
EE-334

Digital System Design

Custom Digital Circuits

Finite State Machines

and their description in VHDL

EE-334: Digital System Design 1

Andreas Burg

Purpose/Task of Finite State Machines

• Finite state machines (FSMs) are a mathematical model of computation

• FSMs describe discrete time systems

▪ At each point in time the FSM is in exactly one of its possible states

▪ State changes instantly and only when proceeding from one time instant to the next

• Perfect match with synchronous design, where state changes only with clock edge

▪ The outputs and the next state are defined by the inputs and the present state

• In digital system design, the FSM formalism is particularly useful for

▪ Functional specification of control- and protocol-tasks

▪ Modeling overall system behavior in an abstract way for simulation

▪ Formal verification (with the help of Automata Theory)

▪ Describing sequential circuits for synthesis

2EE-334: Digital System Design

Purpose/Task of Finite State Machines

• Every practical discrete-time system with a finite number of states and inputs

can be described completely (datapath and control) as a finite-state-machine

▪ However, for datapaths, the number of states explodes and FSMs are not a convenient

description.

• In practice, the FSM formalism is mostly used for the control part

▪ control the operations and the flow of data in datapaths

• generate sequences of control signals to orchestrate operation over time

• internal results from a datapath and modify dataflow accordingly

▪ manage the communication between system components through sequential protocols

• react to inputs depending on the current state of the system

▪ keep track of the “relevant” history of a system in compressed form (state)

3EE-334: Digital System Design

Purpose/Task of Finite State Machines

• Some examples for use of FSMs

EE-334: Digital System Design 4

Datapath of a dedicated DSP

block (here: FIR filter)

Handshake protocol for

connected chips/components

Control of traffic lights

Mealy FSM: Formal Specification

• Mealy-FSMs are the most generic description of an FSM (can, in principal fully

describe any synchronous system on a functional level)

• Inputs, outputs, and states are abstract quantities chosen from finite sets

• Formal specification of Mealy FSM: Separate functions compute

▪ the output from the present state and the input

▪ the next state from the present state and the input

5

𝑜 𝑘 = 𝑔 𝑖 𝑘 , 𝑠 𝑘 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑠 𝑘 + 1 = 𝑓 𝑖 𝑘 , 𝑠 𝑘 𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑠 0 = 𝑠0 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 0

𝑖 𝑘 ∈ 𝐼 𝐼𝑛𝑝𝑢𝑡

𝑜 𝑘 ∈ 𝑂 𝑂𝑢𝑡𝑝𝑢𝑡

𝑠 𝑘 ∈ 𝑆 𝑆𝑡𝑎𝑡𝑒

𝑆 𝑘
𝑖 𝑘 𝑜 𝑘

𝑔

𝑓

𝑠 𝑘 𝑠 𝑘 + 1

𝑜 𝑘
𝑖 𝑘

Combinational

logic

Present

state
Next

state

EE-334: Digital System Design

State Diagram Representation

• Formal FSM definition describes the operation, but not the transfer functions

• State diagrams provide a graphical means to represent

▪ the next state transfer function and

▪ the output

• State diagram formalism

▪ State represented by vertices

▪ Transition represented by edges

▪ Input (condition) and output:

annotated on edges <input/output>

Default transition: no input annotation

Taken when the condition for no other

transition is met

• Initial (RESET) state defines 𝑠 0

6

p r

t

q
b/1

a/1

a/0

b/0

b/1

a/0

a/1

/0

default

𝐼 = 𝑎, 𝑏 , 𝑆 = 𝑝, 𝑞, 𝑟, 𝑡 , 𝑂 = 0,1

EE-334: Digital System Design

State Table Representation

• State diagrams become difficult to handle for complex FSMs

• Table representation of next-state and output functions is then more convenient

▪ Specifies the next-state-function and the output-function in tabular form

▪ Equivalent to the state diagram (except for not containing the reset state)

7

𝑖 𝑘 a b

𝑠 𝑘 𝑜 𝑘

p 1 0

q 0 1

r 1 0

t 0 1

𝑖 𝑘 a b

𝑠 𝑘 𝑠 𝑘 + 1

p r t

q p q

r q r

t r p

next-state-function output-function

EE-334: Digital System Design

Moore FSM: Formal Specification

• Moore-FSMs are a less generic form of FSMs

▪ Output is only a function of the present state

• The Moore structure mainly impacts latency

▪ Outputs can not react directly to an input in the same state (time step)

