ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334
Digital System Design

Custom Digital Circuits

Finite State Machines
and their description in VHDL

Andreas Burg

EE-334: Digital System Design

Purpose/Task of Finite State Machines

* Finite state machines (FSMs) are a mathematical model of computation

 FSMs describe discrete time systems
= At each point in time the FSM is in exactly one of its possible states

» State changes instantly and only when proceeding from one time instant to the next
« Perfect match with synchronous design, where state changes only with clock edge

» The outputs and the next state are defined by the inputs and the present state

 In digital system design, the FSM formalism is particularly useful for
= Functional specification of control- and protocol-tasks
= Modeling overall system behavior in an abstract way for simulation
= Formal verification (with the help of Automata Theory)
= Describing sequential circuits for synthesis

YTECHNIQUE
DE LAUSANNE

ECOL

EE-334: Digital System Design

FEDER

Purpose/Task of Finite State Machines

 Every practical discrete-time system with a finite number of states and inputs
can be described completely (datapath and control) as a finite-state-machine

= However, for datapaths, the number of states explodes and FSMs are not a convenient
description.

* In practice, the FSM formalism is mostly used for the control part

= control the operations and the flow of data in datapaths
« generate sequences of control signals to orchestrate operation over time
 internal results from a datapath and modify dataflow accordingly

* manage the communication between system components through sequential protocols
* react to inputs depending on the current state of the system

» keep track of the “relevant” history of a system in compressed form (state)

ECOL QUE
FEDEI NMNE

EE-334: Digital System Design 3 (((

Purpose/Task of Finite State Machines

« Some examples for use of FSMs

A

SrADY

(I

_/

JELAYED ‘\M \ | A‘

L
CYCLE REQUEST y N\ / 8 /J—_
sy -

|
9T u"‘u\kﬁ;ﬂ =

vaww.interfacebus com)

Al
DaCin
OAS2
-1
Controller
2 by,
L & Iy
Ya ¥_Contl Bus (5 Biis)
Circuit Globe

e o
OuRegeDP | <]
- f Handshake Lines (3 Bits)
FIR Filter

Datapath of a dedicated DSP Handshake protocol for Control of traffic lights
block (here: FIR filter) connected chips/components

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 4 (((

Mealy FSM: Formal Specification

 Mealy-FSMs are the most generic description of an FSM (can, in principal fully
describe any synchronous system on a functional level)

* |nputs, outputs, and states are abstract quantities chosen from finite sets

 Formal specification of Mealy FSM: Separate functions compute
= the output from the present state and the input
" the next state from the present state and the input

o(k) = g(i(k),s(k)) Output function i(k) el Input (k) ‘ é § g }i > o(k)

stk+1)= f(i(k),s(k)) Next state function o(k) € 0 Output iCombinationaI
s(k) €S State i logic

s(0) = sy, [Initial state P
i(k)_ o(k) Present Next
i’ S(k) state I< state
Latency = 0 st N s+ 1)

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 5 (((m)»

State Diagram Representation

« Formal FSM definition describes the operation, but not the transfer functions

- State diagrams provide a graphical means to represent

= the next state transfer function and

= the output I ={ab},S =1{p,qrt}0=1{01}
« State diagram formalism

= State represented by vertices

= Transition represented by edges

» |nput (condition) and output:
annotated on edges <input/output>

Default transition: no input annotation
Taken when the condition for no other
transition is met

 [nitial (RESET) state defines s(0)
P

EE-334: Digital System Design

State Table Representation

« State diagrams become difficult to handle for complex FSMs

« Table representation of next-state and output functions is then more convenient
= Specifies the next-state-function and the output-function in tabular form
= Equivalent to the state diagram (except for not containing the reset state)

next-state-function output-function

i(k) a b i(k) a b
s(k) | s(k+1) s(k) o(k)
P r t \ P 1 0
a | p 4 g | 0 1
r q r ’ r 1 0
t r P t 0 1

default

(P

YTECHNIQUE EE-334: Digital System Design 7 (((m

ELAUSANN

Moore FSM: Formal Specification

« Moore-FSMs are a less generic form of FSMs
= Qutput is only a function of the present state

o(k) = g(s(k)) Output function i(k) el Input E (g >
stk+1) = f(i(k),s(k)) Nextstate function o(k) €0 Output E

