
EE-334

Digital System Design

Custom Digital Circuits

Lab 8: Datapath Design – Mandelbrot

EE-334: Digital System Design 1

Andreas Burg

The Mandelbrot Set

• The Mandelbrot set is defined as the complex numbers for which the following

iteration does not diverge

𝑧𝑛+1 = 𝑧𝑛
2 + 𝑐 𝑧0 = 0

• Divergence can not be predicted from 𝑐

• However, if 𝑧𝑛+1
2 > 4 we know that

the iteration will diverge

• Approach: run the iteration until

𝑧𝑛+1
2 > 4. The number of iterations

is mapped to a colour

EE-334: Digital System Design 2

Mandelbrot Datapath

• Mandelbrot algorithm specification as pseudo code:

▪ Rewrite complex numbers based on real-

and imaginary-parts

▪ Iterations limited to a maximum MAX_ITER

• Datapath core:

EE-334: Digital System Design 3

GIVEN AT DESIGN TIME : MAX_ITER
INPUTS : c_r , c_i ;
OUTPUT: n ;
z_r=c_r;
z_i=c_i;
n = 1;
While ((z_r * z_r + z_i * z_i) < 4 & n<MAX_ITER) {

z_r’ = z_r * z_r - z_i * z_i + c_r;
z_i = 2 * z_r * z_i + c_i;
z_r = z_r’;
n = n + 1;

}

EE-334

Digital System Design

Custom Digital Circuits

VHDL Fixed-Point Arithmetic

EE-334: Digital System Design 4

Andreas Burg

Fixed Point Design Methodology

• Algorithms are usually developed based on floating-point arithmetic

• Manual refinement to fixed point for fixed-point simulations

▪ Check the quality of the fixed-point implementation against expectations

▪ Produce expected responses for RTL verification

• RTL code: expected to match the fixed-point model

Fall 2023 EE-334: Digital System Design 5

Algorithm

Floating
Point SW

Simulation

Fixed Point
SW

Simulation

Quality

(floating point)

Quality

(fixed point)

manually implemented

and optimized

check for sufficient

similarity (quality)

RTL

implementation HDL

Simulation

==?

Pass/Fail

expected

responses

Fixed-Point Number Representation

• Integers often do not provide sufficient accuracy and floating-point arithmetic is

highly complex to implement in hardware

• Fixed-Point binary numbers represent fractional numbers in a similar way as

integers (with a fixed dynamic range and precision)

▪ Fixed-Point signed numbers: add a sign bit and follow the same scheme as integers

EE-334: Digital System Design 6

Unsigned Integer
𝐵 integer bits

𝑥𝐵−1𝑥𝐵−2⋯𝑥0

𝑥 = ෍

𝑛=0

𝐵−1

𝑥𝑛 ⋅ 2
𝑛

Unsigned Fixed-Point
𝑀 integer, 𝑁 fractional bits, B = M+ 𝑁

𝑦𝐵−1𝑦𝐵−2⋯𝑦𝐵−𝑀. 𝑦𝑁−1𝑦𝑁−2⋯𝑦0

𝑦 = ෍

𝑛=0

𝐵−1

𝑦𝑛 ⋅ 2
𝑛−𝑁

decimal point

2−𝑁2−22−1202𝑀−22𝑀−1202𝐵−22𝐵−1

The Q-Notation

• Fixed-Point numbers are specified by

▪ The type + number of integer and fractional bits

▪ The type + total number of bits and the number of fractional bits

• The Q-notation denotes

▪ Signed fixed-point numbers as : Q<N_int>.<N_frac> where

N_int is the number of integer bits (excluding the sign bit) and

N_frac is the number of fractional bits

▪ Unsigned fixed-point numbers as : UQ<N_int>.<N_frac> where

N_int is the number of integer bits and

N_frac is the number of fractional bits

EE-334: Digital System Design 7

𝐵 = 𝑁𝑖𝑛𝑡 + 𝑁𝑓𝑟𝑎𝑐 + 1

𝐵 = 𝑁𝑖𝑛𝑡 + 𝑁𝑓𝑟𝑎𝑐

Fixed-Point Arithmetic with Integers

• Unfortunately, computers and many languages (including VHDL) can natively

only handle integers

• Luckily, the binary representation of fixed-point numbers is the same as integers

• We therefore represent fixed-point numbers as integers by scaling them

with 2𝑁_𝑓𝑟𝑎𝑐

• NOTE: numerical value of 𝑌 is a scaled version of the fixed-point number 𝑦 !!

