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Purpose/Task of Finite State Machines

* Finite state machines (FSMs) are a mathematical model of computation

 FSMs describe discrete time systems
= At each point in time the FSM is in exactly one of its possible states

» State changes instantly and only when proceeding from one time instant to the next
« Perfect match with synchronous design, where state changes only with clock edge

» The outputs and the next state are defined by the inputs and the present state

 In digital system design, the FSM formalism is particularly useful for
= Functional specification of control- and protocol-tasks
= Modeling overall system behavior in an abstract way for simulation
= Formal verification (with the help of Automata Theory)
= Describing sequential circuits for synthesis
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Purpose/Task of Finite State Machines

 Every practical discrete-time system with a finite number of states and inputs
can be described completely (datapath and control) as a finite-state-machine

= However, for datapaths, the number of states explodes and FSMs are not a convenient
description.

* In practice, the FSM formalism is mostly used for the control part

= control the operations and the flow of data in datapaths
« generate sequences of control signals to orchestrate operation over time
 internal results from a datapath and modify dataflow accordingly

* manage the communication between system components through sequential protocols
* react to inputs depending on the current state of the system

» keep track of the “relevant” history of a system in compressed form (state)

ECOL QUE
FEDEI NMNE

EE-334: Digital System Design 3 (((




Purpose/Task of Finite State Machines

« Some examples for use of FSMs
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Mealy FSM: Formal Specification

 Mealy-FSMs are the most generic description of an FSM (can, in principal fully
describe any synchronous system on a functional level)

* |nputs, outputs, and states are abstract quantities chosen from finite sets

 Formal specification of Mealy FSM: Separate functions compute
= the output from the present state and the input
" the next state from the present state and the input

o(k) =  g(i(k),s(k))  Output function i(k) el Input (k) ‘ é § g }i > o(k)

stk+1)= f(i(k),s(k)) Next state function o(k) € 0 Output iCombinationaI
s(k) €S State i logic

s(0) = sy, [Initial state P
i(k)_ o(k) Present Next
i’ S(k) state I< state
Latency = 0 st N s+ 1)
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State Diagram Representation

« Formal FSM definition describes the operation, but not the transfer functions

- State diagrams provide a graphical means to represent

= the next state transfer function and

= the output I ={ab},S =1{p,qrt}0=1{01}
« State diagram formalism

= State represented by vertices

= Transition represented by edges

» |nput (condition) and output:
annotated on edges <input/output>

Default transition: no input annotation
Taken when the condition for no other
transition is met

 [nitial (RESET) state defines s(0)
P
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State Table Representation

« State diagrams become difficult to handle for complex FSMs

« Table representation of next-state and output functions is then more convenient
= Specifies the next-state-function and the output-function in tabular form
= Equivalent to the state diagram (except for not containing the reset state)

next-state-function output-function

i(k) a b i(k) a b
s(k) | s(k+1) s(k) o(k)
P r t \ P 1 0
a | p 4 g | 0 1
r q r ’ r 1 0
t r P t 0 1

default

(P
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Moore FSM: Formal Specification

« Moore-FSMs are a less generic form of FSMs
= Qutput is only a function of the present state

o(k) = g(s(k)) Output function i(k) el  Input E ( g >
stk+1) = f(i(k),s(k)) Nextstate function o(k) €0 Output E

> o(k)
Combinational
logic

s(k) eS State i(k)

s(0) = s, [Initial state 0 0 5 ] Next
L 0 resent| T
S(k) state I< state
Latency =1 s(k) sk +1)

 The Moore structure mainly impacts latency
= Qutputs can not react directly to an input in the same state (time step)
= No direct combinational logic between input and output

il = | ()
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Mealy FSM: Formal Specification and RTL Diagram

 Mealy-FSMs are the most generic description of an FSM (can, in principal fully
describe any synchronous system on a functional level)

Formal specification RTL diagram
= Qutputs and next state are defined based = Two blocks of combinational logic to
on separate transfer functions - Compute the next state
= |nitial state required to initialize the iteration « Compute the output
= Aregister to store the present state
o(k) = g(i(k),s(k)) Output function 10 N
s(k+1) = f(i(k),s(k)) Next state function i i g ); > o(k)
; i Combinational
:  logic
s(0) = s, [Initial state ! |
Latency = 0 Present state I Next state
sty N stk+1)
Flip-flops
)
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Descriptions of Moore FSM

« Moore FSMs simplify the state diagram and the table representation

= Qutputs are associated (annotated) with states
* Transitions without annotation correspond to the default transitions (only one default transition

per state!)

next-state- and output-function

i(k) a b

st | stk+1) | o(k)
u z w 1
Y z W 0
W X u 0
X Yy X 0
y Y Yy 1
z z X 1

. - . (GF
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Some Rules for Valid FSMs

