Digital Systems Design - Fall Semester 2024 Lab 3
Telecommunications Circuits Laboratory EPFL-STI-IEL

Electronic Lock System FPGA Implementation

The aim of this lab is to implement the electronic lock system from Exercise 4 in VHDL and
to test it on the FPGA board. Therefore, you have to finish Exercise 4 before starting this lab.
In this lab, it is assumed that you are familiar with the design steps in Vivado from Lab 1.

Hand-in instructions: Prepare a small report with block diagrams. Submit the report as a PDF
with the source code files through the lecture moodle per the moodle submission deadline.

Important information A

Please always check these things before you start a lab or when you have issues!

FPGA:

= Remember to use the reset button/switch on the FPGA to reset your design and to
turn this off again if using a switch.

= Connect the FPGA board's Ethernet port to a computer, router, or any other device
with an Ethernet port that can power the Ethernet chip on the FPGA board (no
internet connection is needed). See the Lab 2 manual for an explanation.

VHDL:

= For combinational logic, use process(all). Do not write your own sensitivity lists!
Please remember to change files using process(all) to VHDL 2008. This is done
by selecting the file in the Source tab. Look at the Source File Properties tab
and change the type to VHDL 2008 by clicking on the 3 dots in the Type field.

= For defining registers, use the clocked process style process(CLKxCI, RSTxRI).
Do not define combinational logic like CNTxDP <= CNTxDP + AxDI inside a clocked
process! See Task 4 in Exercise 3 and its solution for further explanation.

= Never write to the same signal in multiple concurrent statements! This means that if
you assign to a signal in a process that signal can only be assigned to in that process
and nowhere else. The only place you are allowed to assign multiple times to a signal
is inside the (single) process where it is assigned to.

Virtual machines:

= EDA server users must start Vivado with vivado -source load board files.tcl
as described in Lab 1. If you do not see the board files in the Vivado GUI, you have
likely used the command with a spelling error or something similar.

Windows users:

= Avoid spaces and special characters in your filepaths! Vivado projects can become
corrupted if you have spaces and special characters in your filepaths.

= You may have to disable your antivirus tool before running simulations in Vivado.

For common questions/hints to this lab, please see the last page of this document
which contains various hints and best-practices.

Lab 3 2

Task 1: RTL Design

Download the provided .zip file from moodle. This time, the handout only contains a proposed
work directory structure, the standard .xdc file, and the board-files (for those using the servers).
The remaining parts, the source code, the completed .xdc file, and the testbench, you will
implement in this lab. For the source code, we suggest to create two files:

» key_lock_timed.vhdl: This file contains your implementation of the lock with the
extended opening from Exercise 4.

» toplevel.vhdl: The top-level wraps your design from key_lock_timed.vhdl for im-
plementation on the FPGA. On the FPGA, we will use the four push-buttons, with
push-buttons 0 to 3 corresponding to the Key signal from Exercise 4 being equal to the
push-button number. Therefore, you have to map a press on the buttons to the key code,
i.e., when push-button 3 is pressed, the Key signal is 3.

As the Key signal has to have a unique value, you have to ensure that the KeyValid signal is
only '1" if one key is pressed. If multiple or no keys are pressed, KeyValid has to be '0".

For your toplevel interface, we propose a naming scheme as shown in Listing 1. As we are
using all four push-buttons you have to map the RSTxRI signal to a switch in the .xdc file.
We propose that you map the push-buttons to signals KeyValidxS and KeyxD in the top-level
and provide these as inputs to key_lock_timed as shown in Listing 2. This way, you are using
the top-level to directly manage inputs from the board and provide only the clean signals to
your FSM block. This makes the design easier to understand. Besides, if you do nothing in
the top-level you may as well not use it.

