0);
unsigned(7 downto 0);

<= unsigned(a(9));

<= sum@ + unsigned(a(l));

<= suml + unsigned(a(2));

<= sum2 + unsigned(a(3));

"000" & sum3(7 downto 3); -- /8

"00000" & sum3(2 downto @); -- rem 8

<= std logic vector(g + 1) when r > 3 else
std logic vector(q);

end architecture dfl;

EE-334: Digital System Design

Isomorphic Architecture in VHDL

« VHDL offers multiple options to describe an isomorphic architecture:

 Sequential code in process statements

= Compact code is interpreted and expanded automatically

in the elaboration phase of the hardware synthesis

Loops are unrolled automatically

Hardware resources are automatically allocated and connected

= Variables are used instead of signals to pass results
between sequential statements

- Variables are similar to signals, but are assigned immediately
and can be re-used. They only exist until the end of the process.

process (a) is
variable acc, q, r :
begin
acc := unsigned(a(®@));
for i in 1 to 3 loop
acc := acc + unsigned(a(i));

"9e0" & acc(7 downto 3);
"9ORRR" & acc(2 downto 8);
> 3 then
= q + 1;

end if;

outp <= std_logic_ vector(q);
end process;

_h
e N (|

unsigned(7 downto 0);

-~ /8

-- rem 8

 Convenient, but dangerous approach : IDEALLY DO NOT USE!
= Many pitfalls for code that can not be synthesized (e.g., non-constant loop counters)

ECOLE I
FEDERAIL

= Often hides complexity: loops do not imply reuse of resources!!!

fl

OLY TECHNIQUE
E FLAUSANNE

bl

AUSANN

EE-334: Digital System Design

Isomorphic Architecture in VHDL

« VHDL offers multiple options to describe an isomorphic architecture:

« Explicit modelling with concurrent statements
= Seguential code must be expanded manually
= Components connected with signals
* Need for many signals that must be defined explicitly

» Does not use many of the features that render
sequential code compact

architecture dfl of sigproc is

signal sum@, suml : unsigned(7 downto 0);
signal sum2, sum3, g, r : unsigned(7 downto ©);

begin
sum@ <= unsigned(a(®@));
suml <= sum@ + unsigned(a(l));
sum2 <= suml + unsigned(a(2));
sum3 <= sum2 + unsigned(a(3));
q <= "000" & sum3(7 downto 3);
r <= "00000" & sum3(2 downto 9);

-~ /8

-- rem 8

outp <= std logic vector(q + 1) when r > 3 else

std_logic_vector(q);
end architecture dfl;

« A bit more tedious to write, but much more close to the architecture

= All statements map directly to corresponding hardware

g\ . .
ECOLE POLYTECHNIQUE EE-334: Dlglta| System Design

DE LAUSANN

- (e

Efficiency of Combinational Circuits

« Combinational circuits are actually very inefficient:

= Every element has only a very small delay (time in which it performs useful computations)
= Synchronous paradigm requires every gate to wait almost 1 complete cycle for the next input

« Useful activity propagates like a wave through the combinational circuit

a(0) — suml

a(1) — * _\—b sum2
a(2) > + |_,
a(3) T
X useful

suml XXX activity

sum2)0 0. 0.0.0.9.9.9 4

sum3 OO XXX unstable result

)
g(l\)l]f(g@ EE-334: Digital System Design 7 (((H

Sequential Processing in Custom Hardware

« Single-cycle (combinational) processing is not efficient and not flexible
= Algorithm defines both circuit complexity and computation time (throughput)

* Multi-cycle computation architecture enables

= Decomposition of computations into multiple steps C%
» Re-use of computation resources between the steps § Opla Op1b
= Flexibility in scheduling operations in time and @ Oplc
binding them to different resources o Opld
« Distribution of computations over multiple CLK
cycles (time steps) provides more flexibility 1 resource | Opia | Oplb | Oplc | Opld
to trade time for complexity (area)
= Ability to design for given requirements (area or throughput) CLK -
= Often better overall efficiency (AT-product) Opla Oplc
2 resources Op1b Op1d

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

: (¢

Sequential Processing in Custom Hardware

« Separation between computations and control

= Datapath : performs (arithmetic or other) operations on data and keeps intermediate resultsin
memory elements. Control inputs (from control logic) define what should be done in each cycle