▪ No direct combinational logic between input and output

8

𝑠 0 = 𝑠0 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝟏

𝑖 𝑘 ∈ 𝐼 𝐼𝑛𝑝𝑢𝑡

𝑜 𝑘 ∈ 𝑂 𝑂𝑢𝑡𝑝𝑢𝑡

𝑠 𝑘 ∈ 𝑆 𝑆𝑡𝑎𝑡𝑒

𝑆 𝑘
𝑖 𝑘 𝑜 𝑘

𝑜 𝑘 = 𝑔 𝑠 𝑘 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑠 𝑘 + 1 = 𝑓 𝑖 𝑘 , 𝑠 𝑘 𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑔

𝑓

𝑠 𝑘 𝑠 𝑘 + 1

𝑜 𝑘

𝑖 𝑘
Combinational

logic

Present

state

Next

state

EE-334: Digital System Design

Mealy FSM: Formal Specification and RTL Diagram

• Mealy-FSMs are the most generic description of an FSM (can, in principal fully

describe any synchronous system on a functional level)

9

𝑜 𝑘 = 𝑔 𝑖 𝑘 , 𝑠 𝑘 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑠 𝑘 + 1 = 𝑓 𝑖 𝑘 , 𝑠 𝑘 𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔

𝑓

𝑠 𝑘 𝑠 𝑘 + 1

𝑜 𝑘
𝑖 𝑘

Combinational

logic

Flip-flops

𝑠 0 = 𝑠0 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 0 Present state Next state

RTL diagram

▪ Two blocks of combinational logic to

• Compute the next state

• Compute the output

▪ A register to store the present state

Formal specification

▪ Outputs and next state are defined based

on separate transfer functions

▪ Initial state required to initialize the iteration

EE-334: Digital System Design

Descriptions of Moore FSM

• Moore FSMs simplify the state diagram and the table representation

▪ Outputs are associated (annotated) with states

▪ Transitions without annotation correspond to the default transitions (only one default transition

per state!)

10

𝑖 𝑘 a b

𝑠 𝑘 𝑠 𝑘 + 1 𝑜 𝑘

u z w 1

v z w 0

w x u 0

x y x 0

y v y 1

z z x 1

next-state- and output-function

u

x

w

y

z

v

0

1

1

0

1

0

b

b

a

a

a
b

b

a
a

EE-334: Digital System Design

Some Rules for Valid FSMs

• Completeness: Next-state-function and output-function must be specified for all

states and for all possible inputs (Mealy)

▪ Default transition collapses all so far unspecified transitions into one

▪ Multiple identical transitions can be collapsed with OR, if they end up in the same state and

produce the same output

• Uniqueness: Next-state-function and output-function must be unique

▪ the same input/state combination can never result in two conflicting next-states and/or outputs

11

p

t

a/0

b/1✓

p

t

a/0

b/0✓

p

t

b/0

b/1X
p

t

b/0

b/0

l

X
EE-334: Digital System Design

RTL Architecture of FSMs

• Formal definition of FSMs provides immediately the RTL architecture diagram

for the digital implementation

• Required hardware components

▪ A combinational logic block that computes

the output 𝑜 𝑘 using the function 𝑔

▪ A combinational logic block that computes

the next state 𝑠 𝑘 + 1 using the function 𝑓

▪ A register (Flip-Flop) that stores the current

state 𝑠 𝑘 and updates it to 𝑠 𝑘 + 1 on each

clock edge

EE-334: Digital System Design 12

𝑔

𝑓

𝑠 𝑘 𝑠 𝑘 + 1

𝑜 𝑘
𝑖 𝑘

Combinational

logic

Present

state
Next

state

Specifying FSMs for Digital (RTL) Circuits

• Abstract FSM specification relies on abstract (finite) sets for states, inputs,

and outputs which do not provide insight how these materialize in a real system

• Impact of digital circuit implementation

▪ states, inputs, and outputs have a binary representation

▪ FSMs typically have multiple inputs and multiple outputs

• Each output has its own transfer function

• State transitions (and outputs) are defined

by the value of multiple inputs

13

01 10

11

00
𝐴 = ′0′ & 𝐵 = ′0′

𝑌 = ′0′ & 𝑍 = ′0′

𝐴 = ′1′ & 𝐵 = ′0′

𝑌 = ′0′ & 𝑍 = ′1′

𝐴 = ′1′

𝑌 = ′1′ & 𝑍 = ′1′

𝐴 = ′1′ & 𝐵 = ′0′

𝑌 = ′0′ & 𝑍 = ′1′

𝐵 = ′1′

𝑌 = ′0′ & 𝑍 = ′1′

EE-334: Digital System Design

Specifying FSMs for Digital Circuits

• Many transitions do not depend on all input signals

▪ Example: go through 6 states when an enable signal (En=‘1’) is set. In the last state, wait until

Clr=‘1’ before returning to the first state, regardless of En

• Boolean expressions and the use of “don’t cares” (‘-’) merge equivalent

transitions

14

𝑖 En Clr

a 0 0

b 0 1

c 1 0

d 1 1

c

d

d

c

d

c

d

c

d

c

d

b

En Clr

A 1 -

B - 1

A A AAA

B

A : En==‘1’
B: Clr==‘1’

EE-334: Digital System Design

Specifying FSMs for Digital Circuits

• Caveat: Implicit merging of state transitions

▪ Conditions based on boolean functions are not necessarily mutually exclusive

▪ Incomplete conditions: using “don’t care” also leads to non-mutually-exclusive conditions

• Remember, next-state- and output-functions must be unambiguous

Specifying state transitions with incomplete conditions

must be done with great care

• Risk of mismatch between formal specification and implementation:

▪ HDL descriptions often resolve ambiguities through sequential formulation of the conditions

▪ Formal specification of FSMs does not imply precedence of multiple conditions!!

15EE-334: Digital System Design

Specifying FSMs for Digital Circuits

• Example for ambiguous state transition specifications, resolved “accidentally” in

different VHDL specifications

EE-334: Digital System Design 16

A

B

C

ENxS=‘1’

CLRxS=‘1’

What happens if ENxS=‘1’and CLRxS=‘1’???

VHDL Implementation of FSMs

• To implement an FSM in VHDL we directly describe its RTL diagram components

▪ The state register corresponds to a clocked process (register)

▪ The two transfer functions 𝒈 and 𝒇 correspond Boolean logic that can be realized as

• Concurrent statements: one for each output and for the next state

• Sequential process(es): different options

• Implementation of transfer functions based on processes is often preferred

EE-334: Digital System Design 17

FSM combinational

logic

Sequential ProcessesConcurrent Statements
Separate concurrent

statement for next state

and for each output
Single process for

next state and for

all outputs

Two processes one

for next state and

one for all outputs

State Register Description

• Clocked process only assigns

next state to the present state

▪ Next state defined in separate processes

EE-334: Digital System Design 18

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal, async_reset_signal) IS
BEGIN -- process name: p_seq

IF async_reset_signal = ‘0|1’ THEN
present_state_signal <= constant;

ELSIF clock_signal’EVENT AND clock_signal = '1’ THEN
present_state_signal <= next_state_signal;

END IF;
END PROCESS p_seq;

Output and Next State Logic in a Single Process

• Logic with a single combinational

process is often the most readable

▪ Start with a CASE statement to identify

the present state

▪ IF statements for each state represent

conditions for the next state and outputs

as a function of the FSM inputs

EE-334: Digital System Design 19

-- FSM Logic Process (for next state and/or outputs)
process_name: PROCESS (present_state_signal,

FSM_input_signals) IS
BEGIN

-- Default assignments
next_state_signal <= present_state_signal;
FSM_output_signal_1 <= default_output_expression;

CASE present_state_signal IS
WHEN state_1 =>

-- Conditional statements based on inputs
IF condition_1_on_FSM_input_signals THEN

next_state_signal <= next_state_specification;
FSM_output_signal_1 <= output_expression;

END IF;
…

WHEN state_2 =>
…

WHEN OTHERS =>
END CASE;

END PROCESS process_name;

FSM State Encoding

• State representation is irrelevant from a functional perspective

• For implementation: abstract states must be represented with multiple bits

▪ Each state must be assigned a unique binary representation

▪ Minimum bit encoding

𝐾 states ⇒ log2 𝑘 bits

▪ More bits than necessary can be used to represent the state of a system

▪ For representing 𝐾 states with 𝐵𝐾 bits the number of possible state encodings is

2𝐵𝐾 − 1 !

2𝐵𝐾 − 𝐾 !𝐵𝐾!

