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Analog IC design 
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Institute of Electrical and Micro Engineering Neuro-X Institute

§ Prof Mahsa Shoaran
§ Integrated Neurotechnologies Lab (INL)

§ Institute of Electrical and Micro Engineering (IEM)
§ Neuro-X Institute (Campus Biotech)

§ 2017-2019: Assistant Prof at Cornell University, NY, USA

About the Instructor



MS EE 320 4

§ Analog/digital/mixed-signal IC design
§ Neural signal processing
§ Machine learning, integrated on chip

What we do: Neural Interface IC Design
1m
m

~1mm

- New therapeutic devices for brain disorders
- Brain-machine interfaces
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Analog IC design: Reference books, moodle

§ Design of Analog CMOS Integrated Circuits, B. Razavi
§ Analysis and Design of Analog Integrated Circuits, P. R. Gray, P. J. Hurst, 

S. H. Lewis, and R. G. Meyer
§ Scientific papers, book chapters, …
Most figures in this set of slides are taken from the first reference

Moodle: https://go.epfl.ch/EE-320 
EE-320 Analog IC design 

https://go.epfl.ch/EE-320
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Weekly Schedule

Assessment:
§ Written final exam: 70% of the final grade
§ Homework (2 in total): 30% of the final grade
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Course structure

§ In-person lectures: 2 hours per week in INM200
§ On-campus exercises: 1 hour per week in INM200
§ Four TP (Cadence) sessions: 3 hours – room to be announced

§ Questions through moodle forum
§ On-demand office hours (Professor and TAs)

§ TA: Alin Thomas Tharakan (alin.tharakan@epfl.ch)
§ TA: Alireza Mafi (alireza.mafi@epfl.ch)
§ TA: Cong Huang (cong.huang@epfl.ch)
§ TA: Jieun Joo (jieun.joo@epfl.ch)
§ TA: Yiheng Fu (yiheng.fu@epfl.ch)

Make sure to 
§ attend the lecture and exercise sessions, take notes
§ invest time on exercises and homeworks
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Analog Circuit Design

§ The sensing interface demands analog design experts 
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Analog Circuit Design

§ The sensing interface demands analog design experts 
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Analog Design in High Demand

§ Analog circuits typically less complex than digital circuits
§ An amplifier or ADC contain several 100s to 1000 transistors, a microprocessor 

has billions or even more!

§ Still a large contribution of papers in top circuit conferences involve analog 
design concepts
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Technology Scaling

§ Gordon Moore,1975: the MOS device dimensions scale down by a factor 
of 2 every 3 years, the number of transistors per chip would double 
every 1 to 2 years >> tremendous improvement in the speed of 
integrated circuits

§ Challenges for IC designers
§ Low supply voltage
§ Leakage
§ PVT variations
§ …

…

courtesy V. Moroz, IEDM
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Moor’s Law

§ Microprocessor Transistor Counts 1970-2020 and Moore’s Law
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System Complexity

§ Chip-complexity scaling trends (ISSCC 2023)
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Intel’s 45nm Process

Dual-core processor die

https://www.intel.com/pressroom/kits/45nm/photos.htm

45nm process wafer
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Why Integrated?

§ Placing multiple devices on the same substrate: late 1950s 

§ From simple chips with a handful of components to flash drives and 
microprocessors with several billion devices 

§ Integrated circuit (IC) enable complexity, speed, and precision that is 
impossible to achieve with discrete implementations

https://www.britannica.com/technology/integrated-circuit
https://www.pinterest.ch/pin/431360470545933628/
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Why CMOS?

§ Metal-oxide-semiconductor field-effect transistors (MOSFETs) by J. E. 
Lilienfeld in early 1930s—well before the invention of bipolar transistor

§ Mid-1960s: complementary MOS (CMOS) devices (both n-type and p-
type transistors), led to a revolution in the semiconductor industry

J. E. Lilienfeld
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Why CMOS?

§ Metal-oxide-semiconductor field-effect transistors (MOSFETs) by J. E. 
Lilienfeld in early 1930s—well before the invention of bipolar transistor

§ Mid-1960s: complementary MOS (CMOS) devices (both n-type and p-
type transistors), led to a revolution in the semiconductor industry

§ CMOS gates dissipated power only during switching, as opposed to 
bipolar counterparts

§ The dimensions of MOS devices could be scaled down more easily than 
those of other types of transistors