= Control : controls datapath and manages the sequence of operations (potentially based on
feedback from the datapath), but does not manipulate data itself

datapath section | control section

input data |} : higher-level
: ! control input
control signals
v 9 b (v/ RV
] C ""‘" * V =] C F\h\:J)
@ RAM| A\MUX/ | FSM| [ROM L4
! > L___F_,."r\—_.l
ALU status signals
|
: higher-level
output data l | i status output
data processing (arithmetic) Finite state machines,
units, data switches, random (programmable or hardwired)
logic for data manipulation, instruction sequences, counters,
data storage hardwired control logic

ECOLE POLYTECHNIQUE 9 ((H
FEDERALE DE LAUSANNE

Sequential Processing in Custom Hardware

« Architectural template follows the RTL principle

= FSM for control with connections to
and from the datapath

» Datapath: organized similar to processors

-(I’fl-

Storage elements keep partial results
for subsequent clock cycle

Functional units perform computations
— Reconfigurable with control signals

Routing networks connect
— Functional units and storage elements

— Functional units with other functional units

L lLl L‘t\l E[NJ(!_LL

Data processing unit

I

Routing
network
Routi . . Routi D
data CILiglr] —P» Functional units Al — > .ata >
input network network registers data
— Routing output
network
R Y S
internal status signals control signals ok rst
‘ Control unit ‘ control signalj
next
NSL state SM current oL
—| (Next State |———P (State state (Output external
command Logic) Memory) Logic) status
A A

EE-334: Digital System Design

clk

rst

o (G

Datapath Design Procedure

« Datapath determines complexity and throughput
= Many degrees of freedom render finding optimal the design difficult

« Datapath design in five steps

\

Decide on the type
of functional units
that are required

\

Define an
“appropriate”
number of instances
for each functional
unit type

P

Schedule and bind
operations across
clock cycles (when to
do what on which
unit)

o~

\

Determine required
storage elements for
intermediate results

—

» Leads to an RTL diagram of the datapath with various control inputs

« Control path: follows from the design of the datapath

ECOLE I
FEDERAIL

f

OLY TECHNIQUE
E FLAUSANNE

DE LAUSANN

\

Define interconnect

between functional

units and registers
(Block Diagram)

-

11 (((m

Design Procedure Example

« Step-1: identify functional units

= Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBS)
Compare to 3, Add-1

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

int sigproc(int a[]) {

int g, r;

int sum = a[@];
for (int i=1; i<=3;i++) {

sum += a[i];

sum/8;

s |lalw

sum % 8;

if |(r > 3)

q_+= 1;

return q;

12 (((

Design Procedure Example

« Step-1: identify functional units

int sigproc(int a[]) {

int q, r;

int sum = a[@];
for (int i=1; i<=3;i++) {

sum += a[i];

= Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs) ; ~ sum/8;
Compare to 3, Add-1 r = sum % 8;
if |(r > 3)|q += 1;
return q;
: }
« Step-2: define hardware resources
= One instance for each type of resource (max reuse)
a2 : ar
k[
rst [:
= B - ¥+ +1
- B - » >3
Datapath U U Control
outp done
)
“g!\rfl&! EE-334: Digital System Design 13 (((m)))

Design Procedure Example

ECOLE I
FEDERAIL

Step-1: identify functional units

f

DE LAUSANN

» Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBSs) 3; ~ sum/8;
Compare to 3, Add-1 r = sum % 8;
] if |(r > 3)|q += 1;
Step-2: define hardware resources return q;
= One instance for each type of resource (max reuse))
« Can be used only oncein each cycle
_ # Operations REG
Step-3: schedule operations across cycles .

_ 0 sum_nxt=0+a[0] sum
and bind to hardware resources 1 sum nxt=sumal1] cum
» For-loop in cycles 0-3, update of g in cycle 4 5 sum_nxt=sum+a[2] <um
* Binding with 1 o-peratlon 3 sum_nxt=sum-+a[3] <um
Step-4: determine storage elements 4 q=sum/8; q'=q+1;

» Registers (2) for interediate sum and redult g r=sum%8; cond=r>3
out_nxt=sel(qg,q’;cond) out
OLYTECHNIQUE EE-334: Digital System Design 14 ((()))

int q, r;

int sigproc(int a[]) {

int sum = a[@];
for (int i=1; i<=3;i++) {

sum += a[i];