Please note that while VHDL itself is case-insensitive, .xdc constraints are case sensitive.
Therefore, the naming in your .xdc file has to match the naming in your VHDL code.

entity toplevel is
port (
CLKxCI : in std_logic;
RSTxRI : in std_logic;

PushOxSI : in std_logic;
Push1xSI : in std_logic;
Push2xSI : in std_logic;
Push3xSI : in std_logic;

RLEDxSO : out std_logic;
GLEDxSO : out std_logic
);
end toplevel;

Listing 1: Entity declaration for top-level toplevel.vhdl.

w

Lab 3

entity key_lock_timed is
port (
CLKxCI : in std_logic;
RSTxRI : in std_logic;

KeyValidxSI : in std_logic;
KeyxDI : in unsigned(2-1 downto 0);

RLEDxSO : out std_logic;
GLEDxSO : out std_logic

Listing 2: Entity declaration for key_lock_timed.vhdl.

Task 2: Simulation

Implement a testbench for toplevel.vhdl. For inspiration, you can look at previously provided
testbenches and the slides. To reduce the simulation time, modify the counter limit so the
lock only stays open for a few milliseconds instead of 2 seconds. Remember to change this
back before you move to Task 3! See the hintbox in this lab manual for help with Vivado
simulations.

Circuit designer’s toolbox p o

Specifying and writing test-cases is a critical step in the verification of your system. Even
a simple testbench with a few test-cases that allow you to view the state of the signals in
your design can go a long way in helping you figure out if something is wrong.

When writing basic testbenches you can derive test-cases as follows:

= FSMs: For an FSM, your testbench should make the FSM go into every possible state
as a minimum. Normally, you should also test every possible state-to-state transition.

= Arithmetic circuits: Stimulate the circuit with all possible inputs (or a subset selected
at random) and check the output in VHDL or save the output for later comparison
with a reference model in C, Python, or MATLAB. We will do this for one of the
labs related to the final project.

For more details you can refer to Lecture 4 on VHDL for simulation and testbenches. Note
that while there are more advanced ways of doing verification beyond simulation, such as
formal verification, this is outside the scope of this class.

Hints and common errors @

By default, you only see the signals in your top-level entity, but from this it is almost
impossible to identify most issues in larger designs. The simulator allows you to check and
plot waveforms of any signal in your design as shown in Figure 1. For this, you have to:

1. Set the Scope to the entity in which you want to look at signals.

2. Drag and drop signals of interest into the Waveform viewer from the Objects tab.

3. You need to restart the simulation to view some signals as they were not saved earlier.

Lab 3 4

A TestVGA - [/ Users/aburgyDocuments/PaganaTest/TestG A/ TestviGAxp

o _ a x

Ede EM Flow Tools Reppls Window Lawut W Help wite_tetstream Complete +/

=, B (o) P am v c Deula v
Flow Navigator ERCIEI imuLATION - Behavoral Simulason - Funcsonal - sim_1 -vga_contraller_f
v PROJECT MANAGER .
Scope Sources Objects 2% | Unttied 1+
£ Setings
Q x| s 8 Q & |Q @ @ H < KM H T &

Add Sources.
Hame Design Unit Block Type Name. Value o™
Wwa_ vpa_controser_tao) VHOL En W REDX00|30) 0

T 1P catalog W _ vpa_controBerirl) HOL En > W GREEN:DO[3D] 0 A
Sowl gl VariGg > W BLUEXDO[20) 0 A

v IPINTEGRATOR = CNT_HSIDP[110] 026 A
A

Create Block Design CNT_HSIDN[14] 027

Language Templates

¥ SIMULATION
Rua Simudation 18 Clearvsss
> WEND_HSO[110] 52 A
v RTLANALYSIS W END_VS1D{11:0] 325 A
> Opan Elabarated Design U Bordens
¥ LemmoaenD[110] 118

» ® RightBordenDi110] 518

~ IMPLEMENTATION

P Run Implementation

> Opan Implamented Desion

¥ PROGRAM AND DEBUG

B Ganzrats Alsirasm
Sim Time: 1 us

Figure 1: Click on Scope to unfold the top-level and see its sub-components. Any signal shown
in the Objects tab can be dragged over to the Waveform viewer. Note that you have to restart
the simulation to view some signals as they were not saved earlier.

Task 3: Implementation

Finally, run the full flow in Vivado to generate the bit-file and program the FPGA. Remember
to check for the release of the key in your FSM. Remember to fill in the .xdc file and add
it to your project. Note that sometimes you may fail to type the password as the buttons
occasionally bounce and thus you type a key an extra time, but this happens rarely.

Important! For the design to be fully working, it is necessary to connect the FPGA with an
Ethernet cable to a computer, router, or any other device with an active Ethernet port. This
is because the FPGA clock comes from the Ethernet chip on the board.

Common Questions

Common questions/remarks for this lab are:

= How do | create a VHDL file? After creating a project in Vivado you can click File —
Add Sources — Add or create design sources. Alternatively, just use your normal
code editor and create new files with the .vhdl (recommended) or .vhd extensions.

» How do | resolve the warning 'The PS7 cell must be used in this Zynq design
...7 This warning can be safely ignored as it's unrelated to what we do on the FPGA.

» How do | resolve the error 'Unconstrained Logical Port’? While VHDL itself is case-
insensitive, .xdc constraints are case sensitive and your port names should match
those in the .xdc file in case as well.

» OQutlook does not allow .vhd files: You cannot send . vhd files in Outlook, try renaming
to .vhdl as the .vhd extension is also used for Virtual Hard Disk on Windows.

» Remember that order matters in processes! Since the order of assignments are done
sequentially in a process, meaning that in the example below DxS0 is only assigned AxSI
and BxSI and never AxSI or BxSI.

Lab 3

Listing 3: This implementation ignores the line AxSI or BxSI as it is always
overwritten by the final assignment to DxS0.

process(all)
begin
if (CxSO = '0') then
DxS0 <= AxSI or BxSI;
end if;

CxS0 <= not AxSI;
DxS0 <= AxSI and BxSI;
end process;

Remember to separate the description of the flip-flops from the combinational
logic! Use a single process for updating the flip-flops and a separate process or concurrent
assignments for updating the adder as shown below. This is really important! We also
discuss this in Exercise 3.

Listing 4: VHDL code to show how to define flip-flops for a counter.

CNTxDN <= CNTxDP + 1; -- Increment outstide clock-process

process (CLKxCI, RSTxRI)
begin
if (RSTxRI = '1') then
CNTxDP <= (others => '0');
elsif CLKxCI'event and CLKxCI = '1' then
CNTxDP <= CNTxDN;
end if;
end process;

Remember to never write to the same signal in multiple concurrent statements!
When assigning to a signal in a process, you can only assign to that signal in that (single)
process. The code below in Listing 5 shows the signal CNTxDN being assigned to in two
different concurrent statements, which is not allowed. With this code, you will see an "X’
for CNTxDN in the waveform viewer. The solution is to put the default assignment in a
process like shown in Listing 6.

Listing 5: VHDL code which shows how not to assign to a signal!

CNTxDN <= CNTxDP;

process(all)
begin
if (InOxSI = '1') then
CNTxDN <= CNTxDP + 1;
end if;
end process;

Use default values in your process! To avoid introducing errors in your code from
missing assignments to signals, you should always use a default value for all signals
assigned to in a process(all) when describing combinational logic as shown in Listing 6.
This is done as the first thing in a process.

Lab 3

Listing 6: VHDL code which shows the assignment of a default value.

process(all)
begin
-- Default values
CNTxDN <= CNTxDP;
AxD <= (others => '0');
BxD <= (others => '0');

-— Actual logic after default values
if (InOxSI = '1') then
CNTxDN <= CNTxDP + 1;
AxD <= In1xSI;
elsif (In1xSI = '1') then
CNTxDN <= CNTxDP - 1;
BxD <= Ini1xSI;
end if;
end process;