> o(k)
Combinational
logic

s(k) eS State i(k)

s(0) = s, [Initial state 0 0 5] Next
L 0 resent| T
S(k) state I< state
Latency =1 s(k) sk +1)

 The Moore structure mainly impacts latency
= Qutputs can not react directly to an input in the same state (time step)
= No direct combinational logic between input and output

il = | ()
ECOLE POLYTICHNIQUE EE-334: Digital System Design 8

LAUSANN

Mealy FSM: Formal Specification and RTL Diagram

 Mealy-FSMs are the most generic description of an FSM (can, in principal fully
describe any synchronous system on a functional level)

Formal specification RTL diagram
= Qutputs and next state are defined based = Two blocks of combinational logic to
on separate transfer functions - Compute the next state
= |nitial state required to initialize the iteration « Compute the output
= Aregister to store the present state
o(k) = g(i(k),s(k)) Output function 10 N
s(k+1) = f(i(k),s(k)) Next state function i i g); > o(k)
; i Combinational
: logic
s(0) = s, [Initial state ! |
Latency = 0 Present state I Next state
sty N stk+1)
Flip-flops
)
H(I fl% EE-334: Digital System Design 9 (((m)»

Descriptions of Moore FSM

« Moore FSMs simplify the state diagram and the table representation

= Qutputs are associated (annotated) with states
* Transitions without annotation correspond to the default transitions (only one default transition

per state!)

next-state- and output-function

i(k) a b

st | stk+1) | o(k)
u z w 1
Y z W 0
W X u 0
X Yy X 0
y Y Yy 1
z z X 1

. - . (GF
[COLE POLYTECHNIQUE EE-334: Digital System Design 10

ELAUSANN

Some Rules for Valid FSMs

« Completeness: Next-state-function and output-function must be specified for all

states and for all possible inputs (Mealy)

= Default transition collapses all so far unspecified transitions into one
= Multiple identical transitions can be collapsed with OR, if they end up in the same state and
produce the same output

* Uniqueness: Next-state-function and output-function must be unique
» the same input/state combination can never result in two conflicting next-states and/or outputs

/)

@ o% e, &
a/o a/0 b/0
RolERRNC o

({0 | - | («
ECOLE POLYTECHNIQUE EE-334: Digital System Design 11

RTL Architecture of FSMs

 Formal definition of FSMs provides immediately the RTL architecture diagram
for the digital implementation

* Required hardware components

J @) —
i Combinational

logic

= A combinational logic block that computes i(k)
the output o(k) using the function g

= A combinational logic block that computes
the next state s(k + 1) using the function f

Present| === Next
= Aregister (Flip-Flop) that stores the current state I< state
state s(k) and updates it to s(k + 1) on each s(k) s(k+1)
clock edge
)
&g!»ﬂfg@ EE-334: Digital System Design 12 (((ﬁ

Specifying FSMs for Digital (RTL) Circuits

« Abstract FSM specification relies on abstract (finite) sets for states, inputs,
and outputs which do not provide insight how these materialize in a real system

« Impact of digital circuit implementation
= states, inputs, and outputs have a binary representation
= FSMs typically have multiple inputs and multiple outputs 4="0&B="0
« Each output has its own transfer function V="108&z="0

. State transitions (and outputs) are defined o~ B=1T N\ .
by the value of multiple inputs {

-
- ~~
- ~
N,

~ - ~
L d - ,
o

A="1"&B="0 Y="1&72="1"

f

ECOL g
FEDEI D

1

YTECHNIQUE EE-334: Digital System Design 13 (((m

Specifying FSMs for Digital Circuits

« Many transitions do not depend on all input signals

= Example: go through 6 states when an enable signal (En=1’) is set. In the last state, wait until
Clr="1"before returning to the first state, regardless of En

i En | Cir
a 0 0
b 0 1
C 1 0
d 1 1

 Boolean expressions and the use of “don’t cares” (-') merge equivalent
transitions

En Clr

ALY | - | A:En==7
B - 1 B: Clr=="1"

(1

ECOLE

"TECHNIQUE
E LAUSANNE

EE-334: Digital System Design 14 (((

FEDER

Specifying FSMs for Digital Circuits

« Caveat: Implicit merging of state transitions
= Conditions based on boolean functions are not necessarily mutually exclusive
* |[ncomplete conditions: using “don’t care” also leads to non-mutually-exclusive conditions

 Remember, next-state- and output-functions must be unambiguous

Specifying state transitions with incomplete conditions
must be done with great care

* Risk of mismatch between formal specification and implementation:

= HDL descriptions often resolve ambiguities through sequential formulation of the conditions
» Formal specification of FSMs does not imply precedence of multiple conditions!!