EE-334: Digital System Design 8

𝑦𝐵−1𝑦𝐵−2⋯𝑦𝐵−𝑀. 𝑦𝑁−1𝑦𝑁−2⋯𝑦0

𝑦 = ෍

𝑛=0

𝐵−1

𝑦𝑛 ⋅ 2
𝑛−𝑁

𝑦𝐵−1𝑦𝐵−2⋯𝑦𝐵−𝑀𝑦𝑁−1𝑦𝑁−2⋯𝑦0.

𝑌 = ෍

𝑛=0

𝐵−1

𝑦𝑛 ⋅ 2
𝑛−𝑁_𝑓𝑟𝑎𝑐 ⋅ 2𝑁_𝑓𝑟𝑎𝑐 = ෍

𝑛=0

𝐵−1

𝑦𝑛 ⋅ 2
𝑛⋅ 2𝑁_𝑓𝑟𝑎𝑐

𝑌 = 2𝑁_𝑓𝑟𝑎𝑐 ∙ 𝑦

Adding Int Representations of FixP Numbers

• We want to add two FixP numbers 𝑥 [Q𝑁𝑖𝑛𝑡
𝑥 . 𝑁𝑓𝑟𝑎𝑐

𝑥] and 𝑦 [Q𝑁𝑖𝑛𝑡
𝑦
. 𝑁𝑓𝑟𝑎𝑐

𝑦
]

with integer representations 𝑋 = 𝑥 ∙ 2𝑁𝑓𝑟𝑎𝑐
𝑥

and 𝑌 = 𝑦 ∙ 2
𝑁𝑓𝑟𝑎𝑐
𝑦

with 𝑁𝑓𝑟𝑎𝑐
𝑦

< 𝑁𝑓𝑟𝑎𝑐
𝑥

▪ First “harmonize” the scaling of 𝑋 and 𝑌 to the same scaling factor max 𝑁𝑓𝑟𝑎𝑐
𝑥 , 𝑁𝑓𝑟𝑎𝑐

𝑦
by scaling

the integer number with the smaller scale factor with 2
max 𝑁𝑓𝑟𝑎𝑐

𝑥 ,𝑁𝑓𝑟𝑎𝑐
𝑦

−min 𝑁𝑓𝑟𝑎𝑐
𝑥 ,𝑁𝑓𝑟𝑎𝑐

𝑦

▪ Add the scaled integer to the other integer to get 𝑍

▪ The integer result 𝑍 has 𝑁𝑓𝑟𝑎𝑐
𝑧 = max 𝑁𝑓𝑟𝑎𝑐

𝑥 , 𝑁𝑓𝑟𝑎𝑐
𝑦

𝑧 = 𝑥 + 𝑦 =
𝑋

2𝑁𝑓𝑟𝑎𝑐
𝑥 +

𝑌

2
𝑁𝑓𝑟𝑎𝑐
𝑦 =

𝑋

2𝑁𝑓𝑟𝑎𝑐
𝑥 +

𝑌

2
𝑁𝑓𝑟𝑎𝑐
𝑦 ∙

2
𝑁𝑓𝑟𝑎𝑐
𝑥 −𝑁𝑓𝑟𝑎𝑐

𝑦

2
𝑁𝑓𝑟𝑎𝑐
𝑥 −𝑁𝑓𝑟𝑎𝑐

𝑦

=
𝑋 + 𝑌 ∙ 2

𝑁𝑓𝑟𝑎𝑐
𝑥 −𝑁𝑓𝑟𝑎𝑐

𝑦

2𝑁𝑓𝑟𝑎𝑐
𝑥

EE-334: Digital System Design 9

Adding Int Representations of FixP Numbers

• Example:

▪ Add 𝑥 [U2.2]=1.25=‘01.01’ and 𝑦 [U5.3]=2.125=‘00010.001’

▪ Integer representations:

𝑋 = 𝑥 ∙ 22 = 5 =′ 0101. ′ and 𝑌 = 𝑦 ∙ 23 = 17 =′ 00010001. ′

▪ 𝑍 = 𝑋 ∙ 21 + 𝑌 = 27

▪ 𝑧 = 1.25 + 2.125 = 3.375 = Τ𝑍 23 = Τ27
8

• After scaling decimal points of the operands are aligned

EE-334: Digital System Design 10

𝑥1 𝑥0. 𝑥−1𝑥−2
𝑦3𝑦2𝑦1𝑦0. 𝑦−1𝑦−2𝑦−3

𝑥1𝑥0. 𝑥−1𝑥−2 0
𝑦3𝑦2𝑦1𝑦0. 𝑦−1𝑦−2𝑦−3

Before scaling After scaling

x 01.01
y 00010.001
00011.011

X 0101
Y 00010001
00010110

not

aligned
X*2 01010
Y 00010001
00011011

re

aligned

integers

Addition: Accuracy and Overflows

• To represent any sum of two N bit numbers we require N+1 bits

▪ Example: 4-bit unsigned integers: 1111 (15) + 1111 (15) = 10000 (30: 5 bit)

▪ Example: 4-bit signed integers: 01111 (+15) + 01111 (+15) = 010000 (+16: 5+1 bit)
10000 (-16) + 10000 (-16) = 100000 (-32: 5+1 bit)

• For fixed point numbers, only the number of MSBs grows by one, but the number

of fractional bits of the result remains the same as for the operands

SIIIII.FFFFFF
SIIIII.FFFFFF

SIIIIII.FFFFFF

▪ Same as for decimal numbers: 3.756 + 8.111 = 11.867

Fall 2020 EE-334: Digital System Design 11

Arithmetic Operations in VHDL

• VHDL supports basic arithmetic operations on signed and unsigned integers

with the numeric_std package

▪ Operators define the width of result (as function of the operands)

▪ Some operators put constraints on the word-length of the operands

• Addition: both operands must be of same length and type

signed(N-1 downto 0) <= signed(N-1 downto 0) + signed(N-1 downto 0)

▪ If overflows should be avoided, N bit operands must be resized first to L=N+1 bits, adding the

missing most-significant-bit (MSB) to “catch” potential overflows

▪ Resizing (with sign extension for signed) adds MSBs:

signed(L-1 downto 0) <= resize(signed(N-1 downto 0),L)

SSIIIII.FFFFFF

SSIIIII.FFFFFF

SIIIIII.FFFFFF

EE-334: Digital System Design 12

Multiplying Int Representations of FixP Numbers

• We want to multiply two FixP numbers 𝑥 [Q𝑁𝑖𝑛𝑡
𝑥 . 𝑁𝑓𝑟𝑎𝑐

𝑥] and 𝑦 [Q𝑁𝑖𝑛𝑡
𝑦
. 𝑁𝑓𝑟𝑎𝑐

𝑦
]

with integer representations 𝑋 = 𝑥 ∙ 2𝑁𝑓𝑟𝑎𝑐
𝑥

and 𝑌 = 𝑦 ∙ 2
𝑁𝑓𝑟𝑎𝑐
𝑦

▪ Simply multiply the integer representations 𝑍 = 𝑋 ∗ 𝑌

▪ The integer representation of the result is scaled by 2
𝑁𝑓𝑟𝑎𝑐
𝑥 +𝑁𝑓𝑟𝑎𝑐

𝑦

(i.e., has 𝑁𝑓𝑟𝑎𝑐
𝑧 = 𝑁𝑓𝑟𝑎𝑐

𝑥 + 𝑁𝑓𝑟𝑎𝑐
𝑦

)

