

Analog IC design (EE-320), Lecture 3

Prof. Mahsa Shoaran

Institute of Electrical and Micro Engineering, School of Engineering, EPFL

Review: MOS I/V Characteristics

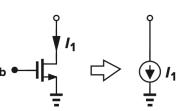
$$V_{DS} \leq V_{GS} - V_{TH}$$

$$V_{DS} \leq V_{GS} - V_{TH} \qquad \text{triode} \qquad I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

or
$$V_{GD} > V_{TH}$$

$$V_{DS} \ll 2(V_{GS} - V_{TH}) \longrightarrow R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$
 so deep triode

$$V_{DS} > V_{GS} - V_{TH}$$
 saturation or $V_{GD} < V_{TH}$ $V_b \leftarrow V_{TH}$ \Rightarrow $v_b \leftarrow V_{TH}$

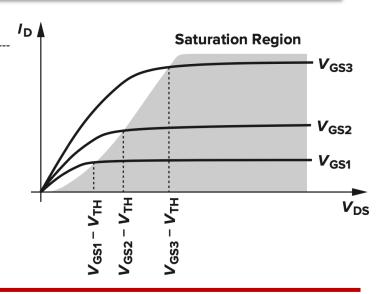


$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

PMOS in saturation: $V_{GD} > V_{TH}$ **triode:** $V_{GD} < V_{TH}$ (V_{TH} is negative)

$$I_D = -\mu_p C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$I_D = -\frac{1}{2}\mu_p C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$



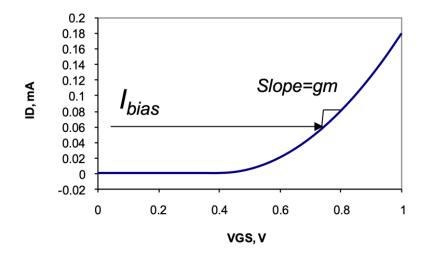
Review: MOS g_m in saturation

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \Big|_{VDS \text{ const.}}$$

$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

$$I_D pprox rac{1}{2} \mu_n C_{ox} rac{W}{L} (V_{GS} - V_{TH})^2$$



Review: MOS g_m in saturation, second-order effects

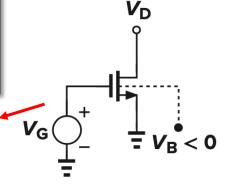
$$g_m = \frac{\partial I_D}{\partial V_{GS}} \Big|_{VDS \text{ const.}}$$

$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

Body Effect

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$



Review: MOS g_m in saturation, second-order effects

$$g_m = \frac{\partial I_D}{\partial V_{GS}}\Big|_{VDS \text{ const.}}$$

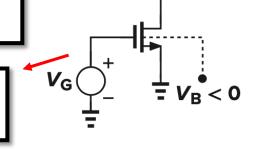
$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$
 $g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L}}$

$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

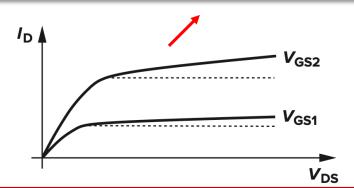
Body

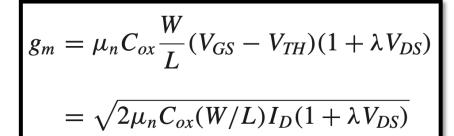
Effect
$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$



Channel-Length Modulation

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$





Review: MOS g_m in saturation, second-order effects

$$g_m = \frac{\partial I_D}{\partial V_{GS}}\Big|_{VDS \text{ const.}}$$

$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$
 $g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L}}$

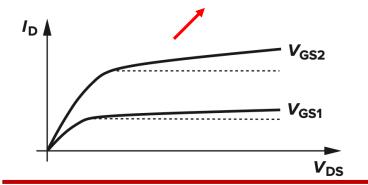
$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

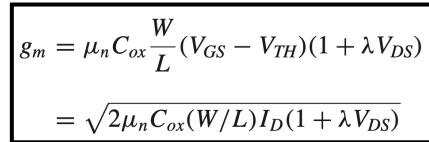
$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

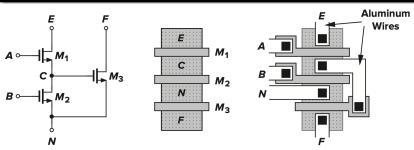
Effect
$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