TECHNIQUE
FLAUSANNE

EE-334: Digital System Design 15 (((

Specifying FSMs for Digital Circuits

« Example for ambiguous state transition specifications, resolved “accidentally” in
different VHDL specifications o STATEXDE <
—-— Initial state
when A =>
if ENx5 = '"1'" then
STATExDN <= B;
end if;
FENxS=V'1" if CLExS = {;' then
STATExDN <= (;
end if;
case STATExDP is
-— Initial state
when A =>
CLRxS=‘1"' if CLEx5 = '1' then
STATExDN <= (;
end if;
if ENx5 = '"1'" then
What happens if ENxS="1’and CLRxS=‘1’7?27?? STATExDN <= Bf
end if:;
(Gl - . («
LLLLLL FTECHNIQUE EE-334: Digital System Design 16

FEDER

VHDL Implementation of FSMs

* To implement an FSM in VHDL we directly describe its RTL diagram components
» The state register corresponds to a clocked process (register)
= The two transfer functions g and f correspond Boolean logic that can be realized as
- Concurrent statements: one for each output and for the next state
« Sequential process(es): different options
 Implementation of transfer functions based on processes Is often preferred
FSM combinational

logic
Concurrent Statements Sequential Processes
Separate concurrent /\
statement for next state Single process for Two processes one
and for each output next state and for for next state and

all outputs one for all outputs

(L - | ()
ECOLE POLYTECHNIQUE EE-334: Dlgltal System Design 17

DE LAUSANN

State Register Description

* Clocked process only assigns
next state to the present state

= Next state defined in separate processes

(|

L L lL [OL‘tTl(_.IIN]C& L

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal, async_reset_signal) IS
BEGIN -- process name: p_seq
IF async_reset_signal = ‘0|1’ THEN
present_state_signal <= constant;
ELSIF clock_signal’EVENT AND clock_signal =
present_state_signal <= next_state_signal;

END IF;
END PROCESS p_seq;

‘1’ THEN

e (8

EE-334: Digital System Design

Output and Next State Logic in a Single Process

* Logic with a single combinational
process iIs often the most readable

= Start with a CASE statement to identify
the present state

» |F statements for each state represent
conditions for the next state and outputs
as a function of the FSM inputs

-(I’fl-

L lL[l‘t]l(_.llNJ(lLL

-- FSM Logic Process (for next state and/or outputs)
process_name: PROCESS (present_state_signal,
FSM_input_signals) IS
BEGIN
-- Default assignments
next_state signal <= present_state_signal;
FSM_output_signal_1 <= default_output_expression;

CASE present_state_signal IS
WHEN state_ 1 =>
-- Conditional statements based on inputs
IF condition_1_on_FSM_input_signals THEN
next_state_signal <= next_state_specification;
FSM_output_signal_1 <= output_expression;
END IF;

WHEN state_2 =>
WHEN OTHERS =>

END CASE;
END PROCESS process_name;

EE-334: Digital System Design

. (G

FSM State Encoding

« State representation is irrelevant from a functional perspective

 For implementation: abstract states must be represented with multiple bits
» Each state must be assigned a unigue binary representation

= Minimum bit encoding
K states = [log, k] bits

= More bits than necessary can be used to represent the state of a system
» For representing K states with By bits the number of possible state encodings is

(28K — 1)1
(2B — K)! B!

