swsLABORATORY

g

Topic 3: (Part D)
I/O and Peripheral Devices Management
Sound in the Nintendo DS

Systemes Embarqués Microprogrammes

Prof. David Atienza Alonso, SEL-STI 1

=Pr-L Content of Session

= Use of sounds in the NDS
= Multiprocessor interaction: ARM7-ARM9
= MaxMod library methods and libnds methods
= Transformation utility and process for audio files: modules and sounds

= Audio streaming (example)
= Audio recording (example)

= Enabling sounds in combination to other I/O devices of NDS
= Adding background music and sounds to the Simon game
= Creating a piano keyboard for the NDS
= Adding preexisting background music and effects to the Tetris

©ESL/EPFL

/O subsystem management on the NDS:
Audio

=PrFL

= Shared cooperation possible among two 32-bit ARM cores to create sound
= ARM 7TDMI-S: only core with access to I/O interface (16 x 8-bit audio channels)
= ARM 946E-S: performs complex audio transforms and send data to ARM7
- Pointer to the data to play

ARM7TDMI-S SRMIZCE-S
it — . e

Select, Start
keys

Screen
open-close

©ESL/EPFL 3

=PrL Audio Peripheral on the NDS:

: ,EII-lQZI\C/HS used for inter-processor-communication (IPC) between ARM9 and

= ARMY7 has access to audio peripheral

NDS AUDIO [FIFOUNIT
ARM 9 t{ 64 B Queue ', > ARM 7
CPU)¢ { 64 B Queue |< L CPU

T
< ﬁ IIARM7 BUS 32-bit ﬁ ﬁ >

SCHANNEL_CR(x)
x=0,1..., 15

J [REG_SOU NDCNTJ [REG_MASTER_VOLUME] [REG_SOUNDBIASJ
L

16 x 8 bit Audio 1
Channels J‘

©ESL/EPFL

=PrFL

Audio I/O access:
Specialized 1/0 registers from ARM?7

= Write in control registers or macro to power up the sound I/O subsystem:

powerON (POWER_SOUND);

= Global configuration stored in special configuration register: SOUND_CR

Enable and set vol.. SOUND_ CR= SOUND_ENABLE | SOUND_VOL(0x7F);
- 127 possible volumes: from silent (0x00) to full (Ox7f)

= Each channel configured independently:

Channel activation through SCHANNEL _CR(index)

- Configuring channel 0: SCHANNEL CR(0) = SCHANNEL_ ENABLE |
SOUND_ONE_SHOT | SOUND_8BIT;
Configure at least three properties through SCHANNEL property(index)

- Configuring channel O:
1. Playback frequency: SCHANNEL_ TIMER(0) = SOUND_FREQ(11127);
2. Pointer to sound to play: SCHANNEL SOURCE(0) = (uint32)soundl;

3. Duration (in 32-bit words): SCHANNEL LENGTH(0) = ((int)soundl_end -
(int)sound) >> 2;

Requires the use of special project template in devKitPRO with two
main programs: one for ARM9 and another one for ARM7 5

©ESL/EPFL

cprp Synchronization of Audio Interfaces:
use of MaxMod library in devkitPro

= Control ARM9-ARMY for audio interaction with libnds and MaxMod:
1. Synchronization: translates inter-processor communication (IPC) commands

2. Buffering: multiple sound commands stored in internal memories (WRAMX)
= Playing background music (or modules)

= Sound effects and jingles Main
ARM9 <€——
] rogram
16-channels Audio Prog
a N
‘1’ > mmLoad
: mmStart
ARMY7 IPC « mmPause
SOUND_CR commands mmgtesume
SCHANNEL_CR(id) e oadEffect
SCHANNEL_ property (id)
: MaxMod library and libnds

= Application Programmer Interface (API): http://www.maxmod.org/
lopt/devkitPro/libnds/include/maxmod9.h

lopt/devkitPro/libnds/include/mm_types.h
©ESL/EPFL 6

http://www.maxmod.org/

=PrL Audio input files for MaxMod in NDS

The MaxMod library accepts two different types of files
= Module files: background music
= Sound effects: played on demand sporadically

Module files in four possible formats: .mod, .s3m, .it or .xm

Sound effects can be in one predefined format: .wav

= A module sound format played only once (not looping) is accepted,
but not recommended

= Wav files generate usually large binary files: do not include many!

