

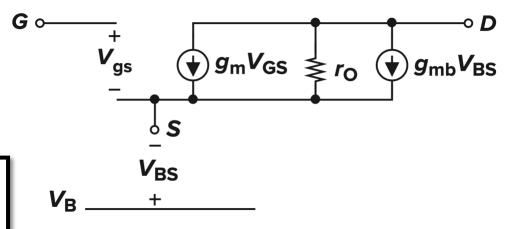
Analog IC design (EE-320), Lecture 4

Prof. Mahsa Shoaran

Institute of Electrical and Micro Engineering, School of Engineering, EPFL

Review: Small-signal model

Saturation


$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}}$$

$$g_{m} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}}$$

$$= \frac{2I_{D}}{V_{GS} - V_{TH}}$$

Review: Small-signal model

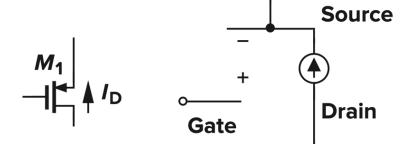
Saturation

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

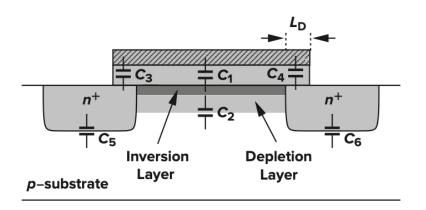
$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

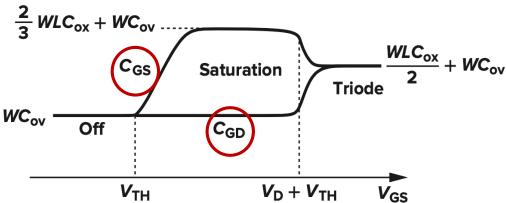
$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}}$$

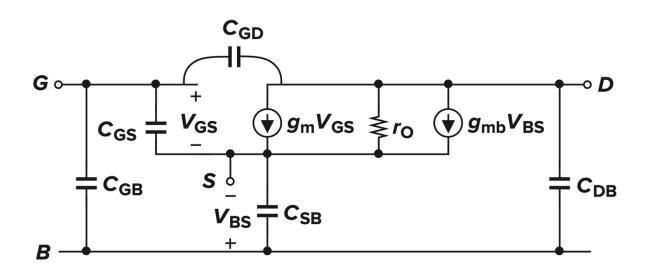
$$g_{m} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}}$$


$$= \frac{2I_{D}}{V_{GS} - V_{TH}}$$

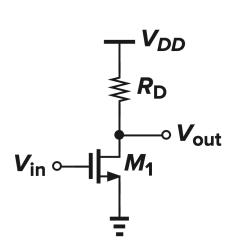
$$r_O pprox rac{1}{\lambda I_D}$$


$$g_{mb} = \frac{\partial I_D}{\partial V_{BS}}$$

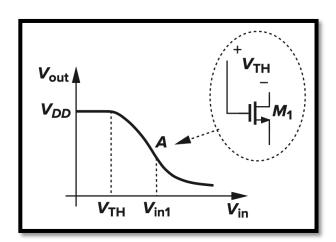

$$= g_m \frac{\gamma}{2\sqrt{2\Phi_F + V_{SB}}}$$


$$= \eta g_m$$

Review: MOS Device Capacitances, layout



The **common-source** topology: receives the input at the **gate** and produces the


output at the drain

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \qquad \text{(saturation)}$$

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$

The **common-source** topology: receives the input at the **gate** and produces the

output at the drain

$$V_{DD}$$
 R_{D}
 $V_{in} \circ V_{out}$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \qquad \text{(saturation)}$$

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

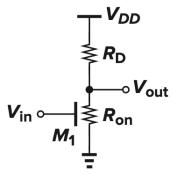
$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{I_c} \left[2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$

