ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334
Digital System Design

Custom Digital Circuits
Lab 8: Datapath Design — Mandelbrot

Andreas Burg

EE-334: Digital System Design

The Mandelbrot Set

The Mandelbrot set is defined as the complex numbers for which the following
iteration does not diverge

Zn41 = Z2 +C Zy =0

« Divergence can not be predicted from c

« However, if |z,.1]% > 4 we know that
the iteration will diverge

« Approach: run the iteration until
|Zz,,+1|% > 4. The number of iterations
IS mapped to a colour

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

Mandelbrot Datapath

= Rewrite complex numbers based on real-

: . GIVEN AT DESIGN TIME : MAX_ITER
and imaginary-parts INPUTS : c.r, c i ;
» [terations limited to a maximum MAX_ITER | OUTPUT: n ;
Z_ r=c_r;
« Datapath core: z_i=c_i;
2 r(n) 2z i(n) n=1; . .
While ((z.r * z r + z 1 * z i) < 4 & n<MAX_ITER) {
- zr’=zr*zpr-2z1%*zi+c_r;
! Py ! zi=2*zr*zi+ ci;
X X X zZr=12zr’;
| | n=n+1;
1 g | }
+ —
X2
c_r c i
|—1 ! \—1 !
+ + + +
7 !
z_r(n+l) z_i(n+1)
)
Eﬁifg!é’.f‘!iﬁﬁd&'} EE-334: Digital System Design 3 ((()))

Mandelbrot algorithm specification as pseudo code:

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334
Digital System Design

Custom Digital Circuits
VHDL Fixed-Point Arithmetic

Andreas Burg

EE-334: Digital System Design

Fixed Point Design Methodology

Algorithms are usually developed based on floating-point arithmetic
Manual refinement to fixed point for fixed-point simulations

= Check the quality of the fixed-point implementation against expectations
= Produce expected responses for RTL verification

RTL code: expected to match the fixed-point model

Algorithm
$\ MATLAB Floating | manually implemented N Fixed Point [RTL N
@ P Point SW and optimized SW implementation
[Simulation | [Simulation

l l

HDL

\ 4

[Simulation

Qua“ty Quallty 8 I’E);E)(e)?]tseeds ==7
(floating point) (fixed point) l
¢)
S check for sufficient _ ! Pass/Fail

similarit ualit
P\

werecnnioue Fall 2023
SE LAUSANNE

EE-334: Digital System Design

(¢

Fixed-Point Number Representation

* Integers often do not provide sufficient accuracy and floating-point arithmetic is
highly complex to implement in hardware

* Fixed-Point binary numbers represent fractional numbers in a similar way as
Integers (with a fixed dynamic range and precision)

Unsigned Integer Unsigned Fixed-Point
B integer bits M integer, N fractional bits, B=M + N
zB—l zB—Z 20 2M—1 ZM—Z 20 2—1 2—2 2—N
Xp-1Xp-2 """ Xg YB-1YB-2 “'YB M; YN-1YN=-2 """ Y0
B—1 deC|maI point
v=) 2" y = Zyn
n=0

» Fixed-Point sighed numbers: add a sign bit and follow the same scheme as integers

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 6 (((H

The Q-Notation

* Fixed-Point numbers are specified by
» The type + number of integer and fractional bits
= The type + total number of bits and the number of fractional bits

* The Q-notation denotes

= Signed fixed-point numbers as : Q<N_int>.<N_frac> where
N_int is the number of integer bits (excluding the sign bit) and
N_frac is the number of fractional bits

= Unsigned fixed-point numbers as : UQ<N_int>.<N_frac> where
N_int is the number of integer bits and
N_frac is the number of fractional bits

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design

B = Nint + Nepge + 1

B = Nipt + Nfrac

Fixed-Point Arithmetic with Integers

« Unfortunately, computers and many languages (including VHDL) can natively
only handle integers

 Luckily, the binary representation of fixed-point numbers is the same as integers

* \We therefore represent fixed-point numbers as integers by scaling them
with 2N-frac

YB-1YB-2" YB M YN-1YN-2 """)0 3’B—1)’B—2“'3’B—M3’N—1)’N—2"'3’0-T
B-1 B-1
y = z y, - 2N —N . QN-Jrac .Y = 2 y, - 21" —N_frac , 9N_frac — z y, - 2"
Y = 2N frac %

« NOTE: numerical value of Y is a scaled version of the fixed-point number y !