= A large number of free resources on the Internet with
pre-created modules and sounds
= Look for the links proposed in the course Moodle Site

©ESL/EPFL

=Pr-L MaxMod API: Main Initialization Methods

= |nitializing the library pointers to sounds and internal buffers

= void mminitDefaultMem(mm_addr soundbank);

The input parameter is the name of the sound-bank binary object
(by default it is soundbank_bin)

= Load music modules

= void mmLoad(mm_word module ID);

The input parameter is the 32-bit index with the module identifier
(by default all identifiers are defined in soundbank.h)

= | oad sound effect

= void mmLoadEffect(mm_word sample ID);
The input parameter is the 32-bit sample index with the effect identifier
(by default all identifiers are defined in soundbank.h)

©ESL/EPFL

=PrL MaxMod API: Music modules

= Play music
= void mmStart(mm_word module ID, mm_pmode mode);

The first input parameter is the module identifier

The second parameter specifies whether the music has to be played
once (MM_PLAY_ONCE) or in an infinite loop (MM_PLAY_LOOP)

= Pause, resume or stop music using active module identifier
= void mmPause();
= void mmResume();
= void mmStop();

©ESL/EPFL

=PrL MaxMod API: Sound effects

= Play sound effect

= mm_sfxhand mmEffect(mm_word sample_ID);
The input parameter specifies sound effect identifier of effect to play
The effect will be played without modifying the sound configuration

= Play sound effect with specific sound configuration

= mm_sfxhand mmEffectEx(mm_sound_effect* sound);

The input parameter is a Structure typedef struct t mmsoundeffect
with the effect identifier (id) and

. union {
three main parameters: // sample ID (defined in soundbank header)
mm word 1id;
1. Volume // external sample address, not valid on GBA system
. mm ds sample* sample;
2. Panning }:
3. Rate (frequency) mm_hword rate; // playback rate

mm_sfxhand handle; // sound handle
mm_byte volume; // volume, 0..255
mm_byte panning; // panning, 0..255

} mm_sound effect;

©ESL/EPFL 10

g1 Transformation utility to generate accepted
NDS audio formats: mmutil

= Raw audio data is needed
= We must convert audio files into uncompressed binary files

= Toolchain for MaxMod library in the devkitPro: mmutil
= As with images, the transformation of sound files is automatic:
Parameter to generate directly NDS compatible outputs: —d
= Possible to use it from the terminal

Generates a sound-bank output for NDS: soundbank.bin
Header file to link with the C code: soundbank.h

= Example: Transform sl.wav and s2.mod and dump the binary data
Into the default sound-bank output for NDS

mmutil sl.wav s2.mod —d —osoundbank.bin =hsoundbank.h

©ESL/EPFL 11

- Automatic transformation and use of audio
Pl'L - - -
files In NDS project

n

1. Place audio files in the folder audio inside the C project

2. Rebuild the project (clean it if necessary). Several files will
be generated in the build folder
soundbank.bin: Binary output from the mmutil tool.

soundbank.h: Header file including the necessary definitions to
manage the sounds in the program

It must be linked with the user C code

soundbank.bin.o and soundbank_bin.h: Object and header file
used by the library generated from the previous two files

3. Use the sounds in the C project with MaxMod API
Include the library and sound-bank headers
Initialize the library
Load (1) music modules and (2) effects

Play (1) music modules and (2) effects

©ESL/EPFL 12

=PrL Example: Simon game sound

= How do we integrate sound in the Simon game of last week?

+ = audio
- &= build
1. Put the sound files 2. Remake the # chrono_display.d
- ; : - h display.
in the audio folder of project (clean if =
the project necessary). The & main.o
- |# numbers.d
- soundbank files % numbers h
= & simon2 will be created in @ numbers.o
+ = .settings . [E numbers.s
- < audio the build folder B quarterd
&5 laserwav [4 quarter.h
B music.xm quarter.o
B result.wav [8) quarter.s

=[simon2.map

+ (= build [¢ soundbank_bin.h

+ (= data | soundbank.bin

+ [= source soundbank.bin.o
B e le| soundbank.h

©ESL/EPFL 13

=PrL Example: Simon game sound

3.A.Include the library
and the sound bank
headers wherever it is
needed

1#include <nds.h>

2#include <stdio.h>
3#include "quarter.h"
A#include "math.h"
5#include "chrono display.h"
6