Channel-Length Modulation

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

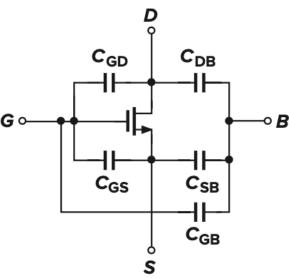


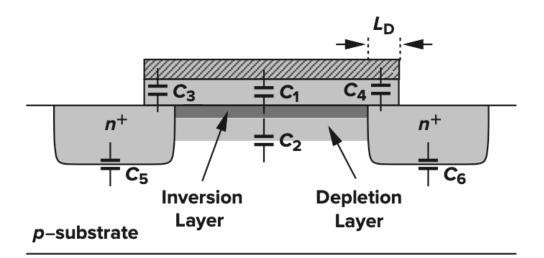




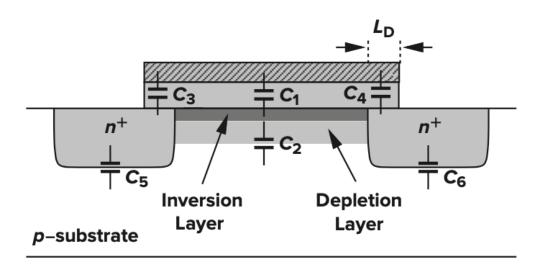
- The basic quadratic I/V relationships along with corrections for <u>body effect</u> and <u>channel-length modulation</u>, provide some understanding of the <u>low-frequency</u> behavior of CMOS circuits
- In many analog circuits, however, the capacitances associated with the devices must also be taken into account to predict the high-frequency behavior as well

- The basic quadratic I/V relationships along with corrections for <u>body effect</u> and <u>channel-length modulation</u>, provide some understanding of the **low-frequency** behavior of CMOS circuits
- In many analog circuits, however, the capacitances associated with the devices must also be taken into account to predict the high-frequency behavior as well
- Capacitance between each two of the four terminals of a MOS: the value may depend on the bias conditions of the transistor



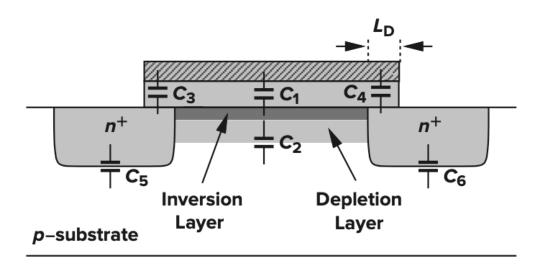


MS EE 320



(1) the oxide capacitance between the gate and the channel

$$C_1 = WLC_{ox}$$

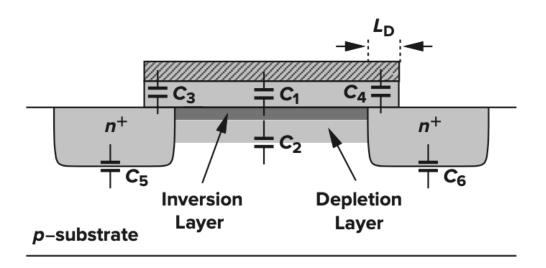


(1) the oxide capacitance between the gate and the channel

$$C_1 = WLC_{ox}$$

(2) the **depletion** capacitance between the channel and the substrate

$$C_2 = WL\sqrt{q\epsilon_{si}N_{sub}/(4\Phi_F)}$$



(1) the oxide capacitance between the gate and the channel

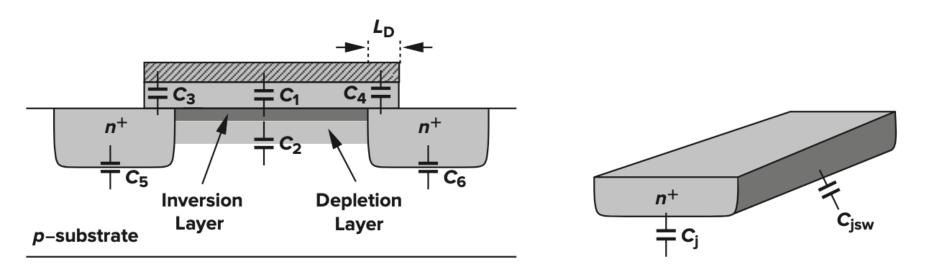
$$C_1 = WLC_{ox}$$

(2) the **depletion** capacitance between the channel and the substrate

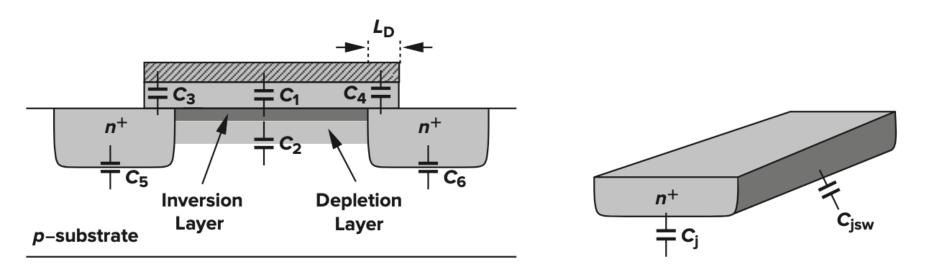
$$C_2 = WL\sqrt{q\epsilon_{si}N_{sub}/(4\Phi_F)}$$