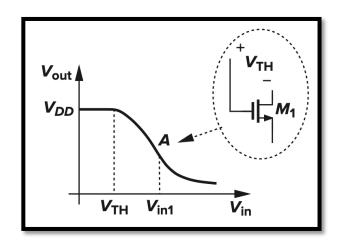
$$V_{out} \ll 2(V_{in} - V_{TH})$$

$$V_{out} = V_{DD} \frac{R_{on}}{R_{on} + R_{D}}$$

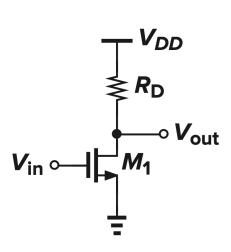
$$= \frac{V_{DD}}{1 + \mu_{n} C_{ox} \frac{W}{L} R_{D}(V_{in} - V_{TH})}$$

$$V_{in} \sim V_{in} \sim V_{out}$$


$$V_{out} \sim V_{out}$$

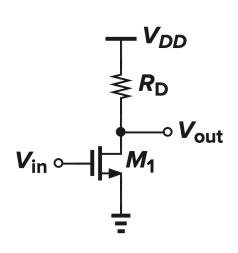

$$V_{DD} \sim V_{out}$$

$$V_{DD} \sim V_{out}$$


$$V_{DD} \sim V_{out}$$

$$V_{TH} \sim V_{TH}$$

 $=-g_mR_D$



$$V_{out} > V_{in} - V_{TH}$$

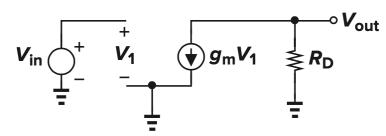
$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

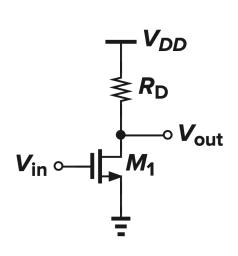
$$A_v = \frac{\partial V_{out}}{\partial V_{in}}$$

$$= -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})$$

$$V_{out} > V_{in} - V_{TH}$$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$


$$A_v = \frac{\partial V_{out}}{\partial V_{in}}$$

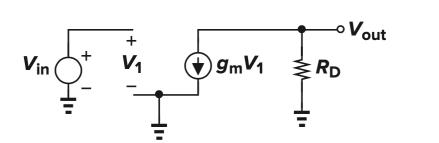

$$= -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})$$

$$= -g_m R_D$$

small-signal model:

$$V_{out} > V_{in} - V_{TH}$$

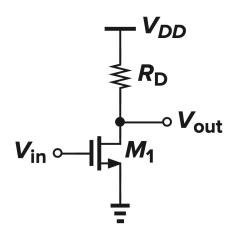
$$V_{out} > V_{in} - V_{TH}$$

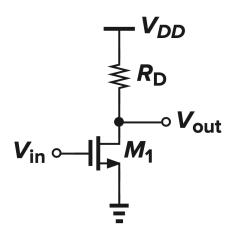

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

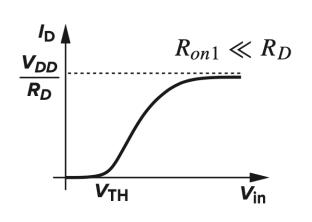
$$A_v = \frac{\partial V_{out}}{\partial V_{in}}$$

$$= -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})$$

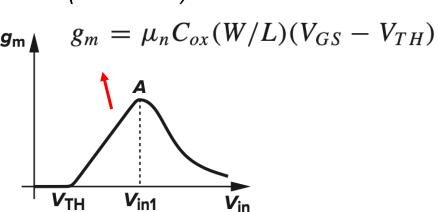
$$= -g_m R_D$$


small-signal model:

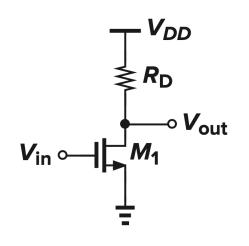

$$A_v = -\sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} \frac{V_{RD}}{I_D}$$


$$A_v = -\sqrt{2\mu_n C_{ox} \frac{W}{L}} \frac{V_{RD}}{\sqrt{I_D}}$$

Example: I_D and g_m as a function of V_{in} ?



Example: I_D and g_m as a function of V_{in} ?