« Completeness: Next-state-function and output-function must be specified for all

states and for all possible inputs (Mealy)

= Default transition collapses all so far unspecified transitions into one
= Multiple identical transitions can be collapsed with OR, if they end up in the same state and
produce the same output

* Uniqueness: Next-state-function and output-function must be unique
» the same input/state combination can never result in two conflicting next-states and/or outputs

/)

@ o% e, &
a/o a/0 b/0
RolERRNC o

({0 | - | («
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RTL Architecture of FSMs

 Formal definition of FSMs provides immediately the RTL architecture diagram
for the digital implementation

* Required hardware components

J @) —
i Combinational

logic

= A combinational logic block that computes i(k)
the output o(k) using the function g

= A combinational logic block that computes
the next state s(k + 1) using the function f

Present| === Next
= Aregister (Flip-Flop) that stores the current state I< state
state s(k) and updates it to s(k + 1) on each s(k) s(k+1)
clock edge
)
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Specifying FSMs for Digital (RTL) Circuits

« Abstract FSM specification relies on abstract (finite) sets for states, inputs,
and outputs which do not provide insight how these materialize in a real system

« Impact of digital circuit implementation
= states, inputs, and outputs have a binary representation
= FSMs typically have multiple inputs and multiple outputs  4="0&B="0
« Each output has its own transfer function V="108&z="0

. State transitions (and outputs) are defined o~ B=1T N\ .
by the value of multiple inputs {

-
- ~~
- ~
N,

~ - ~
L d - ,
o

A="1"&B="0 Y="1&72="1"

f
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Specifying FSMs for Digital Circuits

« Many transitions do not depend on all input signals

= Example: go through 6 states when an enable signal (En=1’) is set. In the last state, wait until
Clr="1"before returning to the first state, regardless of En

i En | Cir
a 0 0
b 0 1
C 1 0
d 1 1

 Boolean expressions and the use of “don’t cares” (-') merge equivalent
transitions

En Clr

ALY | - | A:En==7
B - 1 B: Clr=="1"

(1
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Specifying FSMs for Digital Circuits

« Caveat: Implicit merging of state transitions
= Conditions based on boolean functions are not necessarily mutually exclusive
* |[ncomplete conditions: using “don’t care” also leads to non-mutually-exclusive conditions

 Remember, next-state- and output-functions must be unambiguous

Specifying state transitions with incomplete conditions
must be done with great care

* Risk of mismatch between formal specification and implementation:

= HDL descriptions often resolve ambiguities through sequential formulation of the conditions
» Formal specification of FSMs does not imply precedence of multiple conditions!!
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Specifying FSMs for Digital Circuits

« Example for ambiguous state transition specifications, resolved “accidentally” in
different VHDL specifications o STATEXDE <
—-— Initial state
when A =>
if ENx5 = '"1'" then
STATExDN <= B;
end if;
FENxS=V'1" if CLExS = {;' then
STATExDN <= (;
end if;
case STATExDP is
-— Initial state
when A =>
CLRxS=‘1"' if CLEx5 = '1' then
STATExDN <= (;
end if;
if ENx5 = '"1'" then
What happens if ENxS="1’and CLRxS=‘1’7?27?? STATExDN <= Bf
end if:;
(Gl - . («
LLLLLL FTECHNIQUE EE-334: Digital System Design 16

FEDER




VHDL Implementation of FSMs

* To implement an FSM in VHDL we directly describe its RTL diagram components
» The state register corresponds to a clocked process (register)
= The two transfer functions g and f correspond Boolean logic that can be realized as
- Concurrent statements: one for each output and for the next state
« Sequential process(es): different options
 Implementation of transfer functions based on processes Is often preferred
FSM combinational

logic
Concurrent Statements Sequential Processes
Separate concurrent /\
statement for next state Single process for Two processes one
and for each output next state and for for next state and

all outputs one for all outputs

(L - | ()
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State Register Description

* Clocked process only assigns
next state to the present state

= Next state defined in separate processes

(|

L L lL [OL‘tTl(_.IIN]C& L

-- Clocked Process, generating a FlipFlop behavior
p_seq: PROCESS (clock_signal, async_reset_signal) IS
BEGIN -- process name: p_seq
IF async_reset_signal = ‘0|1’ THEN
present_state_signal <= constant;
ELSIF clock_signal’EVENT AND clock_signal =
present_state_signal <= next_state_signal;

END IF;
END PROCESS p_seq;

‘1’ THEN

e (8
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Output and Next State Logic in a Single Process

* Logic with a single combinational
process iIs often the most readable

= Start with a CASE statement to identify
the present state

» |F statements for each state represent
conditions for the next state and outputs
as a function of the FSM inputs