(3) the capacitance due to overlap of the gate poly with source and drain, C₃ and C₄

The overlap capacitance **per unit width**: C_{ov} in F/m (or fF/µm). Multiply C_{ov} by W to obtain the **gate-source and gate-drain overlap capacitances**



- (4) The junction capacitance between the S/D areas and the substrate, it has two components: the bottom-plate capacitance at the bottom of the junction C_j , and the sidewall capacitance due to the perimeter of the junction, C_{isw}
- C_i and C_{isw} as capacitance per unit *area* (in F/m2) and unit *length* (in F/m)
- C_j is multiplied by the S/D **area**, and C_{jsw} by the S/D **perimeter**

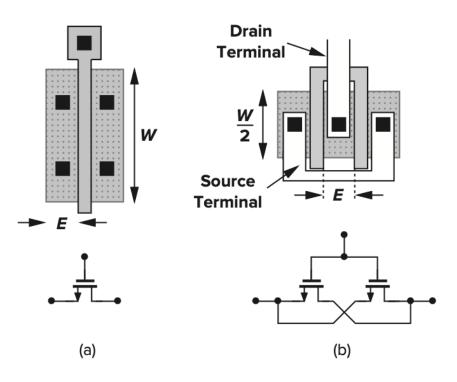


- (4) The junction capacitance between the S/D areas and the substrate, it has two components: the bottom-plate capacitance at the bottom of the junction C_j , and the sidewall capacitance due to the perimeter of the junction, C_{isw}
- C_j and C_{jsw} as capacitance per unit *area* (in F/m2) and unit *length* (in F/m)
- C_j is multiplied by the S/D area, and C_{jsw} by the S/D perimeter
- Each junction capacitance can be expressed as $C_j = C_{j0}/[1 + V_R/(\Phi_B)]^m$ where V_R is the reverse voltage across the junction, Φ_B is the junction built-in potential, and m is a power typically in the range of 0.3 and 0.4

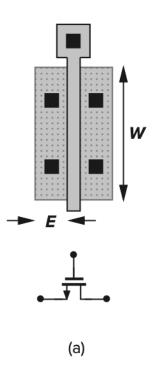
EE 320

14

❖ Calculate the source and drain junction capacitances of the structures below:

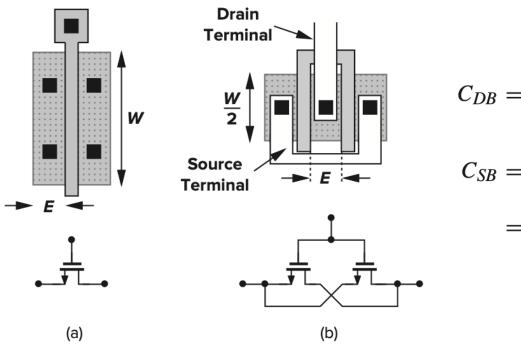


❖ Calculate the source and drain junction capacitances of the structures below:



$$C_{DB} = C_{SB} = WEC_j + 2(W + E)C_{jsw}$$

❖ Calculate the source and drain junction capacitances of the structures below:



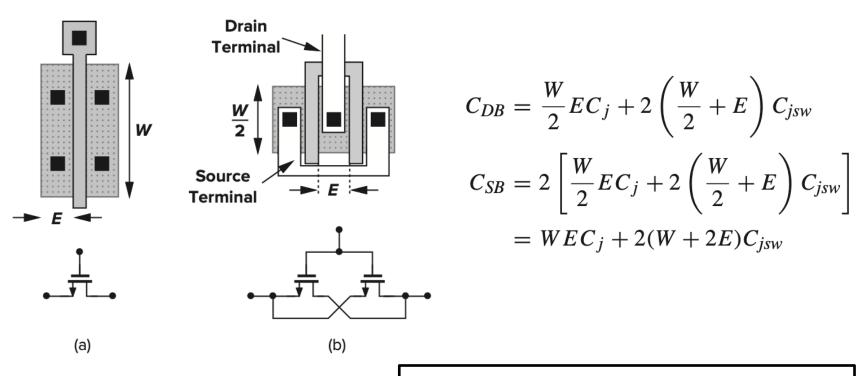
$$C_{DB} = \frac{W}{2}EC_j + 2\left(\frac{W}{2} + E\right)C_{jsw}$$

