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Review: CMOS Analog Design
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courtesy V. Moroz, IEDM

Microprocessor Transistor Count, 
Moore’s Law
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Qdep : charge in the depletion region 
Nsub: doping density of the substrate
Cox : the gate-oxide capacitance per unit area
ni : density of electrons in undoped silicon
!si : the dielectric constant of silicon 
Φ!" : the difference between the work functions of the poly (gate) and substrate 
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Review: MOS threshold voltage
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Review: ID vs. VDS in the triode region

§ The overdrive voltage:
§ The aspect ratio: W/L

§ “triode” region (or linear region)

or VGD > VTH
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Review: ID vs. VDS in the triode region

§ The overdrive voltage:
§ The aspect ratio: W/L

§ “triode” region (or linear region)

or VGD > VTH

Deep triode 
region 



MS EE 320 6

Course Schedule & new room for TPs 

§ TPs will be held in BC07-08
Assessment:
§ Written final exam: 70% of the final grade

§ Homework (2 in total): 30% of the final grade
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MOS in Saturation

§ ID becomes relatively constant, and we say that the device operates in the 
“saturation” region.
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MOS in Saturation: Pinch-off behavior 

§ Recall that the local density of the inversion-layer charge is proportional to:
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MOS in Saturation: Pinch-off behavior 

§ Recall that the local density of the inversion-layer charge is proportional to:

§ if V(x) à VGS − VTH, then Qd(x) drops to zero. So, if VDS is slightly greater than 
VGS − VTH, the inversion layer stops at x ≤ L, the channel is “pinched off” 
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MOS in Saturation: I/V Characteristics

§ As the electrons approach the pinch-off point (where Qd→0), their velocity rises 
tremendously (v = I/Qd)

§ Upon passing the pinch-off point, the electrons simply shoot through the 
depletion region and arrive at the drain terminal 

§ Qd the density of mobile charge: the integral from x = 0 to x = L′, where L′ is the 
point at which Qd drops to zero (e.g., x2), and from V(x) = 0 to V(x) = VGS − VTH
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Recall: derivation of I/V Characteristics
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MOS in Saturation: I/V Characteristics

§ As the electrons approach the pinch-off point (where Qd→0), their velocity rises 
tremendously (v = I/Qd)

§ Upon passing the pinch-off point, the electrons simply shoot through the 
depletion region and arrive at the drain terminal 

§ Qd the density of mobile charge: the integral from x = 0 to x = L′, where L′ is the 
point at which Qd drops to zero (e.g., x2), and from V(x) = 0 to V(x) = VGS −VTH

A “square-law” behavior: 

or VGD < VTH
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MOS in Saturation

§ ID becomes relatively constant, and we say that the device operates in the 
“saturation” region.
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MOS in Saturation: I/V Characteristics

§ As the electrons approach the pinch-off point (where Qd→0), their velocity rises 
tremendously (v = I/Qd)

§ Upon passing the pinch-off point, the electrons simply shoot through the 
depletion region and arrive at the drain terminal 

§ Qd the density of mobile charge: the integral from x = 0 to x = L′, where L′ is the 
point at which Qd drops to zero (e.g., x2), and from V(x) = 0 to V(x) = VGS −VTH

A “square-law” behavior: 

or VGD < VTH
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MOS in Saturation
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MOS in Saturation

§ The drain-source voltage must be equal to or greater than overdrive voltage
§ VD,sat = VGS − VTH, where VD,sat denotes the minimum VDS necessary for 

operation in saturation 
§ the larger the VD,sat, the less headroom is available
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MOS in Saturation

§ The drain-source voltage must be equal to or greater than overdrive voltage
§ VD,sat = VGS − VTH, where VD,sat denotes the minimum VDS necessary for 

operation in saturation 
§ the larger the VD,sat, the less headroom is available
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MOS I/V in different regions 
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ID for PMOS transistor, regimes of operation

PMOS:
saturation: VGD > VTH
triode: VGD < VTH
VTH is negative

§ We assume that ID  flows from the drain to the source, whereas holes flow in the 
reverse direction: a negative sign needed

§ Note that VGS, VDS, VTH, and VGS − VTH  are negative for a PMOS that is turned on
§ Mobility of holes ~1/2 of electrons à PMOS: lower “current driving” capability
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ID for PMOS transistor, regimes of operation