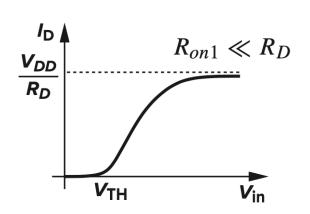


(saturation)

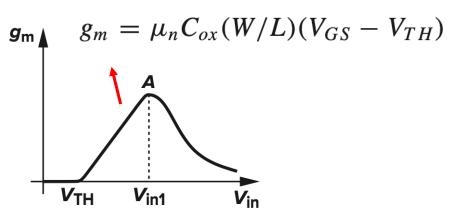
Example: I_D and g_m as a function of V_{in} ?

$$g_m = \mu_n C_{ox}(W/L) V_{DS}$$

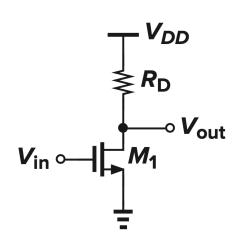
$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$


$$\mathbf{V_{in}} \sim \mathbf{V_{out}}$$

$$g_{m} = \mu_{n}C_{ox}(W/L)V_{DS}$$


$$V_{out} = V_{DD} - R_{D}\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}\left[2(V_{in} - V_{TH})V_{out} - V_{out}^{2}\right]$$

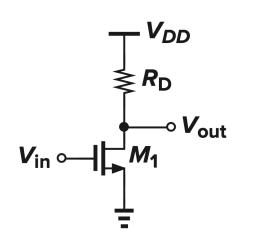
$$A_{v} = \frac{\partial V_{out}}{\partial V_{in}} = \frac{-\mu_{n}C_{ox}(W/L)R_{D}V_{out}}{1 + \mu_{n}C_{ox}(W/L)R_{D}(V_{in} - V_{TH} - V_{out})}$$


(point A)

(saturation)

CS stage including channel-length modulation

V_{out} =
$$V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out})$$

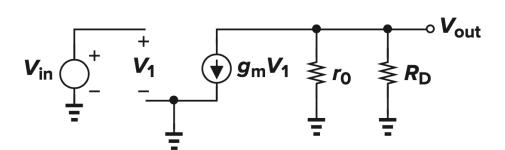

$$\frac{\partial V_{out}}{\partial V_{in}} = -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH}) (1 + \lambda V_{out})$$

$$-R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \lambda \frac{\partial V_{out}}{\partial V_{in}}$$

$$A_v = -R_D g_m - \frac{R_D}{r_O} A_v$$

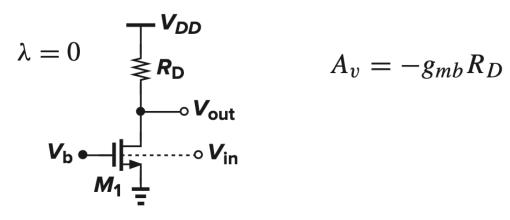
$$= -g_m \frac{r_O R_D}{r_O + R_D}$$

CS stage including channel-length modulation

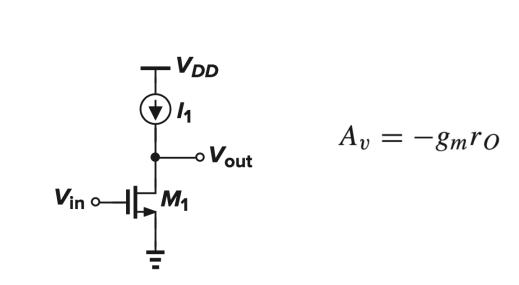

CS stage including channel-length modulation
$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out})$$

$$\frac{\partial V_{out}}{\partial V_{in}} = -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH}) (1 + \lambda V_{out})$$

$$-R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \lambda \frac{\partial V_{out}}{\partial V_{in}}$$