$$C_{SB} = 2\left[\frac{W}{2}EC_j + 2\left(\frac{W}{2} + E\right)C_{jsw}\right]$$

$$= WEC_j + 2(W + 2E)C_{jsw}$$

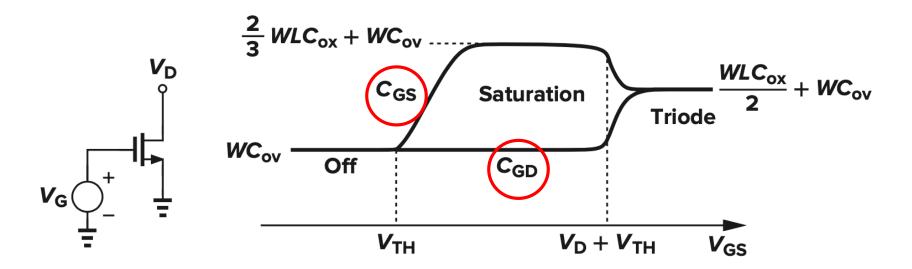
$$C_{DB} = C_{SB} = WEC_j + 2(W + E)C_{jsw}$$

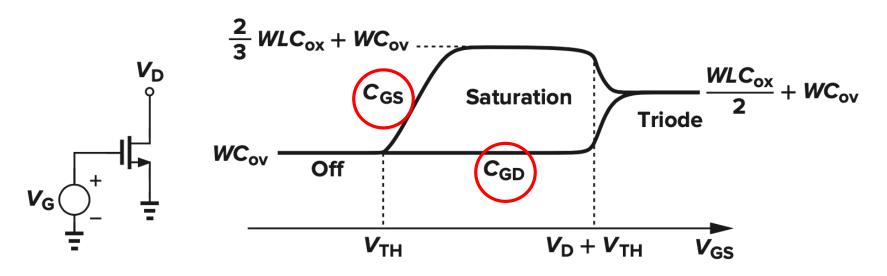
Calculate the source and drain junction capacitances of the structures below:



$$C_{DB} = C_{SB} = WEC_j + 2(W + E)C_{jsw}$$

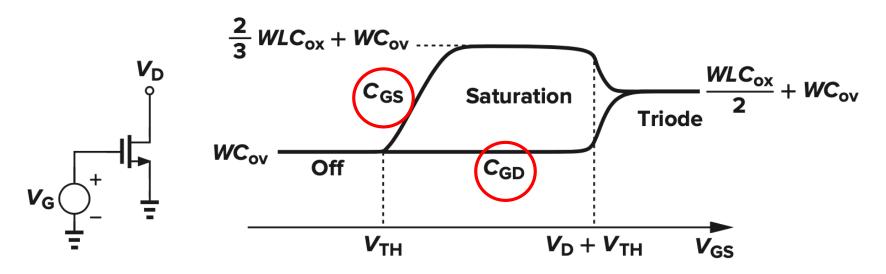
a "folded" structure (b) has substantially less drain junction capacitance than (a) while providing the same W/L



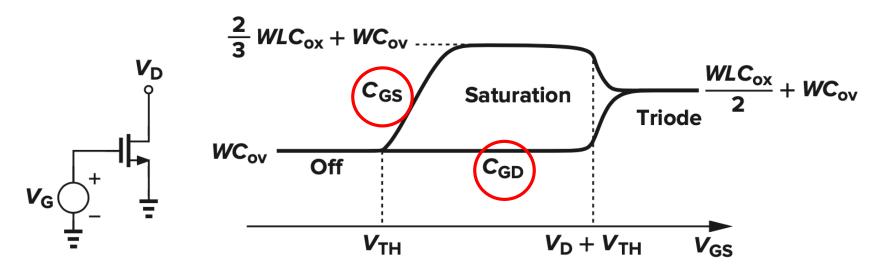


If the device is **off**, $C_{GD} = C_{GS} = C_{ov}W$, and the **gate-bulk** capacitance consists of the series combination of the gate-oxide capacitance and the depletion-region capacitance, i.e., $C_{GB} = (WLC_{ox})C_d/(WLC_{ox} + C_d)$, where L is the effective length