§ We assume that ID  flows from the drain to the source, whereas holes flow in the 
reverse direction: a negative sign needed

§ Note that VGS, VDS, VTH, and VGS − VTH  are negative for a PMOS that is turned on
§ Mobility of holes ~1/2 of electrons à PMOS: lower “current driving” capability

PMOS:
saturation: VGD > VTH
triode: VGD < VTH
VTH is negative
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MOS transconductance (gm) in saturation
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MOS transconductance (gm) in saturation

or
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MOS transconductance (gm) in saturation

or
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Example: MOS transconductance (gm) in triode?

v Plot gm as a function of VDS?
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Example: MOS transconductance (gm) in triode?

v Plot gm as a function of VDS?
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Example: MOS transconductance (gm) in triode?

v Plot gm as a function of VDS?

§ gm drops in the triode region
§ so we usually employ MOS in saturation

for amplifying the signal

saturation

triode
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Second-order effects: 1) Body Effect  
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Second-order effects: 1) Body Effect  

§ As VB becomes more negative, threshold voltage increases: 

VSB is the source-bulk potential difference 
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Example: Body Effect

v Plot the drain current if VX varies from −∞ to 0. Assume VTH0 = 0.3V, γ = 0.4V1/2, 
and 2Φ!= 0.7V. 
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Example: Body Effect

v Plot the drain current if VX varies from −∞ to 0. Assume VTH0 = 0.3V, γ = 0.4V1/2, 
and 2Φ!= 0.7V. 
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Example: Body Effect

v Plot the drain current if VX varies from −∞ to 0. Assume VTH0 = 0.3V, γ = 0.4V1/2, 
and 2Φ!= 0.7V. 

for
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Body Effect

§ if VSB becomes negative, VTH decreases 
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Second-order effects: 2) Channel-Length Modulation 

§ The actual length of the channel gradually decreases as the potential difference 
between the gate and the drain decreases >> L′ is a function of VDS
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Second-order effects: 2) Channel-Length Modulation 

§ The actual length of the channel gradually decreases as the potential difference 
between the gate and the drain decreases >> L′ is a function of VDS
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Channel-Length Modulation 
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Second-order effects: 3) Subthreshold Conduction 

§ In reality, for VGS ≈ VTH , a “weak” inversion layer exists and some current flows 
from D to S. Even for VGS < VTH, ID exhibits an exponential dependence on VGS
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Second-order effects: 3) Subthreshold Conduction 

§ In reality, for VGS ≈ VTH , a “weak” inversion layer exists and some current flows 
from D to S. Even for VGS < VTH, ID exhibits an exponential dependence on VGS

§ This “subthreshold conduction” can be formulated for roughly VDS > 100 mV as: 

where I0 is proportional to W/L, ξ > 1 is a nonideality factor, and VT = kT/q

§ The device operates in “weak inversion” (for VGS>VTH in strong inversion)

§ Except for ξ, similar to the exponential IC/VBE of a BJT 
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Subthreshold Conduction

§ Observation: VGS must decrease by ~80 mV for ID to decrease by one decade
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Subthreshold Conduction

§ Observation: VGS must decrease by ~80 mV for ID to decrease by one decade
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Subthreshold Conduction

§ Observation: VGS must decrease by ~80 mV for ID to decrease by one decade

§ Subthreshold operation only with a large device width or low drain current: 
the speed of subthreshold circuits severely limited

transition point?
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MOS Device Layout

§ The gate polysilicon and the source and drain terminals must be tied to metal
(aluminum) wires as interconnects with low resistance and capacitance 

§ One or more “contact windows” opened in each region, filled with metal, and 
connected to the upper metal wires 

§ To minimize the capacitance of S and D, the area of each junction minimized 
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MOS Device Layout

§ The gate polysilicon and the source and drain terminals must be tied to metal
(aluminum) wires as interconnects with low resistance and capacitance 

§ One or more “contact windows” opened in each region, filled with metal, and 
connected to the upper metal wires 

§ To minimize the capacitance of S and D, the area of each junction minimized 
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MOS Device Layout

§ The layout determined by both the electrical properties of the device and the 
“design rules” imposed by the technology 

§ W/L is chosen to set the transconductance or other circuit parameters while the 
minimum L is dictated by the process 

§ In addition to the gate, the source and drain areas must be defined properly