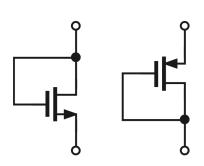

$$A_v = -R_D g_m - \frac{R_D}{r_O} A_v$$

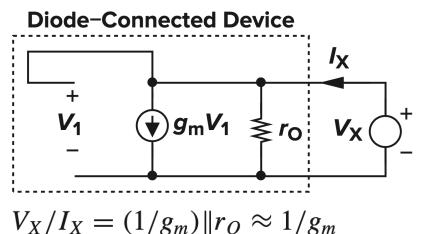
$$= -g_m \frac{r_O R_D}{r_O + R_D}$$

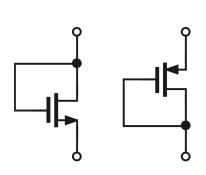


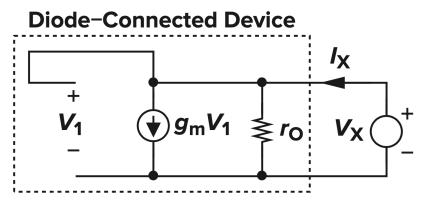
$$g_m V_1(r_O || R_D) = -V_{out}$$
$$V_{out}/V_{in} = -g_m(r_O || R_D)$$

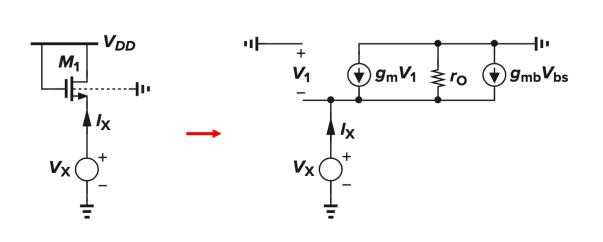
Example: Voltage gain?



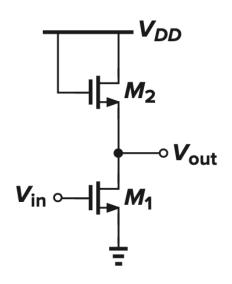

$$A_v = -g_{mb}R_D$$


$$A_v = -g_m r_C$$


- It is difficult to fabricate resistors with controlled values or a reasonable physical size
 - use transistors with gain and drain shorted

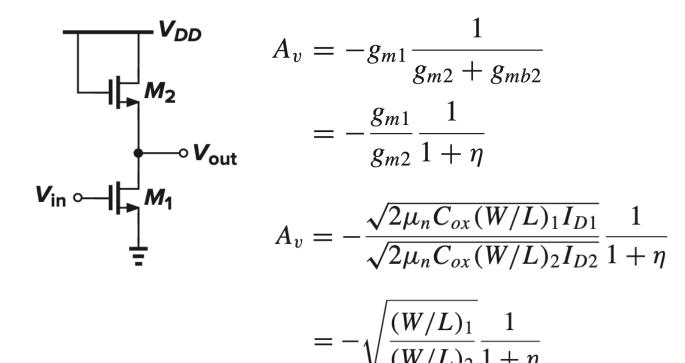


- It is difficult to fabricate resistors with controlled values or a reasonable physical size
 - use transistors with gain and drain shorted



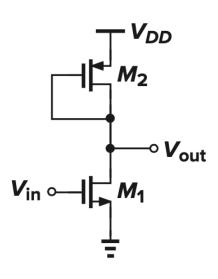
$$V_X/I_X = (1/g_m) \| r_O \approx 1/g_m$$

$$(g_m + g_{mb})V_X + \frac{V_X}{r_O} = I_X$$
 $\frac{V_X}{I_X} = \frac{1}{g_m + g_{mb} + r_O^{-1}}$
 $= \frac{1}{g_m + g_{mb}} \| r_O$
 $\approx \frac{1}{g_m + g_{mb}}$

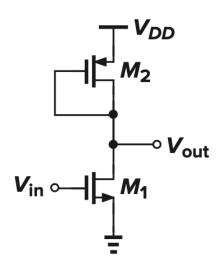


$$A_{v} = -g_{m1} \frac{1}{g_{m2} + g_{mb2}}$$

$$= -\frac{g_{m1}}{g_{m2}} \frac{1}{1 + \eta}$$


$$A_{v} = -\frac{\sqrt{2\mu_{n}C_{ox}(W/L)_{1}I_{D1}}}{\sqrt{2\mu_{n}C_{ox}(W/L)_{2}I_{D2}}} \frac{1}{1 + \eta}$$

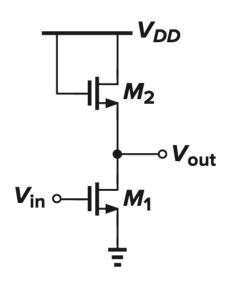
$$= -\sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}} \frac{1}{1 + \eta}$$


