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Analog IC design

Summary

Introduction to the design of analog CMOS integrated circuits at the
transistor level. Understanding and design of basic structures.

Content

= Review of physics of MOS transistor

= MOS transistor: operating modes, large and small signal models,
parasitic effects

= Basic building blocks for linear analog integrated circuits: single-stage
amplifiers, current mirrors, differential pairs, and cascodes

= Transistor-level design of operational transconductance amplifiers

= Frequency response of amplifiers

= Layout techniques for analog integrated circuits

[ Lire la suite o

Keywords

Transistor, CMOS, analog integrated circuit
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About the Instructor

= Prof Mahsa Shoaran

» [ntegrated Neurotechnologies Lab (INL)
» |nstitute of Electrical and Micro Engineering (IEM)
= Neuro-X Institute (Campus Biotech)

= 2017-2019: Assistant Prof at Cornell University, NY, USA

SCHOOL OF ENGINEERING
=PrL

ELECTRICAL
ENGINEERING

Institute of Electrical and Micro Engineering

Neuro-X Institute

MS EE 320 3



What we do: Neural Interface |IC Design

* Analog/digital/mixed-signal IC design

Neural signal processing
Machine learning, integrated on chip

~1mm

- New therapeutic devices for brain disorders
- Brain-machine interfaces
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Analog IC design: Reference books, moodle

= Design of Analog CMOS Integrated Circuits, B. Razavi

= Analysis and Design of Analog Integrated Circuits, P. R. Gray, P. J. Hurst,
S. H. Lewis, and R. G. Meyer

= Scientific papers, book chapters, ...

Most figures in this set of slides are taken from the first reference

Moodle: hitps://go.epfl.ch/EE-320
EE-320 Analog IC design

Behzad Razavi

DESIGN OF

Analog CMOS

GRAY HURST LEWIS MEYER
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https://go.epfl.ch/EE-320

Weekly Schedule

Week Subject by week — EE-320: Analog IC design — Fall 2024 Suggested Chapters

Week 1: 09/09 — 15/09 Introduction, organization, review of BJT and MOS transistors + Exercisel | Ch1, Ch 2.1-2.4, Slides on Moodle

Week 2: 16/09 — 22/09 Holiday - No class

Week 3:23/09 — 29/09 MOS large and small-signal models, regimes of operations + Exercise2 Ch2.1-2.4

Week 4:30/09 — 06/10 MOS parasitic effects, layout basic, single-stage amplifiers + Exercise3 Ch2.1-24,Ch3.1

Week 5: 07/10 - 13/10 Single-stage amplifiers + Exercise4 Ch3.1-3.7

Week 6: 14/10 - 20/10 Single-stage amplifiers + Exercise5 Ch3.1-3.7

Week 7:21/10-27/10 Holiday — No class

Week 8:28/10 - 03/11 Single-stage amplifiers + Cascode + Exercise6 + Homework1 Ch4.1-4.4

Week 9: 04/11-10/11 Differential amplifiers + Exercise7 Ch4.1-44

Week 10:11/11-17/11 | TP1 Practical exercise session on Cadence Tutorial on Moodle

Week 11: 18/11 - 24/11 | TP2 Practical exercise session on Cadence Tutorial on Moodle

Week 12: 25/11-01/12 | Differential amplifiers, current mirrors + Exercise8 Ch4.1-4.4,Ch5.1-5.3

Week 13: 02/12 - 08/12 | TP3 Practical exercise session on Cadence Tutorial on Moodle

Week 14: 09/12 — 15/12 | TP4 Practical exercise session on Cadence + Homework2 Tutorial on Moodle

Week 15:16/12 — 22/12 | Current mirrors + Exercise9 Ch5.1-5.3
Assessment:

= Written final exam: 70% of the final grade
» Homework (2 in total): 30% of the final grade
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In-person lectures: 2 hours per week in INM200
On-campus exercises: 1 hour per week in INM200
Four TP (Cadence) sessions: 3 hours — room to be announced

Questions through moodle forum

On-demand office hours (Professor and TAs)

TA: Alin Thomas Tharakan (alin.tharakan@epfl.ch)
TA: Alireza Mafi (alireza.mafi@epfl.ch)

TA: Cong Huang (cong.huang@epfl.ch)

TA: Jieun Joo (jieun.joo@epfl.ch)

TA: Yiheng Fu (yiheng.fu@epfl.ch)

Make sure to
attend the lecture and exercise sessions, take notes
invest time on exercises and homeworks

Course structure

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22




Analog Circuit Design

* The sensing interface demands analog design experts
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Analog Circuit Design

* The sensing interface demands analog design experts
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Analog Design in High Demand

= Analog circuits typically less complex than digital circuits

=  An amplifier or ADC contain several 100s to 1000 transistors, a microprocessor
has billions or even more!

= Still a large contribution of papers in top circuit conferences involve analog
design concepts
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Number of Analog Papers at ISSCC
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Technology Scaling

= Gordon Moore,1975: the MOS device dimensions scale down by a factor
of 2 every 3 years, the number of transistors per chip would double
every 1 to 2 years >> tremendous improvement in the speed of

integrated circuits S
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Moor’s Law

= Microprocessor Transistor Counts 1970-2020 and Moore’s Law
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System Complexity

= Chip-complexity scaling trends (ISSCC 2023)
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Intel’s 45nm Process

45nm process wafer

https://www.intel.com/pressroom/kits/45nm/photos.htm
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Why Integrated?

= Placing multiple devices on the same substrate: late 1950s

= From simple chips with a handful of components to flash drives and
microprocessors with several billion devices

= |ntegrated circuit (IC) enable complexity, speed, and precision that is
impossible to achieve with discrete implementations

https://www.pinterest.ch/pin/431360470545933628/
https://www.britannica.com/technology/integrated-circuit
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Why CMOS?

» Metal-oxide-semiconductor field-effect transistors (MOSFETSs) by J. E.
Lilienfeld in early 1930s—well before the invention of bipolar transistor

* Mid-1960s: complementary MOS (CMOS) devices (both n-type and p-
type transistors), led to a revolution in the semiconductor industry

J. E. Lilienfeld

&2
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Why CMOS?

Metal-oxide-semiconductor field-effect transistors (MOSFETs) by J. E.
Lilienfeld in early 1930s—well before the invention of bipolar transistor

Mid-1960s: complementary MOS (CMOS) devices (both n-type and p-
type transistors), led to a revolution in the semiconductor industry

= CMOS gates dissipated power only during switching, as opposed to
bipolar counterparts

» The dimensions of MOS devices could be scaled down more easily than
those of other types of transistors
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Why CMOS?

» Metal-oxide-semiconductor field-effect transistors (MOSFETSs) by J. E.
Lilienfeld in early 1930s—well before the invention of bipolar transistor

Mid-1960s: complementary MOS (CMOS) devices (both n-type and p-
type transistors), led to a revolution in the semiconductor industry

= CMOS gates dissipated power only during switching, as opposed to
bipolar counterparts

» The dimensions of MOS devices could be scaled down more easily than
those of other types of transistors

= The low cost of fabrication and the possibility of placing both analog
and digital circuits on the same chip

* Principal force: device scaling
= Lower supply voltage, lower power

MS EE 320 18



Good Analog Design is an Art!

» Good analog design requires intuition, rigor, and creativity

= As analog designers, we must
» Have intuitive understanding of a large circuit
= Be able to quantify important effects in a circuit
= Invent new circuit topologies

¢—o Vin2 ¢——oVout S
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|IC Design: Device, Circuit, Architecture, System
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To understand Complex CMOS Circuits
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Biomedical Systems-on-chip (SoCs)
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Neural Interfaces
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Machine Learning SoCs
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MS EE 320 24



Closed-loop Neuromodulation with On-Chip ML
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High-frequency Transceivers
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Thought-to-Text Miniaturized Brain-Machine Interface (MiBMI)
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MOS: Basic Device Physics

= An n-type MOS (NMOS) device on a p-type substrate
» a heavily-doped polysilicon (conductor) operating as the gate
= a thin layer of silicon dioxide (SiO,) insulating the gate from the substrate
» two heavily-doped n regions: source and drain terminals

Gate

Source ¢ ¥ 1 e Drain

p-substrate ' Ld""‘"ﬂ‘,@ - Lp
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MOS: Basic Device Physics

» The MQOS structure is symmetric with respectto S and D
= The source terminal provides charge carriers (electrons in NMOS) and the
drain terminal collects them
» Depending on source and drain voltage, they may exchange roles

Leﬁf = L drawn — 2L Dl

p-substrate ' Ld"""ﬂ‘,ﬁ - L
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NMOS: Substrate connection

» The substrate potential greatly influences the device characteristics
» So MOSFET is a four-terminal device
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NMOS: Substrate connection

» The substrate potential greatly influences the device characteristics
» So MOSFET is a four-terminal device

» |n typical MOS operation, the S/D junction diodes must be reverse-biased
= Substrate of NMOS is typically connected to the most negative supply
= Substrate of PMOS is typically connected to the most positive supply
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PMOQOS transistor
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PMOQOS inside an n-well
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Deep n-well: NMOS with localized substrate

= Some modern processes offer a “deep n-well,” an n-well that contains an
NMOS and its p-type bulk (triple wells)

v" The NMOS bulk localized, not tied to other devices

X Substantial area overhead

. Deep n-well B

p-substrate
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MOS Symbols
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MOS driven by a gate voltage: threshold?
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Formation of depletion region
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Formation of inversion layer
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MOS threshold voltage
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MOS threshold voltage
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Ng.p: doping density of the substrate

Cox: the gate-oxide capacitance per unit area
n;: density of electrons in undoped silicon

g5 . the dielectric constant of silicon

d,,s : the difference between the work functions of the poly (gate) and substrate
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Dopant implantation to alter the threshold
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Inversion layer in PMOS
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Derivation of |/V Characteristics

l:> I'=0aq-v

= Qg is the mobile charge density along the direction of current (coulombs/meter)
» And v is the velocity of the charge (meters/second)
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Derivation of |/V Characteristics

l:> I'=0aq-v

= Qg is the mobile charge density along the direction of current (coulombs/meter)
» And v is the velocity of the charge (meters/second)

p-substrate
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Voltage Difference !
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Derivation of |/V Characteristics

» Charge density in the inversion layer (charge per unit length along the S-D path):

Qd — WCox(VGS — VTH)

p-substrate

Gate-Sub.
Voltage Difference !
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Derivation of |/V Characteristics

» The local voltage difference between the gate and the channel varies from Vg to
Vs — Vp. The charge density at a point x along the channel:

Qd(x) — WCox[VGS — V(X) — Vrul

Ip = —WCy,[Vgs — V(x) — Vrglv

/k i

p-substrate

Gate—Sub.

Voltage Difference \

o
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Derivation of |/V Characteristics

Qd(x) — WCox[VGS — V(X) — Vrul

Ip = —WCyx[Vgs — V(x) — Vrglv

v=ukE
E(x)=—-dV/dx
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Derivation of |/V Characteristics

Qd(x) — WCox[VGS — V(X) — Vrnl

Ip = —WCyx[Vgs — V(x) — Vrglv

v=ukE
E(x)=—-dV/dx
dV(x)

where V(0) = 0 and V(L) = Vps
dx

ID — WCox[VGS — V()C) — VTH]:u“n
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Derivation of |/V Characteristics

Qd(x) — WCox[VGS — V(X) — Vrnl

Ip = —WCyx[Vgs — V(x) — Vrglv

v=ukE
E(x)=—-dV/dx
dV(x)

Ip = WC,,[Vgs — V(%) — Veglitn e where V(0) = 0 and V(L) = Vps

L Vbs
/ Ipdx = WCoxn[Vgs — V(x) — VrgyldV
x=0 V=0 l

1
[(VGS — Vra)Vps — 5‘/55

14
ID — ,u/ncoxf
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Ip vS. Vpg in the region

W 1,
Ip = ,u'ncoxf (Vs — Vru) Vps — EVDS

Ip A
Triode Region

Vbs
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Ip vS. Vpg in the region

W (V, VgV,
Ip = u,C ox 7 |(Vos = Vi) Vps = 7

1
2

2
VDS

W

1
ID,max — zlu/n (VGS — VTH)

= The overdrive voltage: V55 — Vry

= The aspect ratio: W/L

Ip A
Triode Region
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Ip vS. Vpg in the region

W 1,
Ip = wnCox — | (Ves — Viu) Vps — 5 Vi
L 2
1 W
ID,max — zlu/n (VGS — VTH)
= The overdrive voltage: V55 — Vry
» The aspect ratio: W/L I A

Triode Region

‘VDS < Vgs — VTH‘ e
l or VGD > VTH VGSZ
. . |
» The device operates in the Vbs

“triode” region (or linear region)

Ves1— V1H
Ves2 = VTH |----2i----
Ves3 - VTH
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Ip vS. Vpg in the region

W 1
Ip = u,C ox - (Ves — Vru) Vps — EVDS

Vps K 2(Vgs — Vrn) \

%%
Ip ~ p,Coyx (VGS — Vry) Vps

= The drain current is a linear function of Vpg
Deep triode reglon

I D A VGS3

MS EE 320 53



Ip vS. Vpg in the region

2

%% 1
Ip = u,C ox - (Vs — V) Vps — —VDS

Vps K 2(Vgs — Vrn) \

%%
Ip ~ w,Coyx (VGS — Vry) Vps

= The drain current is a linear function of Vpg
Deep triode reglon
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