7 #include <maxmod9.h>
g#include "soundbank.h"
9#include "suundbankﬁbin.h“

1

©ESL/EPFL

3.B. Initialize the sound library

66 //SOUND
67 L/Init the sound library

68 mmInitDefaultMem((mm addr)soundbank bin);
69 TZZrUTOuTIOUTLE

70 mmLoad (MOD MUSIC);

71 7ot et

72 mmLoadEf fect (SFX_LASER) ;
73 mmLoadEffect (SFX RESULT);

3.C1. Load the music modules
3.C2. Load the sound effects

14

=PrL Example: Simon game sound

3.D1. Play / stop the music %ﬂactive_buttan == NONE)

//1f start is pressed, the game starts //End of the game (Stop Time Timer)

if (keysDown() & KEY START) ?”““5 == 0)
{ : hits--;
—//Start nusid TIMER2 CR & ~TIMER ENABLE;
mmStart (MOD_MUSIC,MM PLAY LOOP); last < active button:

TNIC the randomizer mmStop () ;
mmEffect (SFX_RESULT) ;

}
3.D2. Play the effects

else if(hits > 0

L1 ldLLLVE DULLUIl == URLCLCW) dULLLVE DULLUIl = NUNLC,

if(x<=-3 && y >=3 && radius >=19 && radius <96) //YELLO touched
if(active button ==YELLOW) active button = NONE;

//Play sound effect if the button was successfully touched

ilff (temp butt !'= active button)|mmEffect(SFX LASER);

©ESL/EPFL 15

cprp Advanced audio management with MaxMod:
ot Streaming

= Maxmod provides functions to play streams of sound

Created at run-time
Pre-stored in sound-banks and modified at run-time

= Four steps needed:

Initialize the sound system: mm_ds_system structure to configure
If uses a sound-bank not previously created, we use special initialization
Write the “filling” function: mm_word on_stream_request (...)
Filling the buffer to be played: typically using a for/while loop
Return the number of samples placed in the buffer to play
Create stream structure (mm_stream) and link to filling function,
two options:
Automatic: filling function called automatically when needed
Manual: user updates stream periodically enough (not recommended)

Open audio stream: void mmStreamOpen (mm_stream myStream);

©ESL/EPFL 16

cprp Advanced audio management:
Streaming sound data filled at run time

1. Special initialization in case of not using a soundbank
= Specify number of modules
= Specify number of samples
= Specify memory bank
= Initialize the system

mm ds system sys;

sys.mod count = 0
Sys.samp count = 0;
sys.mem bank = 0;
sys.fifo channel = FIFO MAXMOD;

mmInit(&sys);

©ESL/EPFL 17

cprp Advanced audio management:
Streaming sound data filled at run time

2. Write filling function (for / while loop)
= The returning types and input parameters are fixed
= |t returns the number of samples written into the buffer
= Example: Create white noise

mm word on_stream_request(mm word length, mm addr dest, mm stream formats format) {

s16 *target = dest;
mm word temp length = length;

//White noise
for(;length; length--)

{
int sample = rand();
// output sample for left
*target++ = sample;
// output inverted sample for right (STEREO)
*target++ = -sample;
}

//Returns the number of samples filled
return temp length;

}

©ESL/EPFL 18

=preL Advanced audio management:
Streaming sound data filled at run time

3. Create a stream structure and link the filling function.

AR e LR R S LY

// open stream

R L R R LY

mm stream *mystream = malloc(sizeof(mm stream));

mystream->sampling rate = 25000; // 25khz

mystream->buffer length = 1200; // 1200 samples

mystream->callback = on_stream _request; // set callback function
“mystream->tformat = MM STREAM 16B11 STEREOD; // stereo 16-bit

mystream->timer
mystream->manual

— e A

mmStreamOpen(mystream);

PNETIHERQ; // use hardware timer 0
0; // use automatic filling|

4. Open the stream

©ESL/EPFL 19

cprp Advanced audio management:
et Recording sound from the microphone

= NDS has a built-in mono microphone
Software support given by libnds, not using MaxMod
Documented in /opt/devkitPro/libnds/include/nds/arm9.sound.h

