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Purpose/Task of Finite State Machines

• Finite state machines (FSMs) are a mathematical model of computation

• FSMs describe discrete time systems

▪ At each point in time the FSM is in exactly one of its possible states 

▪ State changes instantly and only when proceeding from one time instant to the next 

• Perfect match with synchronous design, where state changes only with clock edge

▪ The outputs and the next state are defined by the inputs and the present state

• In digital system design, the FSM formalism is particularly useful for 

▪ Functional specification of control- and protocol-tasks

▪ Modeling overall system behavior in an abstract way for simulation

▪ Formal verification (with the help of Automata Theory)

▪ Describing sequential circuits for synthesis
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Purpose/Task of Finite State Machines

• Every practical discrete-time system with a finite number of states and inputs 

can be described completely (datapath and control) as a finite-state-machine

▪ However, for datapaths, the number of states explodes and FSMs are not a convenient 

description.

• In practice, the FSM formalism is mostly used for the control part

▪ control the operations and the flow of data in datapaths

• generate sequences of control signals to orchestrate operation over time

• internal results from a datapath and modify dataflow accordingly

▪ manage the communication between system components through sequential protocols

• react to inputs depending on the current state of the system

▪ keep track of the “relevant” history of a system in compressed form  (state)
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Purpose/Task of Finite State Machines

• Some examples for use of FSMs
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Datapath of a dedicated DSP

block (here: FIR filter)

Handshake protocol for

connected chips/components

Control of traffic lights



Mealy FSM: Formal Specification

• Mealy-FSMs are the most generic description of an FSM (can, in principal fully 

describe any synchronous system on a functional level)

• Inputs, outputs, and states are abstract quantities chosen from finite sets

• Formal specification of Mealy FSM: Separate functions compute 

▪ the output from the present state and the input

▪ the next state from the present state and the input
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State Diagram Representation

• Formal FSM definition describes the operation, but not the transfer functions

• State diagrams provide a graphical means to represent

▪ the next state transfer function and 

▪ the output 

• State diagram formalism

▪ State represented by vertices

▪ Transition represented by edges

▪ Input (condition) and output: 

annotated on edges <input/output>

Default transition: no input annotation

Taken when the condition for no other 

transition is met

• Initial (RESET) state defines 𝑠 0
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State Table Representation

• State diagrams become difficult to handle for complex FSMs

• Table representation of next-state and output functions is then more convenient

▪ Specifies the next-state-function and the output-function in tabular form

▪ Equivalent to the state diagram (except for not containing the reset state)
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Moore FSM: Formal Specification

• Moore-FSMs are a less generic form of FSMs

▪ Output is only a function of the present state

• The Moore structure mainly impacts latency

▪ Outputs can not react directly to an input in the same state (time step)

▪ No direct combinational logic between input and output
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Mealy FSM: Formal Specification and RTL Diagram

• Mealy-FSMs are the most generic description of an FSM (can, in principal fully 

describe any synchronous system on a functional level)
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▪ Two blocks of combinational logic to 

• Compute the next state

• Compute the output

▪ A register to store the present state

Formal specification

▪ Outputs and next state are defined based 

on separate transfer functions

▪ Initial state required to initialize the iteration
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Descriptions of Moore FSM

• Moore FSMs simplify the state diagram and the table representation

▪ Outputs are associated (annotated) with states 

▪ Transitions without annotation correspond to the default transitions (only one default transition 

per state!)
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Some Rules for Valid FSMs

• Completeness: Next-state-function and output-function must be specified for all 

states and for all possible inputs (Mealy)

▪ Default transition collapses all so far unspecified transitions into one

▪ Multiple identical transitions can be collapsed with OR, if they end up in the same state and 

produce the same output

• Uniqueness: Next-state-function and output-function must be unique 

▪ the same input/state combination can never result in two conflicting next-states and/or outputs
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RTL Architecture of FSMs

• Formal definition of FSMs provides immediately the RTL architecture diagram 

for the digital implementation 

• Required hardware components

▪ A combinational logic block that computes 

the output 𝑜 𝑘 using the function 𝑔

▪ A combinational logic block that computes 

the next state 𝑠 𝑘 + 1 using the function 𝑓

▪ A register (Flip-Flop) that stores the current 

state 𝑠 𝑘 and updates it to 𝑠 𝑘 + 1 on each 

clock edge
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Specifying FSMs for Digital (RTL) Circuits

• Abstract FSM specification relies on abstract (finite) sets for states, inputs, 

and outputs which do not provide insight how these materialize in a real system

• Impact of digital circuit implementation

▪ states, inputs, and outputs have a binary representation

▪ FSMs typically have multiple inputs and multiple outputs

• Each output has its own transfer function

• State transitions (and outputs) are defined 

by the value of multiple inputs
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Specifying FSMs for Digital Circuits

• Many transitions do not depend on all input signals

▪ Example: go through 6 states when an enable signal (En=‘1’) is set. In the last state, wait until 

Clr=‘1’ before returning to the first state, regardless of En

• Boolean expressions and the use of “don’t cares” (‘-’) merge equivalent 

transitions
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Specifying FSMs for Digital Circuits

• Caveat: Implicit merging of state transitions

▪ Conditions based on boolean functions are not necessarily mutually exclusive

▪ Incomplete conditions: using “don’t care” also leads to non-mutually-exclusive conditions

• Remember, next-state- and output-functions must be unambiguous

Specifying state transitions with incomplete conditions 

must be done with great care

• Risk of mismatch between formal specification and implementation: 

▪ HDL descriptions often resolve ambiguities through sequential formulation of the conditions

▪ Formal specification of FSMs does not imply precedence of multiple conditions!!
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Specifying FSMs for Digital Circuits

• Example for ambiguous state transition specifications, resolved “accidentally” in 

different VHDL specifications

EE-334: Digital System Design 16

A

B

C

ENxS=‘1’

CLRxS=‘1’

What happens if ENxS=‘1’and CLRxS=‘1’???



