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Starting from Specifications as Sequential Code

• Algorithms are usually specified as mathematical expressions or as

sequential programs 

• Mathematical representation must be written with care to avoid ambiguities

• Representation as sequential programs 

▪ usually remove already significant amounts of overhead (re-use)

▪ often imply a step by step execution on few shared computing resources

• Longer programs generally take only more time on a sequential processor

• Sequential execution may resolve ambiguities (imply priority)

• Example algorithm
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int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

𝑞 =

1

8
෍

𝑖=0

3

𝑎[𝑖] + 1 mo𝑑8 ෍

𝑖=0

3

𝑎[𝑖] > 3

1

8
෍

𝑖=0

3

𝑎[𝑖] 𝑒𝑙𝑠𝑒



Isomorphic Architecture

• Isomorphic architecture: straightforward mapping of an algorithm to hardware

▪ Corresponds to the data flow graph of the algorithm

• Vertices correspond to operations, edges route intermediate results to other vertices

▪ Every operation is mapped to a dedicated combinational hardware unit

• Loops are unrolled: loop counter must be computable (known) at design time

• Conditional statements become multiplexers
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int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}



Sequential code in process statements Explicit modelling with concurrent statements

Isomorphic Architecture in VHDL

• VHDL offers multiple options to describe an isomorphic architecture:
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process (a) is

variable acc, q, r : unsigned(7 downto 0);

begin

acc := unsigned(a(0));

for i in 1 to 3 loop

acc := acc + unsigned(a(i));

end loop;

q := "000" & acc(7 downto 3);  -- /8

r := "00000" & acc(2 downto 0);  -- rem 8

if r > 3 then

q := q + 1;

end if;

outp <= std_logic_vector(q); 

end process;

architecture dfl of sigproc is

signal sum0, sum1  : unsigned(7 downto 0);

signal sum2, sum3, q, r : unsigned(7 downto 0);

begin

sum0 <= unsigned(a(0));

sum1 <= sum0 + unsigned(a(1));

sum2 <= sum1 + unsigned(a(2));

sum3 <= sum2 + unsigned(a(3));

q <= "000" & sum3(7 downto 3);  -- /8

r <= "00000" & sum3(2 downto 0);  -- rem 8

outp <= std_logic_vector(q + 1) when r > 3 else

std_logic_vector(q);

end architecture dfl;



Isomorphic Architecture in VHDL

• VHDL offers multiple options to describe an isomorphic architecture:

• Sequential code in process statements

▪ Compact code is interpreted and expanded automatically 

in the elaboration phase of the hardware synthesis 

• Loops are unrolled automatically 

• Hardware resources are automatically allocated and connected

▪ Variables are used instead of signals to pass results 

between sequential statements

• Variables are similar to signals, but are assigned immediately 

and can be re-used. They only exist until the end of the process.

• Convenient, but dangerous approach : IDEALLY DO NOT USE!

▪ Many pitfalls for code that can not be synthesized (e.g., non-constant loop counters)

▪ Often hides complexity: loops do not imply reuse of resources!!!
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Isomorphic Architecture in VHDL

• VHDL offers multiple options to describe an isomorphic architecture:

• Explicit modelling with concurrent statements

▪ Sequential code must be expanded manually

▪ Components connected with signals

• Need for many signals that must be defined explicitly

▪ Does not use many of the features that render 

sequential code compact

• A bit more tedious to write, but much more close to the architecture

▪ All statements map directly to corresponding hardware
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Efficiency of Combinational Circuits

• Combinational circuits are actually very inefficient:

▪ Every element has only a very small delay (time in which it performs useful computations)

▪ Synchronous paradigm requires every gate to wait almost 1 complete cycle for the next input

• Useful activity propagates like a wave through the combinational circuit
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• Single-cycle (combinational) processing is not efficient and not flexible 

▪ Algorithm defines both circuit complexity and computation time (throughput)

• Multi-cycle computation architecture enables

▪ Decomposition of computations into multiple steps

▪ Re-use of computation resources between the steps

▪ Flexibility in scheduling operations in time and 

binding them to different resources

• Distribution of computations over multiple 

cycles (time steps) provides more flexibility

to trade time for complexity (area)

▪ Ability to design for given requirements (area or throughput)

▪ Often better overall efficiency (AT-product)

Sequential Processing in Custom Hardware
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Sequential Processing in Custom Hardware