✓ The input-output characteristic is relatively linear.

$$\frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_{in} - V_{TH1})^2 = \frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_2 (V_{DD} - V_{out} - V_{TH2})^2$$

(assuming no r_o)

$$A_v = -\sqrt{\frac{\mu_n(W/L)_1}{\mu_p(W/L)_2}}$$

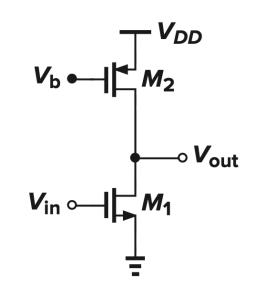


(assuming no r_o)

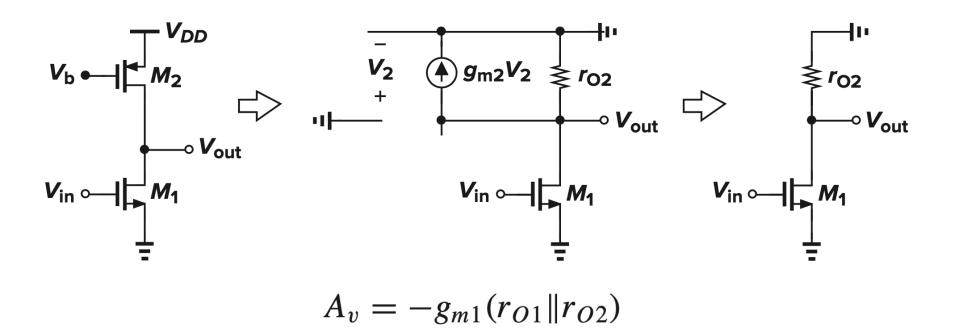
$$A_v = -\sqrt{\frac{\mu_n(W/L)_1}{\mu_p(W/L)_2}}$$

- A high gain requires a "strong" input device and a "weak" load device
 - disproportionately wide or long transistors >> large input or load cap
 - another limitation: reduction in allowable voltage swings

$$\mu_n \left(\frac{W}{L}\right)_1 (V_{GS1} - V_{TH1})^2 = \mu_p \left(\frac{W}{L}\right)_2 (V_{GS2} - V_{TH2})^2 \longrightarrow \frac{|V_{GS2} - V_{TH2}|}{|V_{GS1} - V_{TH1}|} = A_v$$



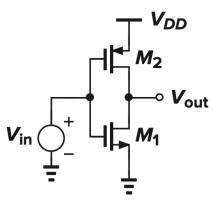
Including channel-length modulation:


$$A_v = -g_{m1} \left(\frac{1}{g_{m2}} ||r_{O1}|| r_{O2} \right)$$

CS Stage with Current-Source Load

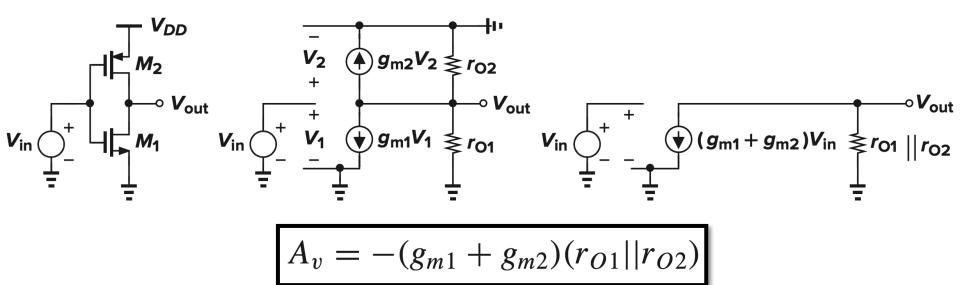
- To achieve a large voltage gain in a single stage, $A_v = -g_m R_D$ suggests that we should increase the **load impedance** of the CS stage
- With a resistor or diode-connected load, increasing the load resistance translates to a large dc drop across the load, limiting the output voltage swing
- A more practical approach is to replace the load with a device that does not obey Ohm's law, such as a current source