Datapath Design Procedure Example

« Step-1: identify functional units

= Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBS)
Compare to 3, Add-1

« Step-2: define hardware resources
= One instance for each type of resource (max reuse)

int q, r;
int sum = a[@];

int sigproc(int a[]) {

for (int i=1; i<=3;i++) {

sum += a[i];

sum/8;
sum % 8;

S1Q |-

if |(r > 3)|q += 1;

return q;

}
» Step-3: schedule operations across cycles s L éD_’ I | e B
and bind to hardware resources D—D— Ll b ace pop ot
= For-loop in cycles 0-3, update of q in cycle 4 b 1 " - Clkrstj :
= Binding with 1 operation i ol
. rst [
 Step-4: determine storage elements Kyuiiew)
= Registers (2) for interediate sum and redult g B b "
. |—>> ouTP
]] > & r: >3 clk e Q
« Step-5: define interconnect (MUXes) > | Datapath st 4 Control
outp done
)
M CPA D)

OLYTICHNIOUE EE-334: Digital System Design

DE LAUSANN

Example Implementation in VHDL

entity sigproc is

port (
signal clk : in std logic;
signal rst : in std logic;
signal a : in std_logic vector(31 downto 0);

signal outp : out std logic vector(7 downto 0)
signal done : out std logic);
end entity sigproc;

architecture rtl of sigproc is

-- for structuring the input a
type au_vector is array (0 to 3) of unsigned(7 downto 0);

signal acc_next, acc_reg : unsigned(7 downto 9);
signal outp next, outp reg : unsigned(7 downto 9);
signal count_next, count_reg : unsigned(2 downto 9);
signal q, r : unsigned(7 downto 0);
signal au : au_vector;

.continued next slide...

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

.

> +1
g O D SET Q - B D SET Q
+
a 5 |—>> ACC |—>>COUNT
3 CLR E CLR 6
(clk clk
rSt_T rst—T
ck[> acc
<3 [«
rst [
—> & =0 [«
—> &
Datapath Y Control
\
outp done

Example Implementation in VHDL

...continued from previous slide...
begin -- architecture rtl

REG : process (clk, rst) is
begin
if rst = '1"' then
acc_reg <= (others => '0');
outp reg <= (others => '0');
count_reg <= (others => '0');
elsif rising edge(clk) then
acc_reg <= acc_next;
outp_reg <= outp_next;
count_reg <= count_next;
end if;
end process REG;

...continued next slide ...

.

0
1 +
a
2
3
b
ck[> acc
rst [
—> & =0 «
—> &
Datapath Y Control
\
outp done

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Example Implementation in VHDL

...continued from previous slide...

count_next <= count_reg + 1 when count_reg <= 3 else
(others => '0");
done <= '1' when count_reg = 0 else
Iel;

A SPLIT : for i in © to 3 generate
au(i) <= unsigned(a((i+1)*8-1 downto i*8));
end generate A SPLIT;

acc_next <= acc_reg + au(to_integer(count_reg))
when count_reg <= 3 else
(others => '0');

g <= "000" & acc_reg(7 downto 3); -- /8
r <= "00000" & acc_reg(2 downto @); -- % 8
outp_next <= q + 1 when r > 3 else

a;

outp <= std logic vector(outp reg);
end architecture rtl;

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

.

A 4

0 SET +1 SET
. DY Q D * a
+
a 5 |—>> ACC |—>>COUNT
3 CLR E CLR 6
(clk clk
rSt_T rst—T
ck[> acc
<3 [«
rst [
—> & =0 [«
—> &
Datapath Y Control
\
done

	Slide 1: EE-334 Digital System Design
	Slide 2: Starting from Specifications as Sequential Code
	Slide 3: Isomorphic Architecture
	Slide 4: Isomorphic Architecture in VHDL
	Slide 5: Isomorphic Architecture in VHDL
	Slide 6: Isomorphic Architecture in VHDL
	Slide 7: Efficiency of Combinational Circuits
	Slide 8: Sequential Processing in Custom Hardware
	Slide 9: Sequential Processing in Custom Hardware
	Slide 10: Sequential Processing in Custom Hardware
	Slide 11: Datapath Design Procedure
	Slide 12: Design Procedure Example
	Slide 13: Design Procedure Example
	Slide 14: Design Procedure Example
	Slide 15: Datapath Design Procedure Example
	Slide 16: Example Implementation in VHDL
	Slide 17: Example Implementation in VHDL
	Slide 18: Example Implementation in VHDL