EE-334: Digital System Design 8 (((m)))

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Adding Int Representations of FIXP Numbers

» We want to add two FixP numbers x [QN},. N7.,.]1 and y [QN;, . N]?;ac]

int °
b y
with integer representations X = x - 2"frac and Y =y - 2"/rac with N2, - < N7,

= First “harmonize” the scaling of X and Y to the same scaling factor max {Nf’i,ac, N]?;ac} by scaling

. . - x y — i x y
the integer number with the smaller scale factor with QX (NFraoNFrac)-min{Nfrac N rac)

= The integer result 7 has Nf,.,. = max {fo“ac' nyrar:}

X Y X v 2(VracNirac)
+ =+
ZN})rac ZNfrac

Z=Xxty=

X y
2Nfrac ZNfrac Z(N}Crac_N}/rac)

ZN}Crac
P - . (G
[COLE POLYTECHNIQUE EE-334: Digital System Design 9

Adding Int Representations of FIXP Numbers

 Example: X 91.01
» Add x [U2.2]=1.25=01.01" and y [U5.3]=2.125=00010.001" y 00010.001
00011.011
= Integer representations: X 9101 t
X=x-22=5='0101."and Y = y-23 =17 =/ 00010001." 0001 igned
00010110
= 7=X-2'+Y =27 X*2 01010 re
» 2=1.25+2125=3375=72/, =27/, Y 00010001 aligned

00011011 MEYErs
 After scaling decimal points of the operands are aligned

Before scaling After scaling
x1 xo.x_lx_z xlx)\ _1x_2 0
Y3¥Y2Y1Yo0-Y-1Y-2Y-3 Y3¥Y2Y1Yo-Y-1Y-2Y-3

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

EE-334: Digital System Design 10 (((m)))

Addition: Accuracy and Overflows

« To represent any sum of two N bit numbers we require N+1 bits
= Example: 4-bit unsigned integers: 1111 (15) + 1111 (15) = 10060 (36: 5 bit)

= Example: 4-bit signed integers: 91111 (+15) + 01111 (+15) = 10000 (+16: 5+1 bit)
10000 (-16) + 10000 (-16) = 100000 (-32: 5+1 bit)

 For fixed point numbers, only the number of MSBs grows by one, but the number
of fractional bits of the result remains the same as for the operands
SIIIII.FFFFFF

SIIIII.FFFFFF
SITIIII.FFFFFF

= Same as for decimal numbers: 3.756 + 8.111 = 11.867

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Fall 2020 EE-334: Digital System Design 11 (((m

Arithmetic Operations in VHDL

 VHDL supports basic arithmetic operations on signed and unsigned integers
with the numeric_std package
= Operators define the width of result (as function of the operands)
= Some operators put constraints on the word-length of the operands

« Addition: both operands must be of same length and type
signed(N-1 downto @) <= signed(N-1 downto @) + signed(N-1 downto 9)

= |f overflows should be avoided, N bit operands must be resized first to L=N+1 bits, adding the
missing most-significant-bit (MSB) to “catch” potential overflows

» Resizing (with sign extension for signed) adds MSBs:
signed(L-1 downto @) <= resize(signed(N-1 downto 0),L)
SSIIIII.FFFFFF
SSIIIII.FFFFFF
SIIITII.FFFFFF

EE-334: Digital System Design 12 (((m)))