CS Stage with Current-Source Load

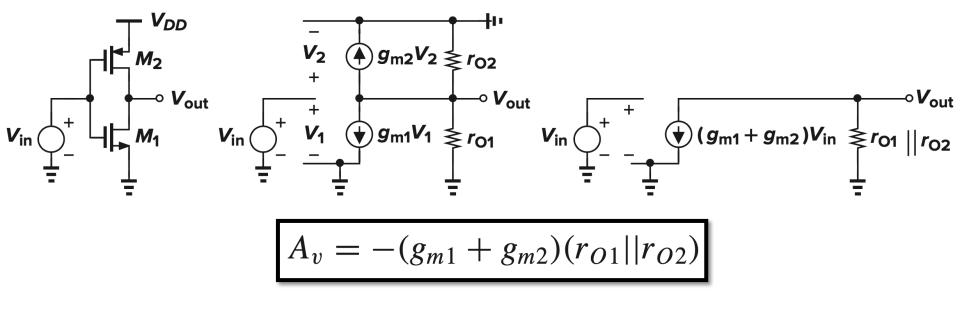

• The output impedance and minimum required $|V_{DS}|$ of M_2 less strongly coupled than the value and voltage drop of a resistor

$$|V_{DS2,min}| = |V_{GS2} - V_{TH2}|$$

- If ro_2 is not sufficiently high, the length and width of M_2 can be increased while maintaining the same overdrive voltage
 - penalty: the larger capacitance introduced by M_2 at the output node


CS Stage with Active Load

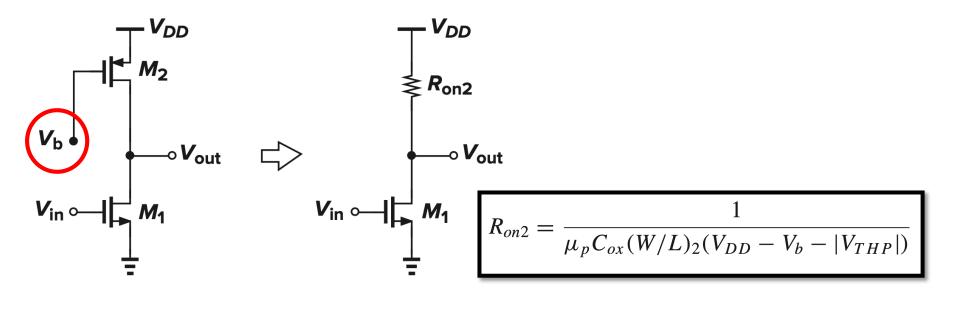
Replace the constant current source with an amplifying device


CS Stage with Active Load

Replace the constant current source with an amplifying device

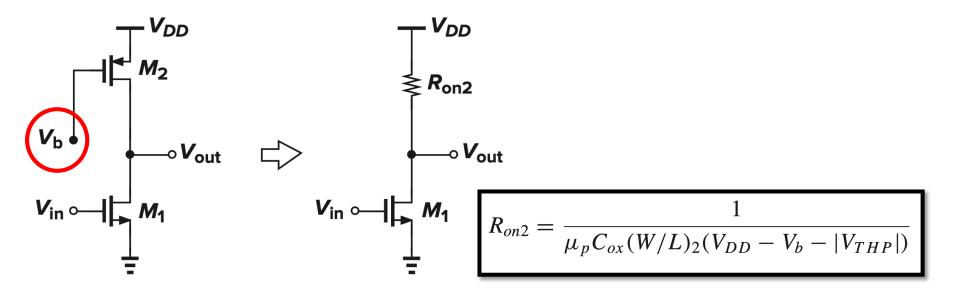
CS Stage with Active Load

Replace the constant current source with an amplifying device


- a "complementary CS stage"
- × the bias current of the two transistors is a strong function of PVT

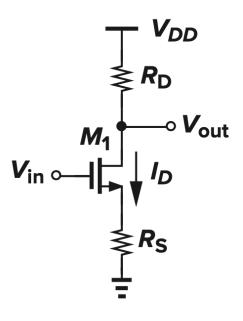
$$V_{GS1} + |V_{GS2}| = V_{DD}$$

× it amplifies supply voltage variations ("supply noise")