VHDL Implementation of FSMs

• To implement an FSM in VHDL we directly describe its RTL diagram components

▪ The state register corresponds to a clocked process (register)

▪ The two transfer functions 𝒈 and 𝒇 correspond Boolean logic that can be realized as

• Concurrent statements: one for each output and for the next state

• Sequential process(es): different options

• Implementation of transfer functions based on processes is often preferred
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State Register Description

• Clocked process only assigns 

next state to the present state

▪ Next state defined in separate processes
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-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal, async_reset_signal) IS
BEGIN  -- process name: p_seq

IF async_reset_signal = ‘0|1’ THEN
present_state_signal <= constant;

ELSIF clock_signal’EVENT AND clock_signal = '1’ THEN
present_state_signal <= next_state_signal;

END IF;
END PROCESS p_seq;



Output and Next State Logic in a Single Process

• Logic with a single combinational 

process is often the most readable

▪ Start with a CASE statement to identify 

the present state

▪ IF statements for each state represent 

conditions for the next state and outputs

as a function of the FSM inputs
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-- FSM Logic Process (for next state and/or outputs)
process_name: PROCESS (present_state_signal, 

FSM_input_signals) IS
BEGIN

-- Default assignments
next_state_signal <= present_state_signal;
FSM_output_signal_1 <= default_output_expression;

CASE present_state_signal IS
WHEN state_1 =>

-- Conditional statements based on inputs 
IF condition_1_on_FSM_input_signals THEN

next_state_signal <= next_state_specification;
FSM_output_signal_1  <= output_expression;

END IF;
…

WHEN state_2 =>
… 

WHEN OTHERS =>
END CASE;

END PROCESS process_name;



FSM State Encoding

• State representation is irrelevant from a functional perspective

• For implementation: abstract states must be represented with multiple bits

▪ Each state must be assigned a unique binary representation

▪ Minimum bit encoding

𝐾 states ⇒ log2 𝑘 bits

▪ More bits than necessary can be used to represent the state of a system

▪ For representing 𝐾 states with 𝐵𝐾 bits the number of possible state encodings is 

2𝐵𝐾 − 1 !

2𝐵𝐾 − 𝐾 !𝐵𝐾!
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Parasitic States

• Consider an FSM with 𝐾 states encoded with 𝐵𝐾 ≥ log2𝐾 bits

• In some cases, 𝟐𝐵𝐾 > 𝐾

• Parasitic states: unused physical states

▪ For parasitic states, the behavior of an FSM implementation is 

deterministic and defined by the circuit implementation, but not specified

▪ Transition into a parasitic state is triggered by unspecified 

input => State-transitions must be specified completely 

(possibly using default transitions)

• Impact varies from erroneous output to unspecified behavior for some cycles to 

complete lock-up
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Defining States as Enumerated Types

• Manually encoding states to define state variables often 

▪ is inconvenient overhead during VHDL implementation

▪ limits readability of the code: calling states by a name contributes to readability

▪ is inflexible since state representation can not be optimized 

• VHDL allows for enumeration types : ideal for state variables

▪ Values can be arbitrary strings (ideal for state names)

TYPE enum_type_name IS (value_1, value_2, …);

SIGNAL signal_name : enum_type_name;

▪ Abstract type without pre-defined binary 

representation: chosen by the synthesis 

tool during optimization

▪ Every FSM requires its own type matched 

to the states required
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ARCHITECTURE rtl OF my_fsm_states IS
-- type declarations for FSM states
TYPE state_type IS (StateA, StateB, StateC);

-- signal declaration
SIGNAL STATExDN, STATExDP : state_type;

BEGIN
…



FSM Example

• Vending machine waiting to enter 50 cents

▪ Coins: 10, 20, 50 cents

▪ Output = 1 for 2 entire cycles after 50 cents 

have been entered

▪ Overflows are handled by returning

the entered coin and remaining

on the current amount
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Timing Diagrams

• State diagrams provide a complete and unambiguous FSM specification

▪ However, state diagrams do not illustrate the evolution of (input and output) signals over time

• Timing diagrams show waveforms examples produced by an FSM

• Timing diagrams are very useful to illustrate system behavior, but have also 

several issues:

▪ Complete specification requires enumeration of all possible input/state combinations

▪ A single timing diagram is often incomplete 

▪ Causality is often not clearly visible from a timing diagram

▪ Often no explicit definition of states: must be reconstructed
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Timing Diagrams

• Timing diagrams often use a particular graphical notation to clarify causalities 

and dependencies
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From Timing Diagrams to FSMs

• To reconstruct an FSM compatible with a given set of timing diagrams check each 

clock cycle of all timing diagrams to identify 

▪ States: assign separate states to each clock cycle in which 

• Outputs are different for the same input

• Next state is different for the same input

▪ State-transitions: for each state, find all the next states in the timing diagram

• Annotate transitions with the inputs causing/triggering the transition

▪ Outputs: distinguish between Moore and Mealy outputs

• Moore: for each state, identify outputs that are independent of the inputs (i.e., change only on state 

transition)

• Mealy: for each state and each input combination annotate a state transition with the corresponding 

input with the output (different transitions may have the same start- and end-point, but different outputs)
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Example

• Specify a state machine that complies with the given timing diagram

▪ Note: Specification is incomplete since AxSI=1 and BxSI=0 is not specified!!!
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