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Review: MOS I/V Characteristics

or VGD > VTH

triode

saturation

or VGD < VTH

deep triode

PMOS in saturation: VGD > VTH
triode: VGD < VTH (VTH is negative)
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Review: MOS gm in saturation
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Review: MOS gm in saturation, second-order effects 
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MOS Device Capacitances 

§ The basic quadratic I/V relationships along with corrections for body effect and 
channel-length modulation, provide some understanding of the low-frequency 
behavior of CMOS circuits 

§ In many analog circuits, however, the capacitances associated with the 
devices must also be taken into account to predict the high-frequency 
behavior as well 
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MOS Device Capacitances 

§ The basic quadratic I/V relationships along with corrections for body effect and 
channel-length modulation, provide some understanding of the low-frequency 
behavior of CMOS circuits 

§ In many analog circuits, however, the capacitances associated with the 
devices must also be taken into account to predict the high-frequency 
behavior as well 

§ Capacitance between each two of the four terminals of a MOS: the value may 
depend on the bias conditions of the transistor 
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MOS Device Capacitances  



MS EE 320 10

MOS Device Capacitances  

(1) the oxide capacitance between the gate and the channel
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MOS Device Capacitances  

(1) the oxide capacitance between the gate and the channel

(2) the depletion capacitance between the channel and the substrate 
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MOS Device Capacitances  

(1) the oxide capacitance between the gate and the channel

(2) the depletion capacitance between the channel and the substrate 

(3) the capacitance due to overlap of the gate poly with source and drain, C3 and C4

The overlap capacitance per unit width: Cov in F/m (or fF/μm). Multiply Cov by W to 
obtain the gate-source and gate-drain overlap capacitances
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MOS Device Capacitances 

(4) The junction capacitance between the S/D areas and the substrate, it has two 
components: the bottom-plate capacitance at the bottom of the junction Cj, and 
the sidewall capacitance due to the perimeter of the junction, Cjsw

§ Cj and Cjsw as capacitance per unit area (in F/m2) and unit length (in F/m)
§ Cj is multiplied by the S/D area, and Cjsw by the S/D perimeter
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MOS Device Capacitances 

(4) The junction capacitance between the S/D areas and the substrate, it has two 
components: the bottom-plate capacitance at the bottom of the junction Cj, and 
the sidewall capacitance due to the perimeter of the junction, Cjsw

§ Cj and Cjsw as capacitance per unit area (in F/m2) and unit length (in F/m)
§ Cj is multiplied by the S/D area, and Cjsw by the S/D perimeter

§ Each junction capacitance can be expressed as 
where VR is the reverse voltage across the junction, Φ! is the junction built-in 
potential, and m is a power typically in the range of 0.3 and 0.4
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Example: MOS Device Capacitances 

v Calculate the source and drain junction capacitances of the structures below:
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Example: MOS Device Capacitances 
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Example: MOS Device Capacitances 

v Calculate the source and drain junction capacitances of the structures below:

a “folded” structure (b) has substantially 
less drain junction capacitance than 

(a) while providing the same W/L
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MOS Capacitances in different regions
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MOS Capacitances in different regions

§ If the device is off, CGD = CGS = CovW , and the gate-bulk capacitance consists of 
the series combination of the gate-oxide capacitance and the depletion-region 
capacitance, i.e., CGB = (WLCox)Cd /(WLCox + Cd), where L is the effective length
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MOS Capacitances in different regions

§ If the device is off, CGD = CGS = CovW , and the gate-bulk capacitance consists of 
the series combination of the gate-oxide capacitance and the depletion-region 
capacitance, i.e., CGB = (WLCox)Cd /(WLCox + Cd), where L is the effective length

§ The value of CSB and CDB is a function of the S and D voltages wrt the substrate
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MOS Capacitances in different regions

§ If the device is off, CGD = CGS = CovW , and the gate-bulk capacitance consists of 
the series combination of the gate-oxide capacitance and the depletion-region 
capacitance, i.e., CGB = (WLCox)Cd /(WLCox + Cd), where L is the effective length

§ The value of CSB and CDB is a function of the S and D voltages wrt the substrate