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Multiplying Int Representations of FixP Numbers

int°

- We want to multiply two FixP numbers x [QN,, . N7qc] andy [QN .. ij;ac]

X y
with integer representations X = x - 2¥frac and Y = y - 2"frac

= Simply multiply the integer representations Z = X =Y

. . . x y .
» The integer representation of the result is scaled by 2"/rac* frac (j.e., has Nfrac = Nipge t+ N}'mc
X Y Xx*Y
7Z = X % y = = * v = v
ZNfrac 2Nfrac ZN}CTaC-I_Nfrac
)
%g!yfé{@ EE-334: Digital System Design 13 (((m

Multiplication: Accuracy and Overflows

 When multiplying an N bit and an M bit integer numbers (signed or unsigned), the

result requires N+M bits:
= Example: 4-bit unsigned integers: 1111 (15) + 1111 (15) = 1116 0001 (225)

= Example: 4-bit signed integers: 91111 (+15) + 01111 (+15) = 00 1110 0001 (+225)
10000 (-16) + 01111 (+15) = 11 0001 00O (-240)

10000 (-16) + 10000 (-16) = ©1 0000 PPOO (+256)

* For fixed point numbers, both the number of MSBs and the number of LSBs grows:

* Assume x [QNj,, . Nfjoc] and y [QN},.. N7, 1: for z=y*x we need
z [N + N + 1.NE gy + N2

it

SII.FFF * SI.FF = SIIII.FFFFF

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Fall 2020 EE-334: Digital System Design 14 (((H

Truncation and Rounding

* Full-precision fixed-point multiplications increase the number of fractional bits
" Forz=y*x : Nfy. = Nige + N2,

frac

» Repeated multiplications of fixed-point numbers leads to a growing number of bits

« Often, we do not require an ever increasing accuracy: least-significant-bits
(LSBs) can sometimes be removed, accepting a potentially small error

« Two methods to remove LSBs and avoid growing word-length
» Truncation: simply remove LSBs
SSIIIII.FFFFFF =» SSIIIII.FF SSIIIII.FF
= Rounding: add %2 LSB (referred to the result) and truncate then

SSIIIII.FFFFFF
0000000. 061000

SSIIIII.FF
_—~ LSB of result

e Fall 2020 EE-334: Digital System Design

QU
MNNE

ECOLE POLYTEC
FEDERALE DE LA

15 «K

Arithmetic Operations in VHDL

 VHDL supports basic arithmetic operations on signed and unsigned integers

with the numeric_std package
= Operators define the width of result (as function of the operands)

= Some operators put constraints on the word-length of the operands

« Multiplication: both operands must be of same type (sgn/uns), but can have

different length (number of bits)
signed(N+M-1 downto @) <= signed(N-1 downto @) * signed(M-1 downto 9)

» Rounding and truncation of LSBs can be realized by simply removing P LSBs

signed(N+M-P-1 downto @) <= signed(N+M-1 downto P)

P - . (5%
ECOLE POLYTECHNIQUE EE-334: DIgIta' System Design 16

	Slide 1: EE-334 Digital System Design
	Slide 2: The Mandelbrot Set
	Slide 3: Mandelbrot Datapath
	Slide 4: EE-334 Digital System Design
	Slide 5: Fixed Point Design Methodology
	Slide 6: Fixed-Point Number Representation
	Slide 7: The Q-Notation
	Slide 8: Fixed-Point Arithmetic with Integers
	Slide 9: Adding Int Representations of FixP Numbers
	Slide 10: Adding Int Representations of FixP Numbers
	Slide 11: Addition: Accuracy and Overflows
	Slide 12: Arithmetic Operations in VHDL
	Slide 13: Multiplying Int Representations of FixP Numbers
	Slide 14: Multiplication: Accuracy and Overflows
	Slide 15: Truncation and Rounding
	Slide 16: Arithmetic Operations in VHDL