CS Stage with Triode Load

A MOS device operating in the deep triode region behaves as a resistor

CS Stage with Triode Load

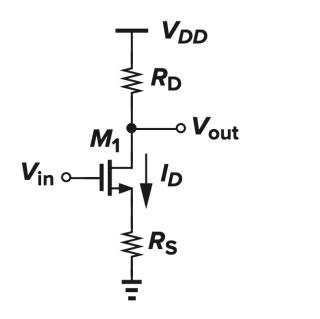

A MOS device operating in the deep triode region behaves as a resistor

- × Dependence of Ron2 on $\mu_p C_{ox}$, V_b , and V_{THP}
 - $\times \mu_{P}C_{ox}$ and V_{THP} vary with process and temperature
 - \times generating a precise V_b requires additional complexity
- ✓ Triode loads consume less voltage headroom than diode-connected

CS Stage with Source Degeneration

- The nonlinear dependence of the drain current upon overdrive: nonlinearity
- Placing a "degeneration" resistor in series with the source terminal makes the input device more linear (i.e., make the gain a weaker function of g_m)

$$G_{m} = \partial I_{D}/\partial V_{in}$$


$$V_{GS} = V_{in} - I_{D}R_{S}$$

$$G_{m} = \frac{g_{m}}{1 + g_{m}R_{S}}$$

MS EE 320 30

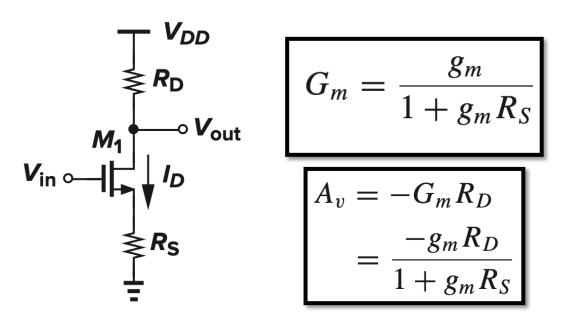
CS Stage with Source Degeneration

- The nonlinear dependence of the drain current upon overdrive: nonlinearity
- Placing a "degeneration" resistor in series with the source terminal makes the input device more linear (i.e., make the gain a weaker function of g_m)

$$V_{\text{in}}$$
 \downarrow^+
 \downarrow^+
 \downarrow^+
 \downarrow^+
 $\downarrow^ \downarrow^ \downarrow^-$

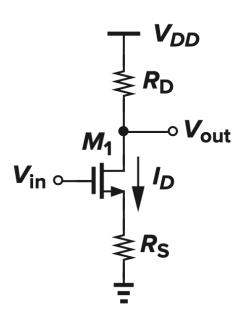
$$G_{m} = \partial I_{D}/\partial V_{in}$$