§ In deep triode, (S and D at approximately equal voltages), the gate-channel 
capacitance, WLCox, is divided equally between the G and S and the G and D, 
since a change of G voltage draws equal charge from S and D: 



MS EE 320 23

MOS Capacitances in different regions

§ If in saturation, the MOS exhibits a gate-drain capacitance roughly equal to WCov
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MOS Capacitances in different regions

§ If in saturation, the MOS exhibits a gate-drain capacitance roughly equal to WCov

§ For CGS, the potential difference between gate and channel varies from VGS at the 
source to VTH at the pinch-off point, resulting in a nonuniform vertical electric field 
in the gate oxide from S to D

§ It can be proved that the equivalent capacitance, excluding the gate-source 
overlap capacitance, equals (2/3)WLCox
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MOS Capacitances in different regions

§ If in saturation, the MOS exhibits a gate-drain capacitance roughly equal to WCov

§ For CGS, the potential difference between gate and channel varies from VGS at the 
source to VTH at the pinch-off point, resulting in a nonuniform vertical electric field 
in the gate oxide from S to D

§ It can be proved that the equivalent capacitance, excluding the gate-source 
overlap capacitance, equals (2/3)WLCox

§ The gate-bulk capacitance is usually neglected in triode and saturation because 
the inversion layer acts as a “shield” between G and B
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Example: MOS Capacitances in different regions

v Sketch the capacitances of M1 as VX varies from zero to 3 V. Assume that 
VTH = 0.3 V and λ = γ = 0. 
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Example: MOS Capacitances in different regions
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Example: MOS Capacitances in different regions

v Sketch the capacitances of M1 as VX varies from zero to 3 V. Assume that 
VTH = 0.3 V and λ = γ = 0. 

As VX exceeds 1 V, the role of the S and D is exchanged: 
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Example: MOS Capacitances in different regions

v Sketch the capacitances of M1 as VX varies from zero to 3 V. Assume that 
VTH = 0.3 V and λ = γ = 0. 

As VX exceeds 1 V, the role of the S and D is exchanged: 
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Small-Signal model of MOS

§ The “large-signal” behavior of NMOS devices, to predict the drain current for 
arbitrary voltages applied to the G, S, and D, but 
§ nonlinear nature of large-signal models: difficult to analyze

§ if the perturbation in bias conditions is small, a “small-signal” model (an 
approximation of the large-signal model around the operating point), can 
simplify the calculations

§ Since in many analog circuits, MOSFETs are biased in the saturation region, we 
derive the small-signal model for saturation 

§ For MOS operating as a switch: a linear resistor together with capacitances
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Small-Signal model of MOS
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Small-Signal model of MOS
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Small-Signal model of MOS
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Small-Signal model of MOS (less common)
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Small-Signal model of MOS with body effect



MS EE 320 36

Small-Signal model of MOS with body effect
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Small-Signal model of MOS with body effect

§ gm VGS and gmbVBS have the same 
polarity
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Complete MOS small-signal model 
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PMOS small-signal model 
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Signal Amplification

An essential function in most analog circuits

§ We amplify an analog or digital signal because 
§ it may be too small to drive a load
§ overcome the noise of a subsequent stage 
§ provide logical levels to a digital circuit
§ …
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Signal Amplification

An essential function in most analog circuits

§ We amplify an analog or digital signal because 
§ it may be too small to drive a load
§ overcome the noise of a subsequent stage 
§ provide logical levels to a digital circuit
§ …

§ Four types of amplifiers: 
§ common-source 
§ common-gate 
§ source follower
§ cascodes
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Analog design tradeoffs
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Amplifier topologies
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Common-Source Stage - with Resistive Load 
§ The common-source topology: receives the input at the gate and produces the 

output at the drain 
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Common-Source Stage - with Resistive Load 
§ The common-source topology: receives the input at the gate and produces the 

output at the drain 

(triode)

(saturation)
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Common-Source Stage - with Resistive Load 
§ The common-source topology: receives the input at the gate and produces the 

output at the drain 

(triode)

(saturation)
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Common-Source Stage - with Resistive Load 

small-signal model:


