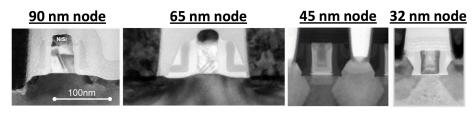
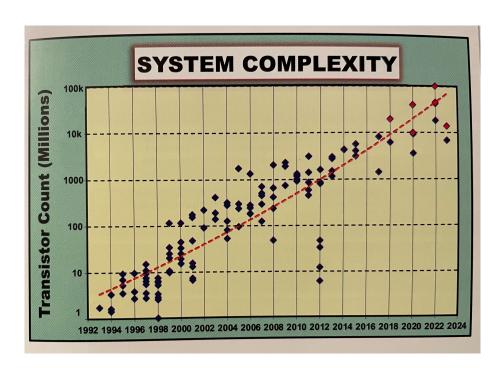
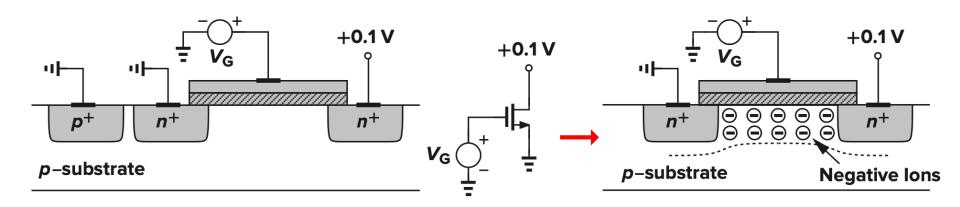

Analog IC design (EE-320), Lecture 2


Prof. Mahsa Shoaran

Institute of Electrical and Micro Engineering, School of Engineering, EPFL

Review: CMOS Analog Design




courtesy V. Moroz, IEDM

Microprocessor Transistor Count, Moore's Law

R. Wu et al., JSSC 2017 U. Shin et al., JSSC 2022

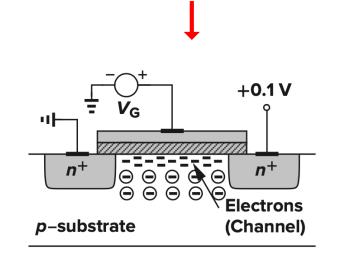
Review: MOS threshold voltage

$$V_{TH} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\Phi_F = (kT/q) \ln(N_{sub}/n_i)$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$$

 Q_{dep} : charge in the depletion region


N_{sub}: doping density of the substrate

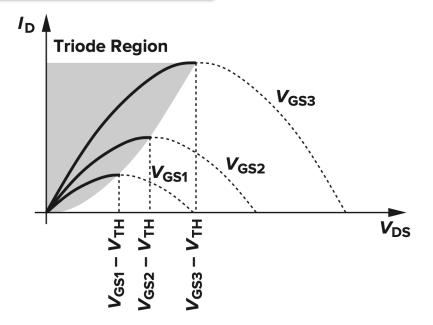
 C_{ox} : the gate-oxide capacitance per unit area

 n_i : density of electrons in undoped silicon

 ε_{si} : the dielectric constant of silicon

 Φ_{MS} : the difference between the work functions of the poly (gate) and substrate

Review: I_D vs. V_{DS} in the triode region


$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

- The overdrive voltage: $V_{GS}-V_{TH}$
- The aspect ratio: W/L

$$V_{DS} \le V_{GS} - V_{TH}$$

$$\downarrow or V_{GD} > V_{TH}$$

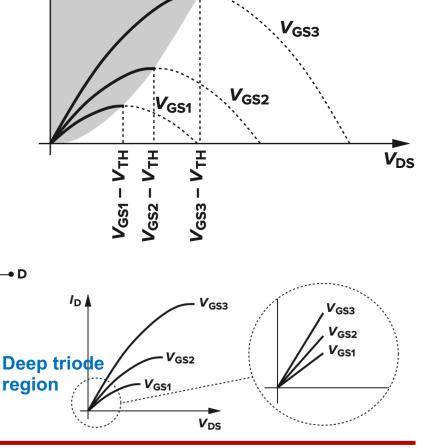
"triode" region (or linear region)

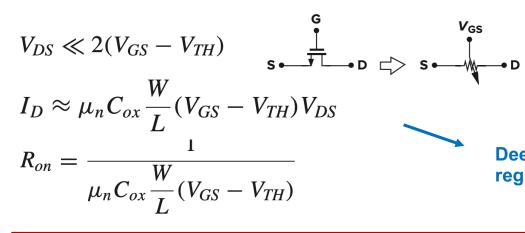
MS EE 320

Review: I_D vs. V_{DS} in the triode region

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

 $I_{\rm D}$


Triode Region


- ullet The overdrive voltage: $V_{GS}-V_{TH}$
- The aspect ratio: W/L

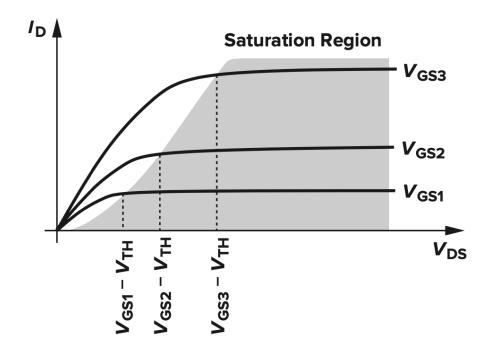
$$V_{DS} \leq V_{GS} - V_{TH}$$

$$\int or V_{GD} > V_{TH}$$

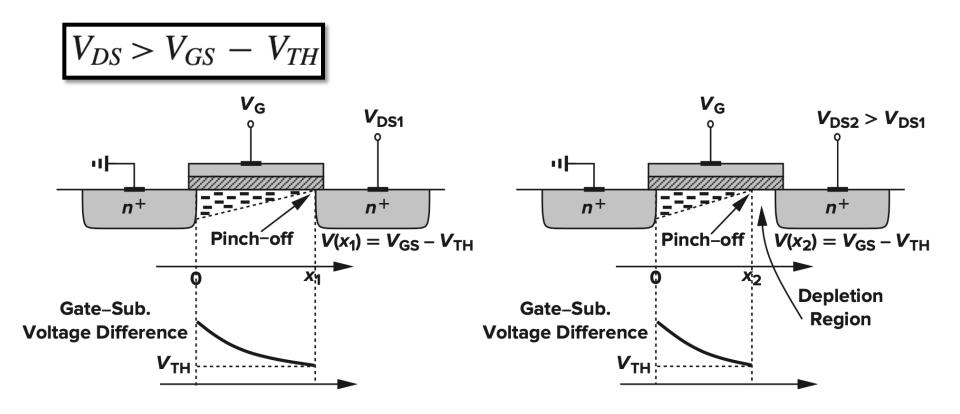
"triode" region (or linear region)

Course Schedule & new room for TPs

Week	Subject by week – EE-320: Analog IC design – Fall 2024	Suggested Chapters
Week 1: 09/09 – 15/09	Introduction, organization, review of BJT and MOS transistors + Exercise1	Ch 1, Ch 2.1-2.4, Slides on Moodle
Week 2: 16/09 – 22/09	Holiday - No class	
Week 3: 23/09 – 29/09	MOS large and small-signal models, regimes of operations + Exercise2	Ch 2.1-2.4
Week 4: 30/09 – 06/10	MOS parasitic effects, layout basic, single-stage amplifiers + Exercise3	Ch 2.1-2.4, Ch 3.1
Week 5: 07/10 – 13/10	Single-stage amplifiers + Exercise4	Ch 3.1-3.7
Week 6: 14/10 – 20/10	Single-stage amplifiers + Exercise5	Ch 3.1-3.7
Week 7: 21/10 – 27/10	Holiday – No class	
Week 8: 28/10 – 03/11	Single-stage amplifiers + Cascode + Exercise6 + Homework1	Ch 4.1-4.4
Week 9: 04/11 – 10/11	Differential amplifiers + Exercise7	Ch 4.1-4.4
Week 10: 11/11 – 17/11	TP1 Practical exercise session on Cadence	Tutorial on Moodle
Week 11: 18/11 – 24/11	TP2 Practical exercise session on Cadence	Tutorial on Moodle
Week 12: 25/11 – 01/12	TP3 Practical exercise session on Cadence + Homework2	Tutorial on Moodle
Week 13: 02/12 – 08/12	TP4 Practical exercise session on Cadence	Tutorial on Moodle
Week 14: 09/12 – 15/12	Differential amplifiers, current mirrors + Exercise8	Ch 4.1-4.4, Ch 5.1-5.3
Week 15: 16/12 – 22/12	Current mirrors + Exercise9	Ch 5.1-5.3

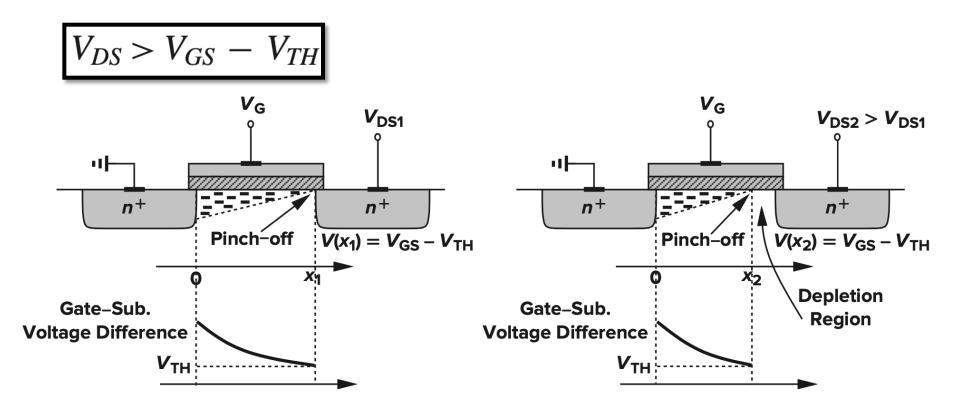

TPs will be held in BC07-08

Assessment:


- Written final exam: 70% of the final grade
- Homework (2 in total): 30% of the final grade

$$V_{DS} > V_{GS} - V_{TH}$$

I_D becomes relatively constant, and we say that the device operates in the "saturation" region.


MOS in Saturation: Pinch-off behavior

Recall that the local density of the inversion-layer charge is proportional to:

$$V_{GS} - V(x) - V_{TH}$$

MOS in Saturation: Pinch-off behavior

Recall that the local density of the inversion-layer charge is proportional to:

$$V_{GS} - V(x) - V_{TH}$$

• if $V(x) \rightarrow V_{GS} - V_{TH}$, then $Q_d(x)$ drops to zero. So, if V_{DS} is slightly **greater** than $V_{GS} - V_{TH}$, the inversion layer stops at $x \le L$, the channel is "**pinched off**"

9

MOS in Saturation: I/V Characteristics

- As the electrons approach the pinch-off point (where Q_d→0), their velocity rises tremendously (v = I/Q_d)
- Upon passing the pinch-off point, the electrons simply shoot through the depletion region and arrive at the drain terminal
- Q_d the density of *mobile* charge: the integral from x = 0 to x = L', where L' is the point at which Q_d drops to zero (e.g., x_2), and from V(x) = 0 to $V(x) = V_{GS} V_{TH}$

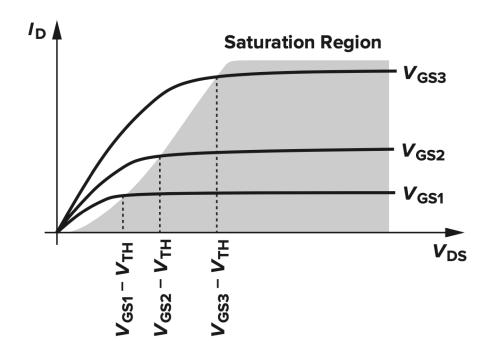
MS EE 320

Recall: derivation of I/V Characteristics

$$I_D = WC_{ox}[V_{GS} - V(x) - V_{TH}]\mu_n \frac{dV(x)}{dx}$$

$$\int_{x=0}^{L} I_D dx = \int_{V=0}^{V_{DS}} WC_{ox} \mu_n [V_{GS} - V(x) - V_{TH}] dV$$

MOS in Saturation: I/V Characteristics


- As the electrons approach the pinch-off point (where $Q_d \rightarrow 0$), their velocity rises tremendously ($v = I/Q_d$)
- Upon passing the pinch-off point, the electrons simply shoot through the depletion region and arrive at the drain terminal
- Q_d the density of *mobile* charge: the integral from x = 0 to x = L', where L' is the point at which Q_d drops to zero (e.g., x_2), and from V(x) = 0 to $V(x) = V_{GS} - V_{TH}$

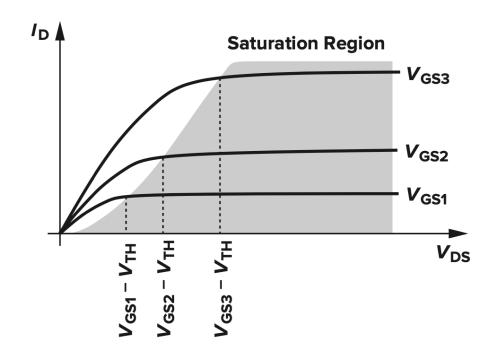
A "square-law" behavior:
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

$$V_{DS} > V_{GS} - V_{TH}$$
or $V_{GD} < V_{TH}$

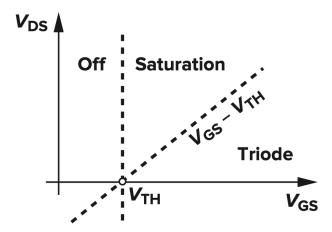
$$V_{DS} > V_{GS} - V_{TH}$$

I_D becomes relatively constant, and we say that the device operates in the "saturation" region.

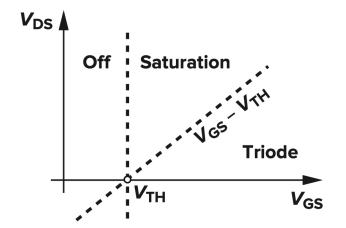
MOS in Saturation: I/V Characteristics

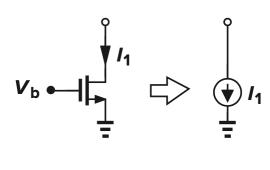

- As the electrons approach the pinch-off point (where $Q_d \rightarrow 0$), their velocity rises tremendously ($v = I/Q_d$)
- Upon passing the pinch-off point, the electrons simply shoot through the depletion region and arrive at the drain terminal
- Q_d the density of *mobile* charge: the integral from x = 0 to x = L', where L' is the point at which Q_d drops to zero (e.g., x_2), and from V(x) = 0 to $V(x) = V_{GS} - V_{TH}$

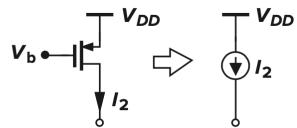
$$V_{DS} > V_{GS} - V_{TH}$$
or $V_{GD} < V_{TH}$

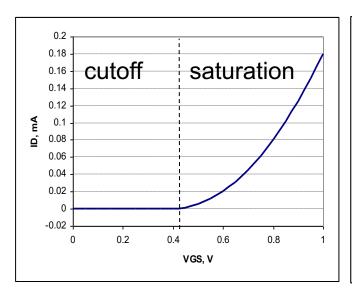

A "square-law" behavior:
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

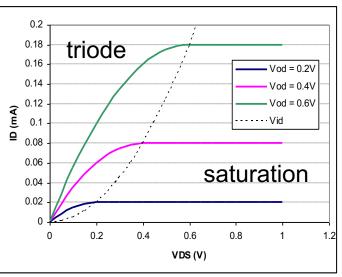
$$V_{GS} = \sqrt{\frac{2I_D}{\mu_n C_{ox} \frac{W}{L'}}} + V_{TH}$$


$$V_{DS} > V_{GS} - V_{TH}$$




- The drain-source voltage must be **equal to** or **greater** than **overdrive** voltage
 - $V_{D,sat} = V_{GS} V_{TH}$, where $V_{D,sat}$ denotes the **minimum** V_{DS} necessary for operation in **saturation**
 - the larger the V_{D,sat}, the less headroom is available


- The drain-source voltage must be equal to or greater than overdrive voltage
 - $V_{D,sat} = V_{GS} V_{TH}$, where $V_{D,sat}$ denotes the **minimum** V_{DS} necessary for operation in **saturation**
 - the larger the V_{D,sat}, the less headroom is available



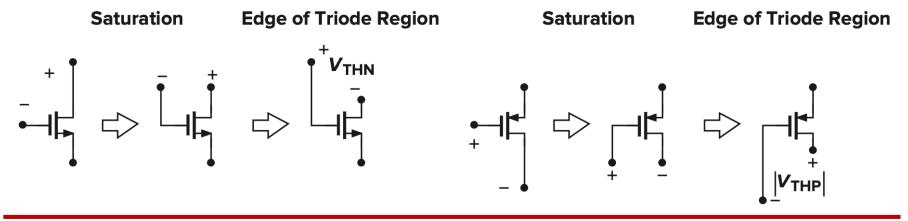
MOS I/V in different regions

I_D for PMOS transistor, regimes of operation

- We assume that I_D flows from the drain to the source, whereas holes flow in the reverse direction: a negative sign needed
- Note that V_{GS} , V_{DS} , V_{TH} , and $V_{GS} V_{TH}$ are negative for a PMOS that is turned on
- Mobility of holes ~1/2 of electrons → PMOS: lower "current driving" capability

$$I_{D} = -\mu_{p}C_{ox}\frac{W}{L}\left[(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^{2}\right]$$

$$I_{D} = -\frac{1}{2}\mu_{p}C_{ox}\frac{W}{L'}(V_{GS} - V_{TH})^{2}$$

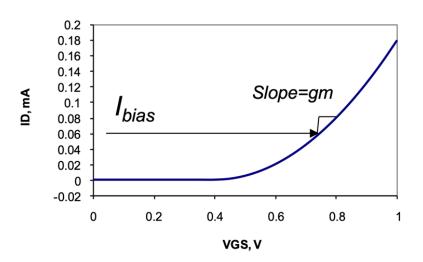

$$PMOS:$$
saturation: $V_{GD} > V_{TH}$
triode: $V_{GD} < V_{TH}$

$$V_{TH}$$
 is negative

In for PMOS transistor, regimes of operation

- We assume that I_D flows from the drain to the source, whereas holes flow in the reverse direction: a negative sign needed
- Note that V_{GS} , V_{DS} , V_{TH} , and $V_{GS} V_{TH}$ are **negative** for a PMOS that is **turned on**
- Mobility of holes ~1/2 of electrons → PMOS: lower "current driving" capability

$$I_{D} = -\mu_{p}C_{ox}\frac{W}{L}\left[(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^{2}\right] \qquad \begin{array}{l} \textit{PMOS:} \\ \textit{saturation: $V_{GD} > V_{TH}$} \\ I_{D} = -\frac{1}{2}\mu_{p}C_{ox}\frac{W}{L'}(V_{GS} - V_{TH})^{2} & \textit{triode: $V_{GD} < V_{TH}$} \\ V_{TH} \textit{ is negative} \end{array}$$



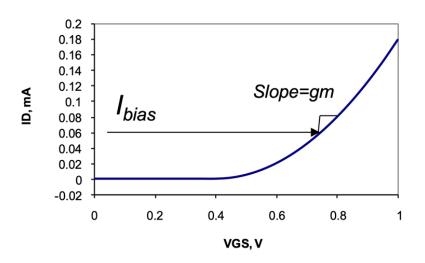
MOS transconductance (g_m) in saturation

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \Big|_{VDS \text{ const.}}$$

$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

MOS transconductance (g_m) in saturation


$$g_m = \frac{\partial I_D}{\partial V_{GS}} \Big|_{VDS \text{ const.}}$$

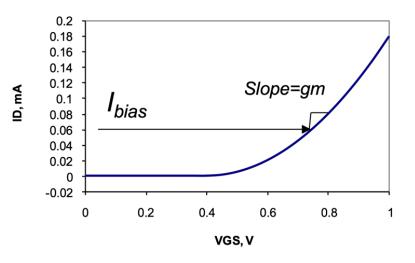
$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

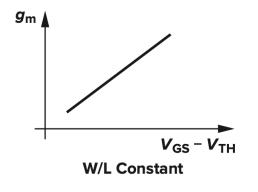
or

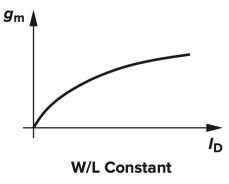
$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

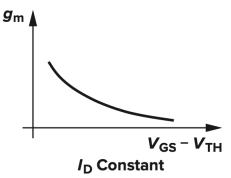
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

MOS transconductance (g_m) in saturation

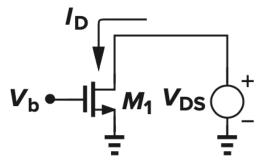

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \Big|_{VDS \text{ const.}}$$

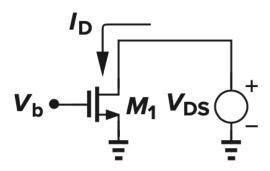

$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$


or


$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

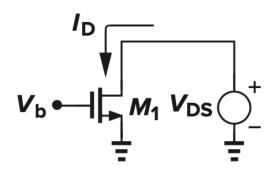
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$




Example: MOS transconductance (g_m) in triode?

ightharpoonup Plot g_m as a function of V_{DS} ?

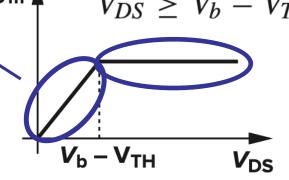
Example: MOS transconductance (g_m) in triode?


❖ Plot g_m as a function of V_{DS}?

$$g_{m} = \frac{\partial}{\partial V_{GS}} \left\{ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^{2} \right] \right\}$$
$$= \mu_{n} C_{ox} \frac{W}{L} V_{DS}$$

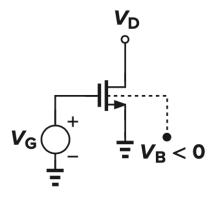
Example: MOS transconductance (g_m) in triode?

❖ Plot g_m as a function of V_{DS}?

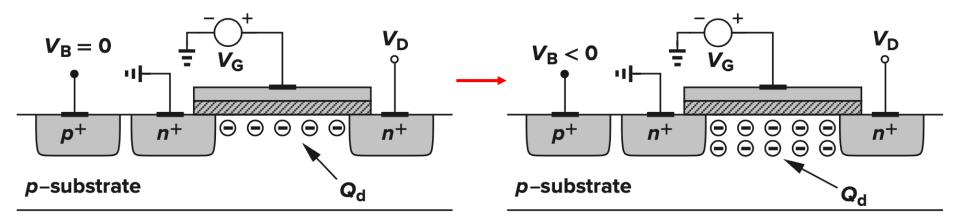


$$g_{m} = \frac{\partial}{\partial V_{GS}} \left\{ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^{2} \right] \right\}$$


$$= \mu_{n} C_{ox} \frac{W}{L} V_{DS}$$
 triode


- $g_m = \mu_n C_{ox} \frac{W}{I} (V_{GS} V_{TH})$

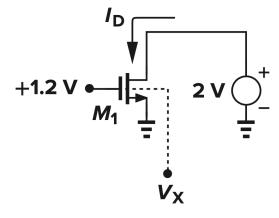
- g_m drops in the triode region
- so we usually employ MOS in saturation for amplifying the signal



Second-order effects: 1) Body Effect

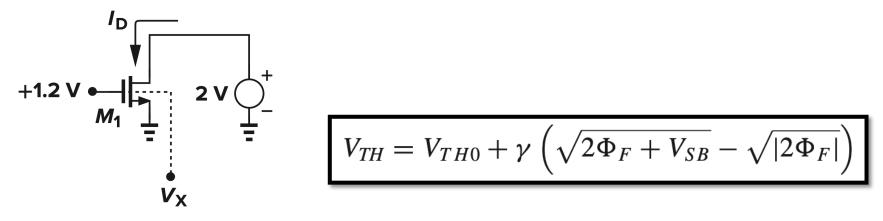
Second-order effects: 1) Body Effect

As V_B becomes more negative, threshold voltage increases:


$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

$$\gamma = \sqrt{2q\epsilon_{si}N_{sub}}/C_{ox}$$

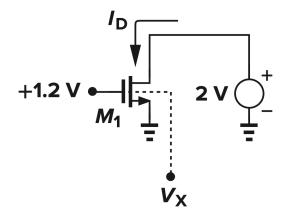
V_{SB} is the source-bulk potential difference


Example: Body Effect

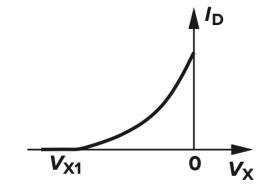
❖ Plot the drain current if V_X varies from −∞ to 0. Assume V_{TH0} = 0.3V, γ = 0.4V^{1/2}, and 2 Φ_F = 0.7V.

Example: Body Effect

❖ Plot the drain current if V_X varies from $-\infty$ to 0. Assume $V_{TH0} = 0.3$ V, $\gamma = 0.4$ V^{1/2}, and $2\Phi_F = 0.7V$.



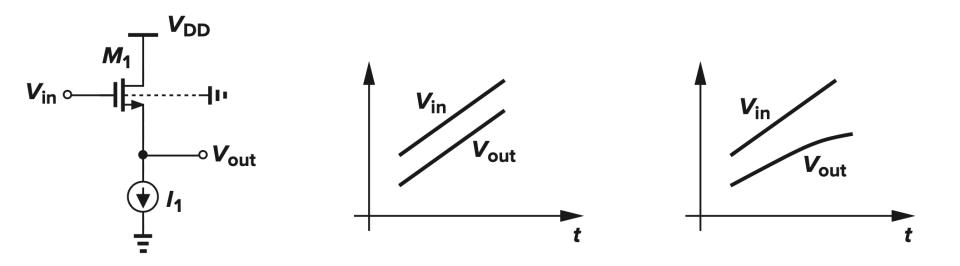
$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$


1.2 V = 0.3 + 0.4
$$\left(\sqrt{0.7 - V_{X1}} - \sqrt{0.7}\right)$$
 \longrightarrow $V_{X1} = -8.83 \text{ V}$

Example: Body Effect

❖ Plot the drain current if V_X varies from -∞ to 0. Assume V_{TH0} = 0.3V, γ = 0.4V^{1/2}, and $2Φ_F$ = 0.7V.

$$1.2 \text{ V} = 0.3 + 0.4 \left(\sqrt{0.7 - V_{X1}} - \sqrt{0.7} \right)$$



for $V_{X1} < V_X < 0$

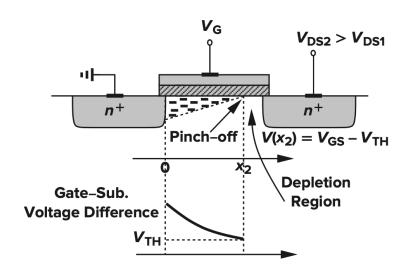
$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} \left[V_{GS} - V_{TH0} - \gamma \left(\sqrt{2\Phi_F - V_X} - \sqrt{2\Phi_F} \right) \right]^2$$

EE 320 31

Body Effect

$$I_1 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{out} - V_{TH})^2$$

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$


if V_{SB} becomes negative, V_{TH} decreases

Second-order effects: 2) Channel-Length Modulation

 The actual length of the channel gradually decreases as the potential difference between the gate and the drain decreases >> L' is a function of V_{DS}

$$L' = L - \Delta L$$
$$1/L' \approx (1 + \Delta L/L)/L$$

$$\Delta L/L = \lambda V_{DS}$$

Second-order effects: 2) Channel-Length Modulation

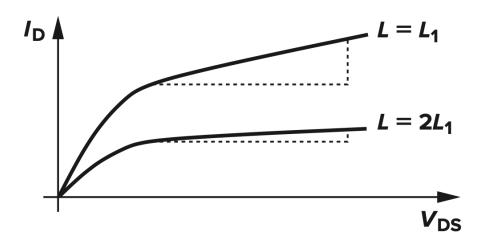
 The actual length of the channel gradually decreases as the potential difference between the gate and the drain decreases >> L' is a function of V_{DS}

$$L' = L - \Delta L$$

 $1/L' \approx (1 + \Delta L/L)/L$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$



$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) (1 + \lambda V_{DS})$$
$$= \sqrt{2\mu_n C_{ox} (W/L) I_D (1 + \lambda V_{DS})}$$

Channel-Length Modulation

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

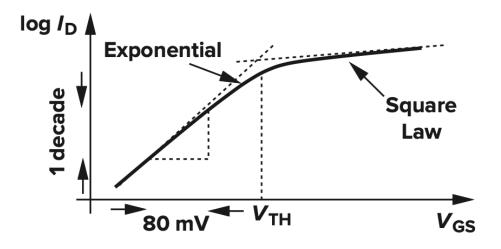
Second-order effects: 3) Subthreshold Conduction

■ In reality, for $V_{GS} \approx V_{TH}$, a "weak" inversion layer exists and some current flows from D to S. Even for $V_{GS} < V_{TH}$, I_D exhibits an exponential dependence on V_{GS}

MS EE 320 36

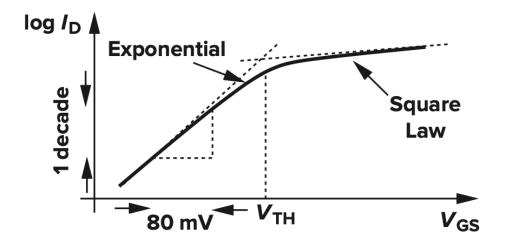
Second-order effects: 3) Subthreshold Conduction

- In reality, for $V_{GS} \approx V_{TH}$, a "weak" inversion layer exists and some current flows from D to S. Even for $V_{GS} < V_{TH}$, I_D exhibits an exponential dependence on V_{GS}
- This "subthreshold conduction" can be formulated for roughly V_{DS} > 100 mV as:


$$I_D = I_0 \exp \frac{V_{GS}}{\xi V_T}$$

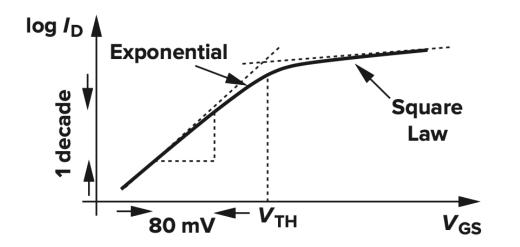
where I_0 is proportional to W/L, $\xi > 1$ is a nonideality factor, and $V_T = kT/q$

- The device operates in "weak inversion" (for V_{GS}>V_{TH} in strong inversion)
- Except for ξ, similar to the exponential I_C/V_{BE} of a BJT


Subthreshold Conduction

■ Observation: V_{GS} must decrease by ~80 mV for I_D to decrease by one decade

Subthreshold Conduction


Observation: V_{GS} must decrease by ~80 mV for I_D to decrease by one decade

$$I_D = I_0 \exp \frac{V_{GS}}{\xi V_T} \longrightarrow g_m = I_D/(\xi V_T)$$

Subthreshold Conduction

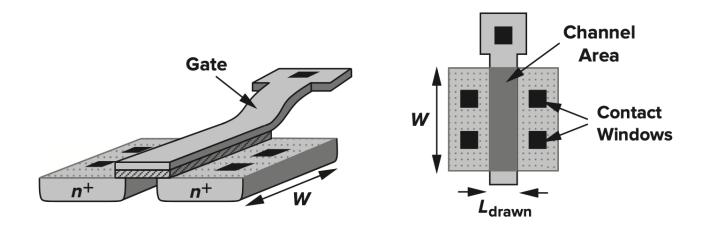
Observation: V_{GS} must decrease by ~80 mV for I_D to decrease by one decade

$$\frac{I_D}{\xi V_T} = \frac{2I_D}{(V_{GS} - V_{TH})_1}$$

transition point?

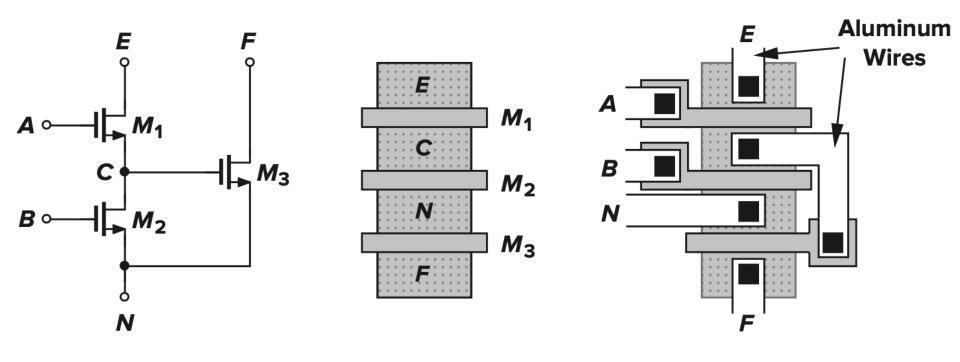
$$(V_{GS} - V_{TH})_1 = 2\xi V_T$$

$$I_D = I_0 \exp \frac{V_{GS}}{\xi V_T} \longrightarrow g_m = I_D/(\xi V_T)$$


Subthreshold operation only with a large device width or low drain current:
 the speed of subthreshold circuits severely limited

MOS Device Layout

- The gate polysilicon and the source and drain terminals must be tied to metal (aluminum) wires as interconnects with low resistance and capacitance
- One or more "contact windows" opened in each region, filled with metal, and connected to the upper metal wires
- To minimize the capacitance of S and D, the area of each junction minimized


MOS Device Layout

- The gate polysilicon and the source and drain terminals must be tied to metal (aluminum) wires as interconnects with low resistance and capacitance
- One or more "contact windows" opened in each region, filled with metal, and connected to the upper metal wires
- To minimize the capacitance of S and D, the area of each junction minimized

MOS Device Layout

- The layout determined by both the electrical properties of the device and the "design rules" imposed by the technology
- W/L is chosen to set the transconductance or other circuit parameters while the minimum L is dictated by the process
- In addition to the gate, the source and drain areas must be defined properly