ECOL

YTECHNIQUE
DE LAUSANNE

EE-334: Digital System Design 20 (((

FEDER

Parasitic States

Consider an FSM with K states encoded with B > [log,

K] bits

of physical states
2Bk

of logical states
K

In some cases, 25k > K
Parasitic states: unused physical states

» For parasitic states, the behavior of an FSM implementation is

deterministic and defined by the circuit implementation, but not specified

* Transition into a parasitic state is triggered by unspecified
iInput => State-transitions must be specified completely
(possibly using default transitions)

complete lock-up

-(I’fl-

‘t"J'l(_.I[NJ 1
ELALISA

EE-334: Digital System Design

Transition
for zero
input is not
specified

Parasitic

Impact varies from erroneous output to unspecified behavior for some cycles to

21 (((m

Defining States as Enumerated Types

 Manually encoding states to define state variables often
* |s inconvenient overhead during VHDL implementation

* |imits readability of the code: calling states by a nhame contributes to readability
» |s inflexible since state representation can not be optimized

 VHDL allows for enumeration types : ideal for state variables
= Values can be arbitrary strings (ideal for state names)

TYPE enum_type name IS
SIGNAL signal name

(value 1, value 2, ..);

. enum_type name;

= Abstract type without pre-defined binary
representation: chosen by the synthesis
tool during optimization

= Every FSM requires its own type matched
to the states required

ARCHITECTURE rtl OF my_fsm_states IS
-- type declarations for FSM states

TYPE state_type IS (StateA, StateB, StateC);

-- signal declaration

SIGNAL STATEXDN, STATEXDP : state_type;
BEGIN

f

YTECHNIQUE
FLAUSANNE

ECOL 4
FEDEI D

CHNIQU EE-334: Digital System Design

22 (((

FSM Example

* Vending machine waiting to enter 50 cents
= Coins: 10, 20, 50 cents

= Qutput = 1 for 2 entire cycles after 50 cents
have been entered

» Qverflows are handled by returning
the entered coin and remaining

10 20
0
on the current amount ‘ .
(10)—(0))%
D
0

20 10 20

as|9

A

OLYTECHNIQUE EE-334: Digital System Design

DE LAUSANN

Timing Diagrams

« State diagrams provide a complete and unambiguous FSM specification
= However, state diagrams do not illustrate the evolution of (input and output) signals over time

* Timing diagrams show waveforms examples produced by an FSM

« Timing diagrams are very useful to illustrate system behavior, but have also
several issues:
= Complete specification requires enumeration of all possible input/state combinations
= Asingle timing diagram is often incomplete
» Causality is often not clearly visible from a timing diagram
= Often no explicit definition of states: must be reconstructed

YTECHNIQUE
DE LAUSANNE

ECOL

EE-334: Digital System Design 24 (((

FEDEI

Timing Diagrams

« Timing diagrams often use a particular graphical notation to clarify causalities
and dependencies

-(I’fl-

L lL[l‘t]l(_.llNJ(lLL

Input transitions are delayed Input is irrelevant for the
w.r.t. the clock to show they are behavior of the circuit
/ the result of logic of a prev. stage

Output changes directly Output changes after 2 Output changes as direct
following a clock edge cycles regardless of the consequence of the input
(i.e., due to state change) input: transition triggered changing (=> Mealy)

by internal state

EE-334: Digital System Design 25 (((

From Timing Diagrams to FSMs

« To reconstruct an FSM compatible with a given set of timing diagrams check each
clock cycle of all timing diagrams to identify

= States: assign separate states to each clock cycle in which
» Outputs are different for the same input
» Next state is different for the same input

= State-transitions: for each state, find all the next states in the timing diagram
« Annotate transitions with the inputs causing/triggering the transition

= Qutputs: distinguish between Moore and Mealy outputs

* Moore: for each state, identify outputs that are independent of the inputs (i.e., change only on state
transition)

« Mealy: for each state and each input combination annotate a state transition with the corresponding
input with the output (different transitions may have the same start- and end-point, but different outputs)

il = | ()
ECOLE POLYTECHN QU EE-334: Digital System Design 26

ELAUSANN

Example

« Specify a state machine that complies with the given timing diagram
= Note: Specification is incomplete since AxSI=1 and BxSI=0 is not specified!!!

. A . B . C . A . A . A . A . A . A . B . C . A . A .

e e AxSI, BxSI / ZxSO

,/1

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

27 (((