1. Declare buffers to be filled by the microphone and
(optionally) to play-back the recorded sound

2. Implement microphone handler
Called by the library when half or full buffer is filled
Process the sampled data (e.g.: copy it to a bigger storage buffer)

3. Initialize the sound library (only once, but compulsory)
Start / Stop the recording
5. Eventually play-back the recorded sound

>

©ESL/EPFL

20

Libnds sound API: Initialization and
sound recordin

=PrFL

= Enable the sound (initialization of the library)
= void soundEnable(void)

= Disable the sound typedef enum {
= void soundDisable(void) wcrormat 8L = L

MicFormat;

= Start sound recording
= int soundMicRecord(void *buffer, u32 bufLength,
MicFormat format, int freq, MicCallback callback);

The handler/callback function must follow the following prototype
void myFunction(void* firstNewSample, int numNewSamples)

= Stop recording
= void soundMicOff(void)

©ESL/EPFL 21

Libnds API:
Memory Inconsistency Hazard

. . CPU
= Processors usually are equipped with
fast on-chip caches Registers
= Attempt to avoid latency on memory 1
access by keeping an updated copy Cache L1
of the data $
= |nconsistency hazards MEMORIES Cache L2
= Other peripherals may change memory
contents without notifying the
processor < 5US >
= Sound System 1T
= When recording, it is necessary to DMA
invalidate cache regions Controfler
corresponding to memory where newly Sound
sampled sound has been placed System

DC_InvalidateRange(mem_addr, num_bytes); //Invalidates region in Data Cache '

©ESL/EPFL 22

cprp Libnds sound API:
Start sound play-back

= Play-back stored samples

= int soundPlaySample(const void* buffer, SoundFormat format,
u32 buffSize, ul6 freq, u8 volume, u8 panning,
bool loop, ul6 loopPoint)

volume: (min) € 0...127 > (max) tfpegizng';';";m gt_l 6Bit = 1.
panning: (left) < 0...127 - (right) ggﬂggﬁgﬂg?iﬁétf
loop: if true the buffer will be played in SoundFormat ADPCM = 2
a loop starting in the sample }SoundFormat;
loopPoint

Returns handler (integer ID) to change other parameters using
application programmer interface (API) functions

©ESL/EPFL 23

Libnds sound API:
Stop sound and modi arameters

= Stop sound
= void soundKill(int soundld)

= Pause / resume sound
= void soundPause(int soundid)
= void soundResume(int soundld)

= Change frequency, panning or volume
= void soundSetVolume(int soundld, u8 volume)
= void soundSetPan(int soundid, u8 pan)
= void soundSetFreq(int soundld, ul6 freq)

©ESL/EPFL 24

=PrL Example: Libnds sound API

= Store up to 5 seconds of sound sampled at 8 KHz when
key A is pressed and play it back when key B is pressed

1. Defines and buffer declarations

//Some defines
#define RECORDING TIME 5 //seconds
#define SAMPLING RATE (1<<13) //samples/second (8 KHz)

#define PLAY BUFFER SIZE RECORDING TIME*SAMPLING RATE) //Samples
#define MIC BUFFER SIZE (SAMPLING RATE / 16) //Samples
//Microphone buffer

ulé mic_buffer[MIC BUFFER SIZE];

//Play-back buffer
ulé playback buffer[PLAY BUFFER SIZE];

//Counter for samples already stored in the mic buffer
int num samples = 0;

= Recording buffer filled 16 times per second (the microphone
handler will be called 32 times per second)

©ESL/EPFL 25

=PrL Example: Libnds sound API

2. Implement microphone handler function
= Need to invalidate cache contents!

void micHandler(void* data, int length)

{
int bytes to copy;

//Check 1f play-back buffer is full
if(num samples < PLAY BUFFER SIZE) {

Invalidate lines in cache (recommended to avoid inconsistencies)
DC_InvalidateRange(data, length);

//Number of bytes fitting in the buffer

if(num_samples + (length / 2) <= PLAY BUFFER SIZE)
bytes to copy = length;

else
bytes to copy = (PLAY BUFFER SIZE - num samples) * 2;

//Copy data to play-back buffer
dmaCopy(data, (u8*)(&playback buffer[num samples]), bytes to copy);

//Update the number of samples recorded by the mic
num_samples = num samples + (bytes to copy/2);

26

©ESL/EPFL

=PrL Example: Libnds sound API

3. Initialize sound library and start recording with key A

int main(void)
{

consoleDemoInit();

//Initialize sound system
soundEnable();

while(1)

{
int key;
scanKeys();
key = keysDown();

//Record sound

if(key & KEY A) {
printf("Recording...\n");
//Restart index of the play-back buffer
num samples = 0;

//Start recording

soundMicRecord(mic buffer, //Buffer to store samples
MIC BUFFER SIZE*2, //Size of the buffer in bytes
MicFormat 12Bit, //Recording format
SAMPLING RATE, //Sampling frequency
micHandler); //Microphone handler

©ESL/EPFL 27

=PrL Example: Libnds sound API

3. Play the recorded sound with key B

//Playing back the recorded data
if(key & KEY B)
{
//Stop the mic recording if there is
soundMicOff();
printf("Playing...\n");
//Start a single shot play-back
soundPlaySample(playback buffer, //Buffer storing the samples
SoundFormat _16Bit, //Format of the samples
—num_samples*? __// Buffer size in bytes
SAMPLING RATE, //Sampling frequency
127, - //Speakers volume (maximum)
64, //Speakers panning (middle)
false, // LOOP Play back (NO)
0); // if LOOP, starting point in the buffer
}
swiWaitForVBlank();
} //End while(1) Lloop

©ESL/EPFL 28

Practical Work 10:
Creating a Piano Keyboard

n

PrL

= Use of tiled background and MaxMod - ,
Desmume - 59fps
4 tiles, 4-bits pixel depth File Emulation Config Tools ?

o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o
[} o [} o o o o o o o o] o o o o
o o o o o o o o - o o o o o o o
[} s} [} o o o o o o o o o o o o
[} o [} o o o o o o o o o o s} o
[} s} [} o o o o o o o o o o s} o
[} s} [} o o o o o o o o o o [} o
White tile Semi-white left tile

2 e] s e lala el
o o Le] o

o|o| o o
o|lo|o|o|o|o|o]o
o|o|o|o|o|lo|o]o
o|o|o|o|o|lo|o]o

--- o|o|o|o|o|o|o]|o

DARNRARNRNRNRNRN |- - |- o[-

ESENENENENENENEN - -l lc o]

Black tile Semi-white up tile

©ESL/EPFL 29

Practical Work 10:
Creating a Piano Keyboard

n

PrL

= Use of tiled background and MaxMod - :
Desmume - 59fps
4 tiles, 4-bits pixel depth File Emulation Config Tools ?
Use one sound (DO) to generate the rest

Note Freq. (Hz)
DO 261.626
DO# 277.183
203.665
RE# 311.127
MI 329.628
FA 349.228
369.994
391.995
415.305
440.000
466.164
493.883
523.251
554.365

30

©ESL/EPFL

Practical Work 10:
Creating a Piano Keyboard

n

PrL

= Use of tiled background and MaxMod - :
Desmume - 59fps
4 tiles, 4-bits pixel depth File Emulation Config Tools ?
Use one sound (DO) to generate the rest

= Use the touchscreen as input
Checking rectangular regions

X
\

31

©ESL/EPFL

=PrFL

Practical Work 10:
Sound in the Nintendo DS

= EXxercises

©ESL/EPFL

Exercise 1 — Simon Game: Converting files

Exercise 2 — Simon Game: Initializing the library
and introducing music

Exercise 3 — Simon Game: Adding sound effects
Exercise 4 — Tetris Game: Background music
Exercise 5 — Tetris Game: Adding sound effects

*Exercise 6 — Piano: Graphics part
*Exercise 7 — Piano: Touch tracking

*Exercise 8 — Piano: Playing key sounds in the
simulator

*Exercise 9 — Piano: Playing key sounds in the
device

* Additional exercises

® @ Desmume - 59fps

File Emulation Config Tools ?

© @ Desmume - 59fps
] . .
= File Emulation Config Tools ?
——————
Jooooon
oooo
oooo
oooo
oo
=]
=] ao
=] ao
i (=]

® @ Desmume - 59fps
File Emulation Config Tools ?

arhu

)

32

Questions?

ofl

Let’s play sounds in the NDS!

33

EEEEEEEEE