20EE-334: Digital System Design

Parasitic States

• Consider an FSM with 𝐾 states encoded with 𝐵𝐾 ≥ log2𝐾 bits

• In some cases, 𝟐𝐵𝐾 > 𝐾

• Parasitic states: unused physical states

▪ For parasitic states, the behavior of an FSM implementation is

deterministic and defined by the circuit implementation, but not specified

▪ Transition into a parasitic state is triggered by unspecified

input => State-transitions must be specified completely

(possibly using default transitions)

• Impact varies from erroneous output to unspecified behavior for some cycles to

complete lock-up

21

of physical states

𝟐𝐵𝐾
of logical states

𝐾

0

1

2

0/0

0/1

1/01/1

0/1

Parasitic

state

Transition

for zero

input is not

specified

EE-334: Digital System Design

Defining States as Enumerated Types

• Manually encoding states to define state variables often

▪ is inconvenient overhead during VHDL implementation

▪ limits readability of the code: calling states by a name contributes to readability

▪ is inflexible since state representation can not be optimized

• VHDL allows for enumeration types : ideal for state variables

▪ Values can be arbitrary strings (ideal for state names)

TYPE enum_type_name IS (value_1, value_2, …);

SIGNAL signal_name : enum_type_name;

▪ Abstract type without pre-defined binary

representation: chosen by the synthesis

tool during optimization

▪ Every FSM requires its own type matched

to the states required

EE-334: Digital System Design 22

ARCHITECTURE rtl OF my_fsm_states IS
-- type declarations for FSM states
TYPE state_type IS (StateA, StateB, StateC);

-- signal declaration
SIGNAL STATExDN, STATExDP : state_type;

BEGIN
…

FSM Example

• Vending machine waiting to enter 50 cents

▪ Coins: 10, 20, 50 cents

▪ Output = 1 for 2 entire cycles after 50 cents

have been entered

▪ Overflows are handled by returning

the entered coin and remaining

on the current amount

23

10 20

0

4030

50

e
ls

e

e
ls

e

e
ls

e
e
ls

e

e
ls

e

10 20

50
20 10

20

10

20

10

0

0

0
0

0

1 X 1

always

EE-334: Digital System Design

Timing Diagrams

• State diagrams provide a complete and unambiguous FSM specification

▪ However, state diagrams do not illustrate the evolution of (input and output) signals over time

• Timing diagrams show waveforms examples produced by an FSM

• Timing diagrams are very useful to illustrate system behavior, but have also

several issues:

▪ Complete specification requires enumeration of all possible input/state combinations

▪ A single timing diagram is often incomplete

▪ Causality is often not clearly visible from a timing diagram

▪ Often no explicit definition of states: must be reconstructed

24EE-334: Digital System Design

Timing Diagrams

• Timing diagrams often use a particular graphical notation to clarify causalities

and dependencies

25

CLKxC

AxSI

BxSI

ZxSO

Output changes as direct

consequence of the input

changing (=> Mealy)

Output changes directly

following a clock edge

(i.e., due to state change)

Input transitions are delayed

w.r.t. the clock to show they are

the result of logic of a prev. stage

Output changes after 2

cycles regardless of the

input: transition triggered

by internal state

Input is irrelevant for the

behavior of the circuit

EE-334: Digital System Design

From Timing Diagrams to FSMs

• To reconstruct an FSM compatible with a given set of timing diagrams check each

clock cycle of all timing diagrams to identify

▪ States: assign separate states to each clock cycle in which

• Outputs are different for the same input

• Next state is different for the same input

▪ State-transitions: for each state, find all the next states in the timing diagram

• Annotate transitions with the inputs causing/triggering the transition

▪ Outputs: distinguish between Moore and Mealy outputs

• Moore: for each state, identify outputs that are independent of the inputs (i.e., change only on state

transition)

• Mealy: for each state and each input combination annotate a state transition with the corresponding

input with the output (different transitions may have the same start- and end-point, but different outputs)

26EE-334: Digital System Design

Example

• Specify a state machine that complies with the given timing diagram

▪ Note: Specification is incomplete since AxSI=1 and BxSI=0 is not specified!!!

27

CLKxC

AxSI

BxSI

ZxSO

A B C A A A A A A B C A A

A B C AxSI, BxSI / ZxSO

1,1/0 -,-/1

-,-/1

0,1/1

0,0/0
1,0/?

EE-334: Digital System Design