𝑧 = 𝑥 ∗ 𝑦 =
𝑋

2𝑁𝑓𝑟𝑎𝑐
𝑥 ∗

𝑌

2
𝑁𝑓𝑟𝑎𝑐
𝑦 =

𝑋 ∗ 𝑌

2
𝑁𝑓𝑟𝑎𝑐
𝑥 +𝑁𝑓𝑟𝑎𝑐

𝑦

EE-334: Digital System Design 13

Multiplication: Accuracy and Overflows

• When multiplying an N bit and an M bit integer numbers (signed or unsigned), the

result requires N+M bits:

▪ Example: 4-bit unsigned integers: 1111 (15) + 1111 (15) = 1110 0001 (225)

▪ Example: 4-bit signed integers: 01111 (+15) + 01111 (+15) = 00 1110 0001 (+225)
10000 (-16) + 01111 (+15) = 11 0001 0000 (-240)
10000 (-16) + 10000 (-16) = 01 0000 0000 (+256)

• For fixed point numbers, both the number of MSBs and the number of LSBs grows:

• Assume 𝑥 [Q𝑁𝑖𝑛𝑡
𝑥 . 𝑁𝑓𝑟𝑎𝑐

𝑥] and 𝑦 [Q𝑁𝑖𝑛𝑡
𝑦
. 𝑁𝑓𝑟𝑎𝑐

𝑦
]: for 𝑧 = 𝑦 ∗ 𝑥 we need

𝑧 [Q𝑁𝑖𝑛𝑡
𝑥 +𝑁𝑖𝑛𝑡

𝑦
+ 1.𝑁𝑓𝑟𝑎𝑐

𝑥 + 𝑁𝑓𝑟𝑎𝑐
𝑦

]

SII.FFF * SI.FF = SIIII.FFFFF

Fall 2020 EE-334: Digital System Design 14

Truncation and Rounding

• Full-precision fixed-point multiplications increase the number of fractional bits

▪ For 𝑧 = 𝑦 ∗ 𝑥 : 𝑁𝑓𝑟𝑎𝑐
𝑧 = 𝑁𝑓𝑟𝑎𝑐

𝑥 + 𝑁𝑓𝑟𝑎𝑐
𝑦

▪ Repeated multiplications of fixed-point numbers leads to a growing number of bits

• Often, we do not require an ever increasing accuracy: least-significant-bits

(LSBs) can sometimes be removed, accepting a potentially small error

• Two methods to remove LSBs and avoid growing word-length

▪ Truncation: simply remove LSBs

SSIIIII.FFFFFF ➔ SSIIIII.FF SSIIIII.FFFFFF

▪ Rounding: add ½ LSB (referred to the result) and truncate then

SSIIIII.FFFFFF
0000000.001000

SSIIIII.FF

Fall 2020 EE-334: Digital System Design 15

LSB of result

Arithmetic Operations in VHDL

• VHDL supports basic arithmetic operations on signed and unsigned integers

with the numeric_std package

▪ Operators define the width of result (as function of the operands)

▪ Some operators put constraints on the word-length of the operands

• Multiplication: both operands must be of same type (sgn/uns), but can have

different length (number of bits)

signed(N+M-1 downto 0) <= signed(N-1 downto 0) * signed(M-1 downto 0)

▪ Rounding and truncation of LSBs can be realized by simply removing P LSBs

signed(N+M-P-1 downto 0) <= signed(N+M-1 downto P)

EE-334: Digital System Design 16

	Slide 1: EE-334 Digital System Design
	Slide 2: The Mandelbrot Set
	Slide 3: Mandelbrot Datapath
	Slide 4: EE-334 Digital System Design
	Slide 5: Fixed Point Design Methodology
	Slide 6: Fixed-Point Number Representation
	Slide 7: The Q-Notation
	Slide 8: Fixed-Point Arithmetic with Integers
	Slide 9: Adding Int Representations of FixP Numbers
	Slide 10: Adding Int Representations of FixP Numbers
	Slide 11: Addition: Accuracy and Overflows
	Slide 12: Arithmetic Operations in VHDL
	Slide 13: Multiplying Int Representations of FixP Numbers
	Slide 14: Multiplication: Accuracy and Overflows
	Slide 15: Truncation and Rounding
	Slide 16: Arithmetic Operations in VHDL