$$C_d = WL\sqrt{q\epsilon_{si}N_{sub}/(4\Phi_F)}$$



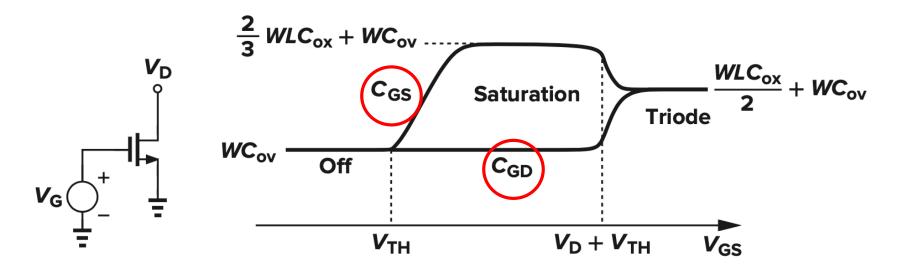
- If the device is **off**, $C_{GD} = C_{GS} = C_{ov}W$, and the **gate-bulk** capacitance consists of the series combination of the gate-oxide capacitance and the depletion-region capacitance, i.e., $C_{GB} = (WLC_{ox})C_d/(WLC_{ox} + C_d)$, where L is the effective length
- The value of C_{SB} and C_{DB} is a function of the S and D voltages wrt the substrate



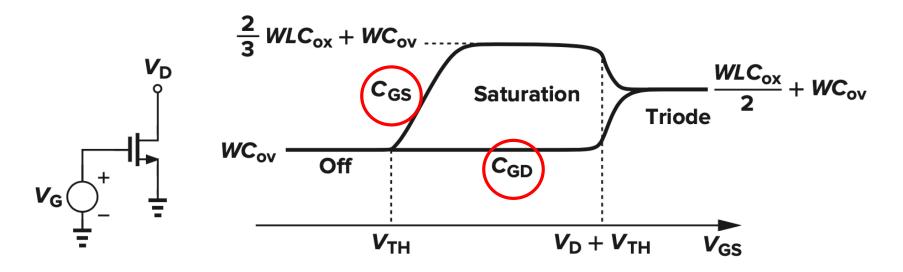
- If the device is **off**, $C_{GD} = C_{GS} = C_{ov}W$, and the **gate-bulk** capacitance consists of the series combination of the gate-oxide capacitance and the depletion-region capacitance, i.e., $C_{GB} = (WLC_{ox})C_d/(WLC_{ox} + C_d)$, where L is the effective length
- The value of C_{SB} and C_{DB} is a function of the S and D voltages wrt the substrate
- In deep triode, (S and D at approximately equal voltages), the gate-channel capacitance, WLC_{ox}, is divided equally between the G and S and the G and D, since a change of G voltage draws equal charge from S and D:

$$C_{GD} = C_{GS} = WLC_{ox}/2 + WC_{ov}$$

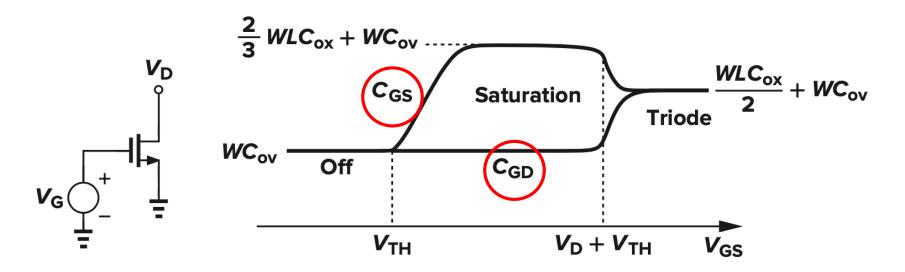
22



• If in saturation, the MOS exhibits a gate-drain capacitance roughly equal to WC_{ov}



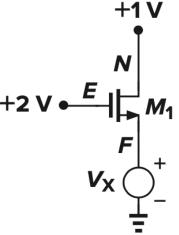
- If in saturation, the MOS exhibits a gate-drain capacitance roughly equal to WC_{ov}
- For *C_{GS}*, the potential difference between gate and channel varies from V_{GS} at the source to V_{TH} at the pinch-off point, resulting in a nonuniform vertical electric field in the gate oxide from S to D
- It can be proved that the equivalent capacitance, excluding the gate-source overlap capacitance, equals $(2/3)WLC_{ox} \longrightarrow C_{GS} = 2WL_{eff}C_{ox}/3 + WC_{ov}$



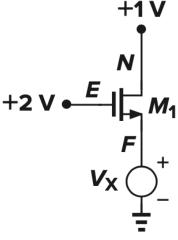
- If in saturation, the MOS exhibits a gate-drain capacitance roughly equal to WC_{ov}
- For *C_{GS}*, the potential difference between gate and channel varies from V_{GS} at the source to V_{TH} at the pinch-off point, resulting in a nonuniform vertical electric field in the gate oxide from S to D
- It can be proved that the equivalent capacitance, excluding the gate-source overlap capacitance, equals $(2/3)WLC_{ox} \longrightarrow C_{GS} = 2WL_{eff}C_{ox}/3 + WC_{ov}$
- The gate-bulk capacitance is usually neglected in triode and saturation because the inversion layer acts as a "shield" between G and B

MS EE 320 25

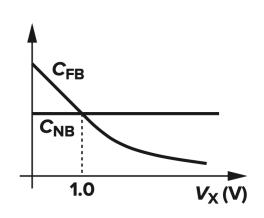
Sketch the capacitances of M_1 as V_X varies from zero to 3 V. Assume that $V_{TH} = 0.3 \text{ V}$ and $\lambda = \gamma = 0$.



