
1Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Topic 3: (Part D)

I/O and Peripheral Devices Management

Sound in the Nintendo DS

©ESL/EPFL
2

Content of Session

▪ Use of sounds in the NDS

▪ Multiprocessor interaction: ARM7-ARM9

▪ MaxMod library methods and libnds methods

▪ Transformation utility and process for audio files: modules and sounds

▪ Audio streaming (example)

▪ Audio recording (example)

▪ Enabling sounds in combination to other I/O devices of NDS

▪ Adding background music and sounds to the Simon game

▪ Creating a piano keyboard for the NDS

▪ Adding preexisting background music and effects to the Tetris

©ESL/EPFL
3

I/O subsystem management on the NDS:

Audio

▪ Shared cooperation possible among two 32-bit ARM cores to create sound
▪ ARM 7TDMI-S: only core with access to I/O interface (16 x 8-bit audio channels)
▪ ARM 946E-S: performs complex audio transforms and send data to ARM7

- Pointer to the data to play

ARM946E-S ARM7TDMI-S

ARM7
(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9
(66 MHz)

A, B, L, R
keys

←, ↑, →, ↓

keys

LCD TFT

Select, Start
keys

Screen
open-close GBA Flash

Fast memory
(WRAM)

Audio

©ESL/EPFL
4

Audio Peripheral on the NDS:

▪ FIFO is used for inter-processor-communication (IPC) between ARM9 and
ARM7

▪ ARM7 has access to audio peripheral

ARM 9
CPU

NDS AUDIO

ARM7 BUS 32-bit

ARM 7
CPU

REG_SOUNDCNT

64 B Queue

64 B Queue

FIFO UNIT

REG_MASTER_VOLUME REG_SOUNDBIAS
SCHANNEL_CR(x)

x=0,1

16 x 8 bit Audio
Channels

©ESL/EPFL
5

Audio I/O access:
Specialized I/O registers from ARM7

▪ Write in control registers or macro to power up the sound I/O subsystem:

powerON (POWER_SOUND);

▪ Global configuration stored in special configuration register: SOUND_CR

▪ Enable and set vol.: SOUND_CR= SOUND_ENABLE | SOUND_VOL(0x7F);

- 127 possible volumes: from silent (0x00) to full (0x7f)

▪ Each channel configured independently:

▪ Channel activation through SCHANNEL_CR(index)

- Configuring channel 0: SCHANNEL_CR(0) = SCHANNEL_ENABLE |

SOUND_ONE_SHOT | SOUND_8BIT;

▪ Configure at least three properties through SCHANNEL_property(index)

- Configuring channel 0:

1. Playback frequency: SCHANNEL_TIMER(0) = SOUND_FREQ(11127);

2. Pointer to sound to play: SCHANNEL_SOURCE(0) = (uint32)sound1;

3. Duration (in 32-bit words): SCHANNEL_LENGTH(0) = ((int)sound1_end -

(int)sound) >> 2;

Requires the use of special project template in devKitPRO with two
main programs: one for ARM9 and another one for ARM7

©ESL/EPFL
6

Synchronization of Audio Interfaces:
use of MaxMod library in devkitPro

ARM9
16-channels Audio

Main
program

SOUND_CR

IPC
commands

mmLoad
mmStart
mmPause
mmResume
mmStop
mmLoadEffect

MaxMod library and libnds

▪ Control ARM9-ARM7 for audio interaction with libnds and MaxMod:

1. Synchronization: translates inter-processor communication (IPC) commands

2. Buffering: multiple sound commands stored in internal memories (WRAMx)

▪ Playing background music (or modules)

▪ Sound effects and jingles

SCHANNEL_CR(id)

ARM7

SCHANNEL_property (id)

…

▪ Application Programmer Interface (API): http://www.maxmod.org/

/opt/devkitPro/libnds/include/maxmod9.h

/opt/devkitPro/libnds/include/mm_types.h

http://www.maxmod.org/

©ESL/EPFL
7

Audio input files for MaxMod in NDS

▪ The MaxMod library accepts two different types of files

▪ Module files: background music

▪ Sound effects: played on demand sporadically

▪ Module files in four possible formats: .mod, .s3m, .it or .xm

▪ Sound effects can be in one predefined format: .wav

▪ A module sound format played only once (not looping) is accepted,

but not recommended

▪ Wav files generate usually large binary files: do not include many!