§ The low cost of fabrication and the possibility of placing both analog 
and digital circuits on the same chip 

§ Principal force: device scaling
§ Lower supply voltage, lower power
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§ Good analog design requires intuition, rigor, and creativity

§ As analog designers, we must
§ Have intuitive understanding of a large circuit
§ Be able to quantify important effects in a circuit
§ Invent new circuit topologies

19

Good Analog Design is an Art!
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IC Design: Device, Circuit, Architecture, System
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To understand Complex CMOS Circuits
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Biomedical Systems-on-chip (SoCs)

M. Monge et al., IEEE TBioCAS 2013  
an Epiretinal prosthesis
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Neural Interfaces

M. Shoaran et al., VLSI Symp 2016
a seizure control chip 

R. Muller et al., JSSC 2015
a neural recording chip 

R. Harrison et al., TBioCAS 2009
a neurostimulator chip 
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Machine Learning SoCs

P. N. Whatmough et al., JSSC 2018
a DNN accelerator 
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Closed-loop Neuromodulation with On-Chip ML

U. Shin et al., ISSCC’22, JSSC’22
a closed-loop stimulation chip

Tremor

Finger
Movement

Classifier/decoder Output

Seizure
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High-frequency Transceivers

R. Wu et al., JSSC 2017
a 60-GHz transmitter
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Thought-to-Text Miniaturized Brain-Machine Interface (MiBMI)

M. Shaeri et al., ISSCC’24, JSSC’24 
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MOS: Basic Device Physics

§ An n-type MOS (NMOS) device on a p-type substrate
§ a heavily-doped polysilicon (conductor) operating as the gate 
§ a thin layer of silicon dioxide (SiO2) insulating the gate from the substrate
§ two heavily-doped n regions: source and drain terminals
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MOS: Basic Device Physics

§ The MOS structure is symmetric with respect to S and D 
§ The source terminal provides charge carriers (electrons in NMOS) and the 

drain terminal collects them 
§ Depending on source and drain voltage, they may exchange roles 
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NMOS: Substrate connection

§ The substrate potential greatly influences the device characteristics 
§ So MOSFET is a four-terminal device 
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NMOS: Substrate connection

§ The substrate potential greatly influences the device characteristics 
§ So MOSFET is a four-terminal device 

§ In typical MOS operation, the S/D junction diodes must be reverse-biased
§ Substrate of NMOS is typically connected to the most negative supply
§ Substrate of PMOS is typically connected to the most positive supply
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PMOS transistor
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PMOS inside an n-well
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Deep n-well: NMOS with localized substrate

§ Some modern processes offer a “deep n-well,” an n-well that contains an 
NMOS and its p-type bulk (triple wells)

ü The NMOS bulk localized, not tied to other devices

✕ Substantial area overhead
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MOS Symbols
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MOS driven by a gate voltage: threshold?
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Formation of depletion region
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Formation of inversion layer
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MOS threshold voltage
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Qdep : charge in the depletion region 
Nsub: doping density of the substrate
Cox : the gate-oxide capacitance per unit area
ni : density of electrons in undoped silicon
𝜀si : the dielectric constant of silicon 
Φ!" : the difference between the work functions of the poly (gate) and substrate 

40

MOS threshold voltage
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Dopant implantation to alter the threshold 
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Inversion layer in PMOS
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Derivation of I/V Characteristics  

§ Qd is the mobile charge density along the direction of current (coulombs/meter)
§ And v is the velocity of the charge (meters/second) 
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Derivation of I/V Characteristics

§ Charge density in the inversion layer (charge per unit length along the S-D path):
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Derivation of I/V Characteristics

§ The local voltage difference between the gate and the channel varies from VG to 
VG − VD. The charge density at a point x along the channel:
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Derivation of I/V Characteristics
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Derivation of I/V Characteristics

where V(0) = 0 and V(L) = VDS
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Derivation of I/V Characteristics

where V(0) = 0 and V(L) = VDS
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ID vs. VDS in the triode region
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ID vs. VDS in the triode region

§ The overdrive voltage:
§ The aspect ratio: W/L
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ID vs. VDS in the triode region

§ The overdrive voltage:
§ The aspect ratio: W/L

§ The device operates in the 
“triode” region (or linear region)

or VGD > VTH
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ID vs. VDS in the triode region

Deep triode region 
§ The drain current is a linear function of VDS
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ID vs. VDS in the triode region

§ The drain current is a linear function of VDS
Deep triode region 