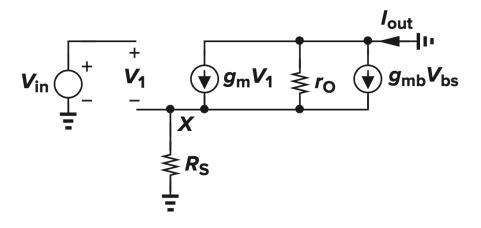
$$V_{GS} = V_{in} - I_{D}R_{S}$$

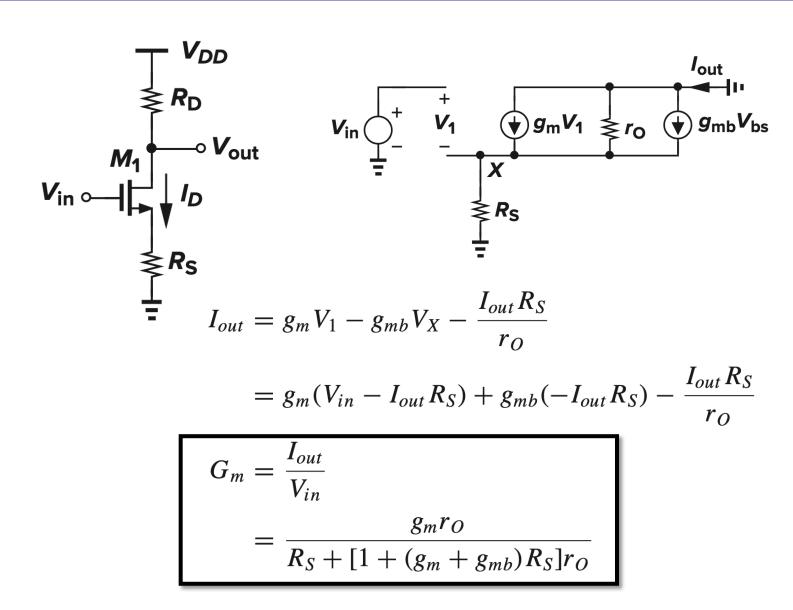

$$G_{m} = \frac{g_{m}}{1 + g_{m}R_{S}}$$

$$A_{v} = -G_{m}R_{D}$$

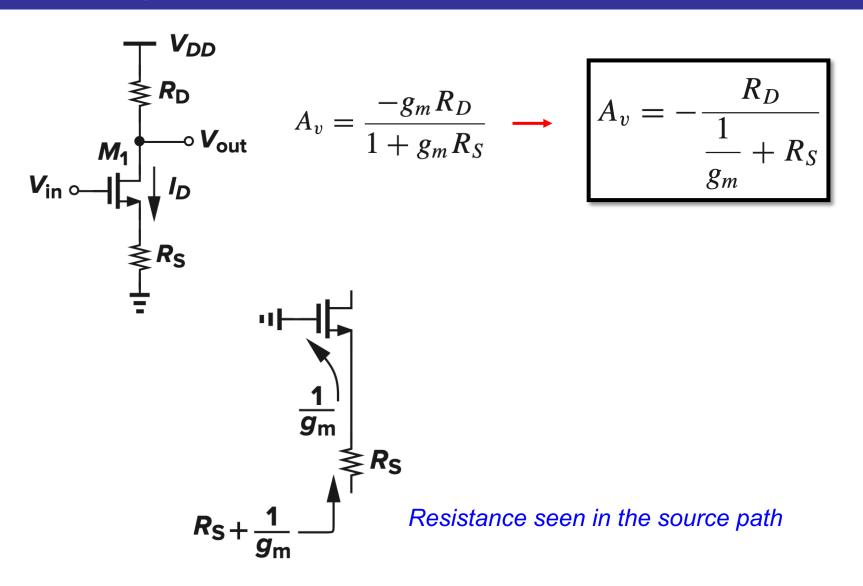
$$= \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}}$$

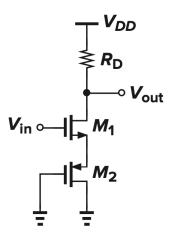

MS EE 320 31


CS Stage with Source Degeneration

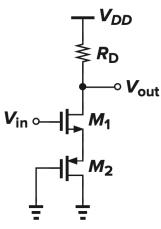

- As R_s increases, G_m becomes a weaker function of g_m and hence the drain current
- For $R_s \gg 1/g_m$, we have $G_m \approx 1/R_s$, i.e., $I_D \approx V_m/R_s$: most of the change in V_m appears across R_s and the drain current is a "**linearized**" function of the input voltage
- The linearization is obtained at the cost of lower gain

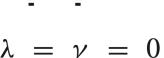
G_m in the presence of g_{mb} and r_o

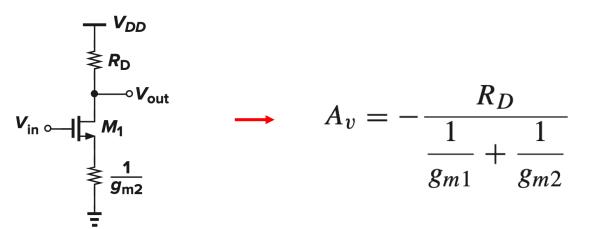



G_m in the presence of g_{mb} and r_o

Gain by Inspection




Example: Calculate the small-signal gain



$$\lambda = \gamma = 0$$

Example: Calculate the small-signal gain