• Separation between computations and control

▪ Datapath : performs (arithmetic or other) operations on data and keeps intermediate resultsin

memory elements. Control inputs (from control logic) define what should be done in each cycle

▪ Control : controls datapath and manages the sequence of operations (potentially based on 

feedback from the datapath), but does not manipulate data itself
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Sequential Processing in Custom Hardware

• Architectural template follows the RTL principle

▪ FSM for control with connections to 

and from the datapath

▪ Datapath: organized similar to processors

• Storage elements keep partial results

for subsequent clock cycle

• Functional units perform computations

– Reconfigurable with control signals

• Routing networks connect

– Functional units and storage elements

– Functional units with other functional units
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Datapath Design Procedure

• Datapath determines complexity and throughput

▪ Many degrees of freedom render finding optimal the design difficult

• Datapath design in five steps

▪ Leads to an RTL diagram of the datapath with various control inputs

• Control path: follows from the design of the datapath
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Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1
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int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}



Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1

• Step-2: define hardware resources

▪ One instance for each type of resource (max reuse)
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int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}



Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1

• Step-2: define hardware resources

▪ One instance for each type of resource (max reuse)

• Can be used only once in each cycle

• Step-3: schedule operations across cycles 

and bind to hardware resources

▪ For-loop in cycles 0-3, update of q in cycle 4

▪ Binding with 1 operation

• Step-4: determine storage elements

▪ Registers (2) for interediate sum and redult q
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int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}

# Operations REG

0 sum_nxt=0+a[0] sum

1 sum_nxt=sum+a[1] sum

2 sum_nxt=sum+a[2] sum

3 sum_nxt=sum+a[3] sum

4 q=sum/8;  q’=q+1; 
r=sum%8; cond=r>3
out_nxt=sel(q,q’;cond) out



Datapath Design Procedure Example

• Step-1: identify functional units

▪ Adder, Div-by-8 (shift-right-3), Modulo-8 (extract 3 LSBs)

Compare to 3, Add-1

• Step-2: define hardware resources

▪ One instance for each type of resource (max reuse)

• Step-3: schedule operations across cycles 

and bind to hardware resources

▪ For-loop in cycles 0-3, update of q in cycle 4

▪ Binding with 1 operation

• Step-4: determine storage elements

▪ Registers (2) for interediate sum and redult q

• Step-5: define interconnect (MUXes)
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int sigproc(int a[]) {

int q, r;

int sum = a[0];

for (int i=1; i<=3;i++) {

sum += a[i];

}

q = sum/8;

r = sum % 8;

if (r > 3) q += 1;

return q;

}
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Example Implementation in VHDL

entity sigproc is

port (

signal clk : in  std_logic;

signal rst : in  std_logic;

signal a    : in  std_logic_vector(31 downto 0);

signal outp : out std_logic_vector(7 downto 0)

signal done : out std_logic);

end entity sigproc;

architecture rtl of sigproc is

-- for structuring the input a

type au_vector is array (0 to 3) of unsigned(7 downto 0);

signal acc_next, acc_reg : unsigned(7 downto 0);

signal outp_next, outp_reg : unsigned(7 downto 0);

signal count_next, count_reg : unsigned(2 downto 0);

signal q, r                  : unsigned(7 downto 0);

signal au                    : au_vector;

...continued next slide...
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Example Implementation in VHDL

...continued from previous slide...

begin -- architecture rtl

REG : process (clk, rst) is

begin

if rst = '1' then

acc_reg <= (others => '0');

outp_reg <= (others => '0');

count_reg <= (others => '0');

elsif rising_edge(clk) then

acc_reg <= acc_next;

outp_reg <= outp_next;

count_reg <= count_next;

end if;

end process REG;

...continued next slide ...
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Example Implementation in VHDL

...continued from previous slide...

count_next <= count_reg + 1 when count_reg <= 3 else

(others => '0');

done <= '1' when count_reg = 0 else

'0';

A_SPLIT : for i in 0 to 3 generate

au(i) <= unsigned(a((i+1)*8-1 downto i*8));

end generate A_SPLIT;

acc_next <= acc_reg + au(to_integer(count_reg)) 

when count_reg <= 3 else

(others => '0');

q <= "000" & acc_reg(7 downto 3);  -- /8

r <= "00000" & acc_reg(2 downto 0);  -- % 8

outp_next <= q + 1 when r > 3 else

q;

outp <= std_logic_vector(outp_reg);

end architecture rtl;
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