▪ A large number of free resources on the Internet with

pre-created modules and sounds

▪ Look for the links proposed in the course Moodle Site

©ESL/EPFL
8

MaxMod API: Main Initialization Methods

▪ Initializing the library pointers to sounds and internal buffers

▪ void mmInitDefaultMem(mm_addr soundbank);

− The input parameter is the name of the sound-bank binary object

(by default it is soundbank_bin)

▪ Load music modules

▪ void mmLoad(mm_word module_ID);

− The input parameter is the 32-bit index with the module identifier

(by default all identifiers are defined in soundbank.h)

▪ Load sound effect

▪ void mmLoadEffect(mm_word sample_ID);

− The input parameter is the 32-bit sample index with the effect identifier

(by default all identifiers are defined in soundbank.h)

©ESL/EPFL
9

MaxMod API: Music modules

▪ Play music

▪ void mmStart(mm_word module_ID, mm_pmode mode);

− The first input parameter is the module identifier

− The second parameter specifies whether the music has to be played

once (MM_PLAY_ONCE) or in an infinite loop (MM_PLAY_LOOP)

▪ Pause, resume or stop music using active module identifier

▪ void mmPause();

▪ void mmResume();

▪ void mmStop();

©ESL/EPFL
10

MaxMod API: Sound effects

▪ Play sound effect

▪ mm_sfxhand mmEffect(mm_word sample_ID);

− The input parameter specifies sound effect identifier of effect to play

− The effect will be played without modifying the sound configuration

▪ Play sound effect with specific sound configuration

▪ mm_sfxhand mmEffectEx(mm_sound_effect* sound);

− The input parameter is a structure

with the effect identifier (id) and

three main parameters:

1. Volume

2. Panning

3. Rate (frequency)

©ESL/EPFL
11

Transformation utility to generate accepted

NDS audio formats: mmutil

▪ Raw audio data is needed

▪ We must convert audio files into uncompressed binary files

▪ Toolchain for MaxMod library in the devkitPro: mmutil

▪ As with images, the transformation of sound files is automatic:

− Parameter to generate directly NDS compatible outputs: –d

▪ Possible to use it from the terminal

− Generates a sound-bank output for NDS: soundbank.bin

− Header file to link with the C code: soundbank.h

▪ Example: Transform s1.wav and s2.mod and dump the binary data

into the default sound-bank output for NDS

mmutil s1.wav s2.mod –d –osoundbank.bin –hsoundbank.h

©ESL/EPFL
12

Automatic transformation and use of audio

files in NDS project

1. Place audio files in the folder audio inside the C project

2. Rebuild the project (clean it if necessary). Several files will

be generated in the build folder

▪ soundbank.bin: Binary output from the mmutil tool.

▪ soundbank.h: Header file including the necessary definitions to

manage the sounds in the program

− It must be linked with the user C code

▪ soundbank.bin.o and soundbank_bin.h: Object and header file

used by the library generated from the previous two files

3. Use the sounds in the C project with MaxMod API

A. Include the library and sound-bank headers

B. Initialize the library

C. Load (1) music modules and (2) effects

D. Play (1) music modules and (2) effects

©ESL/EPFL
13

Example: Simon game sound

▪ How do we integrate sound in the Simon game of last week?

1. Put the sound files

in the audio folder of

the project

2. Remake the

project (clean if

necessary). The

soundbank files

will be created in

the build folder

©ESL/EPFL
14

Example: Simon game sound

3.A.Include the library

and the sound bank

headers wherever it is

needed

3.B. Initialize the sound library

3.C1. Load the music modules

3.C2. Load the sound effects

©ESL/EPFL
15

Example: Simon game sound

3.D1. Play / stop the music

3.D2. Play the effects

©ESL/EPFL
16

Advanced audio management with MaxMod:

Streaming

▪ Maxmod provides functions to play streams of sound

▪ Created at run-time

▪ Pre-stored in sound-banks and modified at run-time

▪ Four steps needed:

1. Initialize the sound system: mm_ds_system structure to configure

− If uses a sound-bank not previously created, we use special initialization

2. Write the “filling” function: mm_word on_stream_request (…)

− Filling the buffer to be played: typically using a for/while loop

− Return the number of samples placed in the buffer to play

3. Create stream structure (mm_stream) and link to filling function,

two options:

− Automatic: filling function called automatically when needed

− Manual: user updates stream periodically enough (not recommended)

4. Open audio stream: void mmStreamOpen (mm_stream myStream);

©ESL/EPFL
17

Advanced audio management:

Streaming sound data filled at run time

1. Special initialization in case of not using a soundbank

▪ Specify number of modules

▪ Specify number of samples

▪ Specify memory bank

▪ Initialize the system

©ESL/EPFL
18

Advanced audio management:

Streaming sound data filled at run time

2. Write filling function (for / while loop)

▪ The returning types and input parameters are fixed

▪ It returns the number of samples written into the buffer

▪ Example: Create white noise

©ESL/EPFL
19

Advanced audio management:

Streaming sound data filled at run time

3. Create a stream structure and link the filling function.

4. Open the stream

©ESL/EPFL
20

Advanced audio management:

Recording sound from the microphone

▪ NDS has a built-in mono microphone

▪ Software support given by libnds, not using MaxMod

▪ Documented in /opt/devkitPro/libnds/include/nds/arm9.sound.h

1. Declare buffers to be filled by the microphone and

(optionally) to play-back the recorded sound

2. Implement microphone handler

▪ Called by the library when half or full buffer is filled

▪ Process the sampled data (e.g.: copy it to a bigger storage buffer)

3. Initialize the sound library (only once, but compulsory)

4. Start / Stop the recording

5. Eventually play-back the recorded sound

©ESL/EPFL
21

Libnds sound API: Initialization and

sound recording

▪ Enable the sound (initialization of the library)

▪ void soundEnable(void)

▪ Disable the sound

▪ void soundDisable(void)

▪ Start sound recording

▪ int soundMicRecord(void *buffer, u32 bufLength,

MicFormat format, int freq, MicCallback callback);

− The handler/callback function must follow the following prototype

void myFunction(void* firstNewSample, int numNewSamples)

▪ Stop recording

▪ void soundMicOff(void)

©ESL/EPFL
22

Libnds API:

Memory Inconsistency Hazard

▪ Processors usually are equipped with

fast on-chip caches

▪ Attempt to avoid latency on memory

access by keeping an updated copy

of the data

▪ Inconsistency hazards

▪ Other peripherals may change memory

contents without notifying the

processor

▪ Sound System

▪ When recording, it is necessary to

invalidate cache regions

corresponding to memory where newly

sampled sound has been placed

BUS

MEMORIES

CPU

Registers

Cache L1

Cache L2

Sound

System

8
0
8
5

8085DMA

Controller

DC_InvalidateRange(mem_addr, num_bytes); //Invalidates region in Data Cache

©ESL/EPFL
23

Libnds sound API:

Start sound play-back

▪ Play-back stored samples

▪ int soundPlaySample(const void* buffer, SoundFormat format,

u32 buffSize, u16 freq, u8 volume, u8 panning,

bool loop, u16 loopPoint)

− volume: (min)  0…127 → (max)

− panning: (left)  0…127 → (right)

− loop: if true the buffer will be played in

a loop starting in the sample

loopPoint

− Returns handler (integer ID) to change other parameters using

application programmer interface (API) functions

©ESL/EPFL
24

Libnds sound API:

Stop sound and modify parameters

▪ Stop sound

▪ void soundKill(int soundId)

▪ Pause / resume sound

▪ void soundPause(int soundId)

▪ void soundResume(int soundId)

▪ Change frequency, panning or volume

▪ void soundSetVolume(int soundId, u8 volume)

▪ void soundSetPan(int soundId, u8 pan)

▪ void soundSetFreq(int soundId, u16 freq)

©ESL/EPFL
25

Example: Libnds sound API

▪ Store up to 5 seconds of sound sampled at 8 KHz when

key A is pressed and play it back when key B is pressed

1. Defines and buffer declarations

▪ Recording buffer filled 16 times per second (the microphone

handler will be called 32 times per second)

©ESL/EPFL
26

Example: Libnds sound API

2. Implement microphone handler function

▪ Need to invalidate cache contents!

©ESL/EPFL
27

Example: Libnds sound API

3. Initialize sound library and start recording with key A

©ESL/EPFL
28

Example: Libnds sound API

3. Play the recorded sound with key B

And what happens if we change the play-back frequency?

©ESL/EPFL
29

Practical Work 10:

Creating a Piano Keyboard

▪ Use of tiled background and MaxMod

▪ 4 tiles, 4-bits pixel depth

©ESL/EPFL
30

Practical Work 10:

Creating a Piano Keyboard

▪ Use of tiled background and MaxMod

▪ 4 tiles, 4-bits pixel depth

▪ Use one sound (DO) to generate the rest

©ESL/EPFL
31

Practical Work 10:

Creating a Piano Keyboard

▪ Use of tiled background and MaxMod

▪ 4 tiles, 4-bits pixel depth

▪ Use one sound (DO) to generate the rest

▪ Use the touchscreen as input

▪ Checking rectangular regions

©ESL/EPFL
32

Practical Work 10:

Sound in the Nintendo DS

▪ Exercises

▪ Exercise 1 – Simon Game: Converting files

▪ Exercise 2 – Simon Game: Initializing the library

and introducing music

▪ Exercise 3 – Simon Game: Adding sound effects

▪ Exercise 4 – Tetris Game: Background music

▪ Exercise 5 – Tetris Game: Adding sound effects

▪ *Exercise 6 – Piano: Graphics part

▪ *Exercise 7 – Piano: Touch tracking

▪ *Exercise 8 – Piano: Playing key sounds in the

simulator

▪ *Exercise 9 – Piano: Playing key sounds in the

device

* Additional exercises

©ESL/EPFL
33

Questions?

Let’s play sounds in the NDS!