Sketch the capacitances of M_1 as V_X varies from zero to 3 V. Assume that $V_{TH} = 0.3 \text{ V}$ and $\lambda = \gamma = 0$.

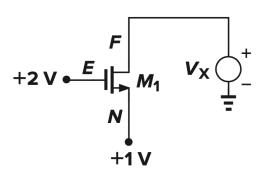


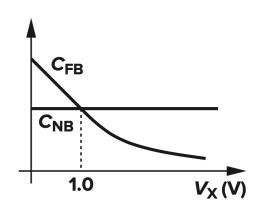
$$C_j = C_{j0}/[1 + V_R/(\Phi_B)]^m$$



Sketch the capacitances of M_1 as V_X varies from zero to 3 V. Assume that $V_{TH} = 0.3 \text{ V}$ and $\lambda = \gamma = 0$.

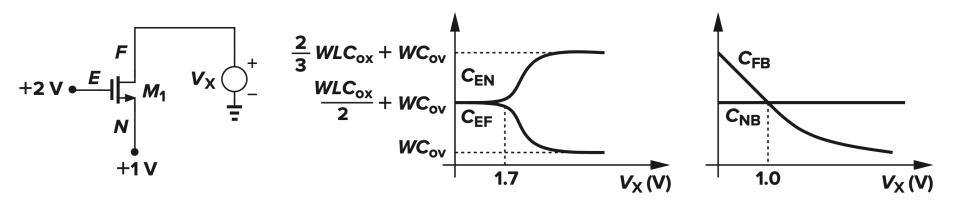
As V_X exceeds 1 V, the role of the S and D is exchanged:



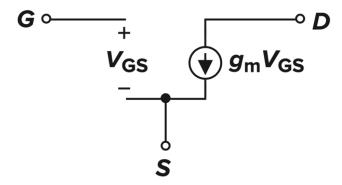


Sketch the capacitances of M_1 as V_X varies from zero to 3 V. Assume that $V_{TH} = 0.3 \text{ V}$ and $\lambda = \gamma = 0$.

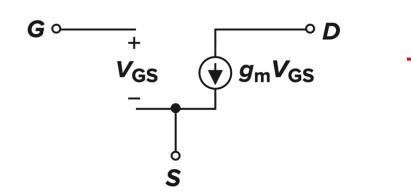
As V_X exceeds 1 V, the role of the S and D is exchanged:

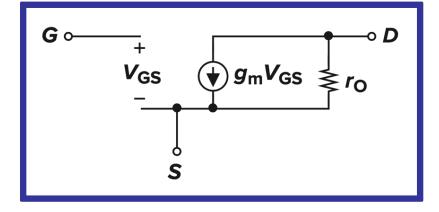


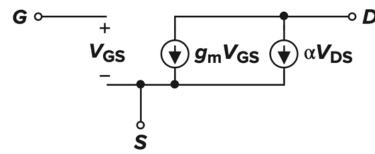
- The "large-signal" behavior of NMOS devices, to predict the drain current for arbitrary voltages applied to the G, S, and D, but
 - nonlinear nature of large-signal models: difficult to analyze
 - if the perturbation in bias conditions is small, a "small-signal" model (an approximation of the large-signal model around the operating point), can simplify the calculations
- Since in many analog circuits, MOSFETs are biased in the saturation region, we derive the small-signal model for saturation
- For MOS operating as a switch: a linear resistor together with capacitances