-(I’fl-
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-- FSM Logic Process (for next state and/or outputs)
process_name: PROCESS (present_state_signal,
FSM_input_signals) IS
BEGIN
-- Default assignments
next_state signal <= present_state_signal;
FSM_output_signal_1 <= default_output_expression;

CASE present_state_signal IS
WHEN state_ 1 =>
-- Conditional statements based on inputs
IF condition_1_on_FSM_input_signals THEN
next_state_signal <= next_state_specification;
FSM_output_signal_1 <= output_expression;
END IF;

WHEN state_2 =>
WHEN OTHERS =>

END CASE;
END PROCESS process_name;

EE-334: Digital System Design
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FSM State Encoding

« State representation is irrelevant from a functional perspective

 For implementation: abstract states must be represented with multiple bits
» Each state must be assigned a unigue binary representation

= Minimum bit encoding
K states = [log, k] bits

= More bits than necessary can be used to represent the state of a system
» For representing K states with By bits the number of possible state encodings is

(28K — 1)1
(2B — K)! B!

ECOL

YTECHNIQUE
DE LAUSANNE

EE-334: Digital System Design 20 (((

FEDER




Parasitic States

Consider an FSM with K states encoded with B > [log,

K] bits

# of physical states
2Bk

# of logical states
K

In some cases, 25k > K
Parasitic states: unused physical states

» For parasitic states, the behavior of an FSM implementation is

deterministic and defined by the circuit implementation, but not specified

* Transition into a parasitic state is triggered by unspecified
iInput => State-transitions must be specified completely
(possibly using default transitions)

complete lock-up

-(I’fl-

‘t"J'l(_.I[NJ 1
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for zero
input is not
specified

Parasitic

Impact varies from erroneous output to unspecified behavior for some cycles to
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Defining States as Enumerated Types

 Manually encoding states to define state variables often
* |s inconvenient overhead during VHDL implementation

* |imits readability of the code: calling states by a nhame contributes to readability
» |s inflexible since state representation can not be optimized

 VHDL allows for enumeration types : ideal for state variables
= Values can be arbitrary strings (ideal for state names)

TYPE enum_type name IS
SIGNAL signal name

(value 1, value 2, ..);

. enum_type name;

= Abstract type without pre-defined binary
representation: chosen by the synthesis
tool during optimization

= Every FSM requires its own type matched
to the states required

ARCHITECTURE rtl OF my_fsm_states IS
-- type declarations for FSM states

TYPE state_type IS (StateA, StateB, StateC);

-- signal declaration

SIGNAL STATEXDN, STATEXDP : state_type;
BEGIN

f
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FSM Example

* Vending machine waiting to enter 50 cents
= Coins: 10, 20, 50 cents

= Qutput = 1 for 2 entire cycles after 50 cents
have been entered

» Qverflows are handled by returning
the entered coin and remaining

10 20
0
on the current amount ‘ .
(10)—(0) )%
D
0

20 10 20

as|9

A
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Timing Diagrams

« State diagrams provide a complete and unambiguous FSM specification
= However, state diagrams do not illustrate the evolution of (input and output) signals over time

* Timing diagrams show waveforms examples produced by an FSM

« Timing diagrams are very useful to illustrate system behavior, but have also
several issues:
= Complete specification requires enumeration of all possible input/state combinations
= Asingle timing diagram is often incomplete
» Causality is often not clearly visible from a timing diagram
= Often no explicit definition of states: must be reconstructed
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Timing Diagrams

« Timing diagrams often use a particular graphical notation to clarify causalities
and dependencies

-(I’fl-
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Input transitions are delayed Input is irrelevant for the
w.r.t. the clock to show they are behavior of the circuit
/ the result of logic of a prev. stage

Output changes directly Output changes after 2 Output changes as direct
following a clock edge cycles regardless of the consequence of the input
(i.e., due to state change) input: transition triggered changing (=> Mealy)

by internal state
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From Timing Diagrams to FSMs

« To reconstruct an FSM compatible with a given set of timing diagrams check each
clock cycle of all timing diagrams to identify

= States: assign separate states to each clock cycle in which
» Outputs are different for the same input
» Next state is different for the same input

= State-transitions: for each state, find all the next states in the timing diagram
« Annotate transitions with the inputs causing/triggering the transition

= Qutputs: distinguish between Moore and Mealy outputs

* Moore: for each state, identify outputs that are independent of the inputs (i.e., change only on state
transition)

« Mealy: for each state and each input combination annotate a state transition with the corresponding
input with the output (different transitions may have the same start- and end-point, but different outputs)

il = | ()
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Example

« Specify a state machine that complies with the given timing diagram
= Note: Specification is incomplete since AxSI=1 and BxSI=0 is not specified!!!

. A . B . C . A . A . A . A . A . A . B . C . A . A .

e e AxSI, BxSI / ZxSO

_,_/1
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