MS







$$r_O = rac{\partial V_{DS}}{\partial I_D}$$

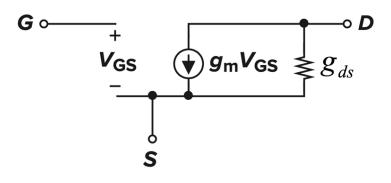
$$= rac{1}{\partial I_D/\partial V_{DS}}$$

$$= rac{1}{rac{1}{2}\mu_n C_{ox} rac{W}{L} (V_{GS} - V_{TH})^2 \cdot \lambda}$$

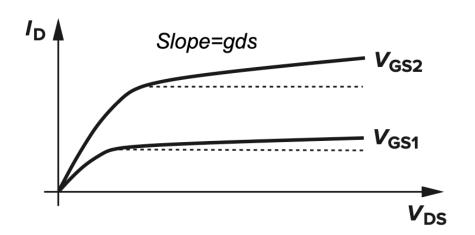
$$pprox rac{1 + \lambda V_{DS}}{\lambda I_D}$$

$$pprox rac{1}{\lambda I_D}$$

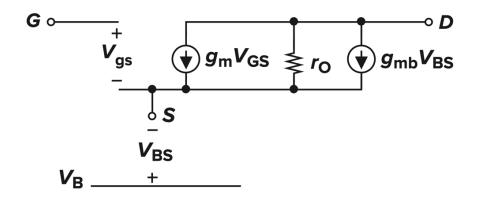
Small-Signal model of MOS (less common)



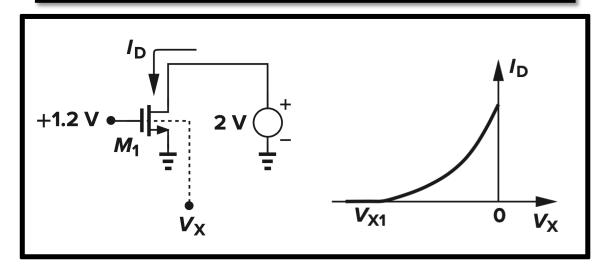
$$g_{ds} = \frac{\partial I_D}{\partial V_{DS}}$$



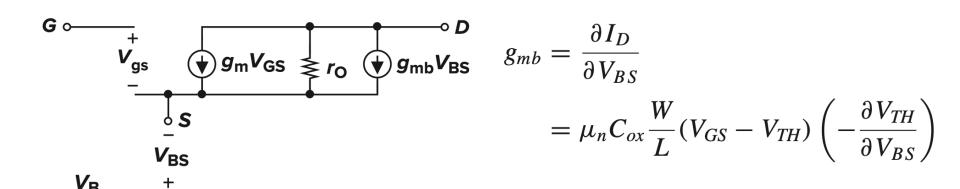
Small-Signal model of MOS with body effect



$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$



Small-Signal model of MOS with body effect



Small-Signal model of MOS with body effect

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

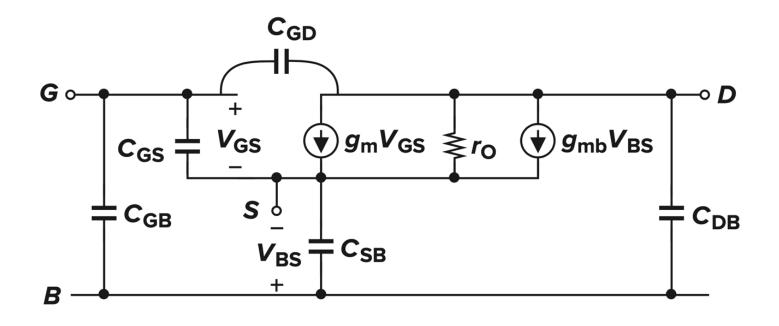
$$= -\frac{\gamma}{2} (2\Phi_F + V_{SB})^{-1/2}$$

$$\frac{\partial V_{TH}}{\partial V_{BS}} = -\frac{\partial V_{TH}}{\partial V_{SB}}$$
$$= -\frac{\gamma}{2} (2\Phi_F + V_{SB})^{-1/2}$$

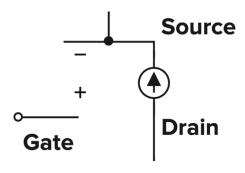
 $g_m V_{GS}$ and $g_{mb}V_{BS}$ have the same polarity

$$g_{mb} = g_m \frac{\gamma}{2\sqrt{2\Phi_F + V_{SB}}}$$
$$= \eta g_m$$

Complete MOS small-signal model



PMOS small-signal model



Signal Amplification

An essential function in most analog circuits

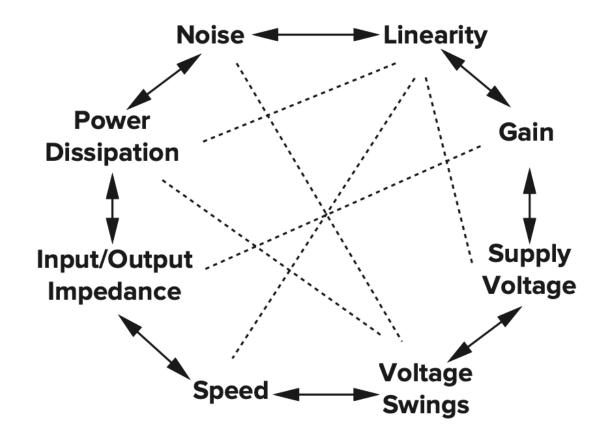
- We amplify an analog or digital signal because
 - it may be too small to drive a load
 - overcome the noise of a subsequent stage
 - provide logical levels to a digital circuit
 - ...

Signal Amplification

An essential function in most analog circuits

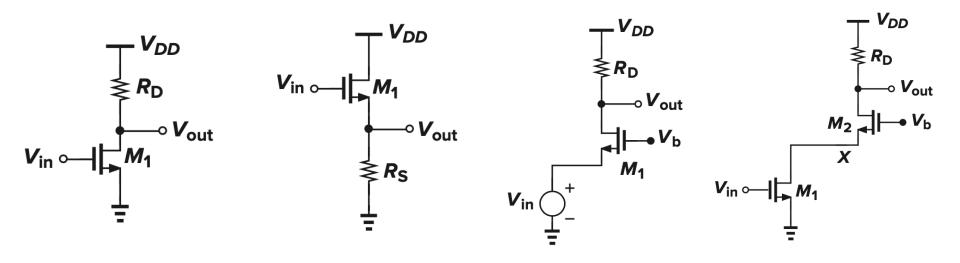
- We amplify an analog or digital signal because
 - it may be too small to drive a load
 - overcome the noise of a subsequent stage
 - provide logical levels to a digital circuit
 - ...
- Four types of amplifiers:
 - common-source
 - common-gate
 - source follower
 - cascodes

Analog design tradeoffs

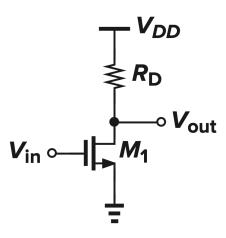


Amplifier topologies

Common-Source Stage	Source Follower	Common-Gate Stage	Cascode
With Resistive Load With Diode-Connected Load With Current-Source Load With Active Load With Source Degeneration	With Resistive Bias	With Resistive Load	Telescopic
	With Current-Source Bias	With Current-Source Load	Folded

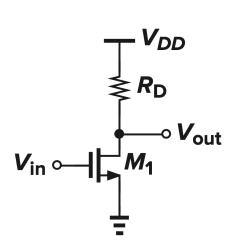


 The common-source topology: receives the input at the gate and produces the output at the drain



The **common-source** topology: receives the input at the **gate** and produces the

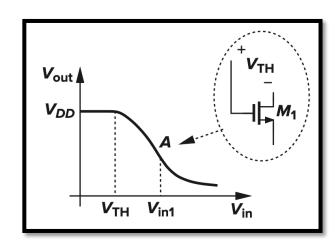
output at the drain



$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \qquad \text{(saturation)}$$

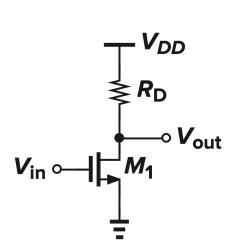
$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$



The **common-source** topology: receives the input at the **gate** and produces the

output at the drain



$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \qquad \text{(saturation)}$$

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{I} \left[2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$

$$V_{out} \ll 2(V_{in} - V_{TH})$$

$$V_{out} = V_{DD} \frac{R_{on}}{R_{on} + R_{D}}$$

$$= \frac{V_{DD}}{1 + \mu_{n} C_{ox} \frac{W}{L} R_{D}(V_{in} - V_{TH})}$$

$$V_{out} \approx 2(V_{in} - V_{TH})$$

$$V_{out} \approx R_{D}$$

$$V_{out} \approx R_{D}$$

$$V_{out} \approx R_{D}$$

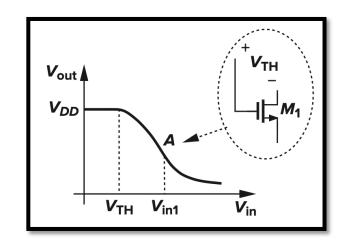
$$V_{in} \approx R_{D}$$

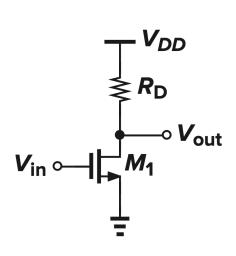
$$V_{in} \approx R_{D}$$

$$V_{out} \approx R_{D}$$

$$V_{out} \approx R_{D}$$

$$V_{DD} \approx R_{D}$$





$$V_{out} > V_{in} - V_{TH}$$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

$$A_v = \frac{\partial V_{out}}{\partial V_{in}}$$

$$= -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})$$

$$= -g_m R_D$$

small-signal model:

