
1Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Topic 3: (Part E)

I/O and Peripheral Devices Management

Secondary storage management in the

Nintendo DS

©ESL/EPFL
2

Content of Session

▪ Use of secondary storage devices in the NDS

▪ Comparisons between memories and secondary storage units

▪ Components of a file system: files and directories

▪ Implementations of a file system: contiguous and indirect allocation

▪ libFAT library methods for files and directories in the NDS

▪ Enabling File Allocation Table (FAT) systems in combination

to other I/O devices of NDS

▪ Listing Root directory of the NDS into a file

▪ Listing all files of a NDS unit into a file

▪ Adding score counters and managing scores record (store and

retrieval) in Tetris Game

▪ Adding storage and playing saved melodies in the Piano Player

©ESL/EPFL
3

I/O subsystem management on the NDS:

Secondary Storage

▪ Both processors have shared access to secondary storage
▪ ARM 7TDMI-S: standard NDS back-up for user configuration in GBA Flash
▪ ARM 946E-S: able to perform backups and add a filesystem in M3i/R4 cartridge

- Use of MicroSD card external to basic NDS configuration

ARM946E-S ARM7TDMI-S

ARM7
(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9
(66 MHz)

A, B, L, R
keys

←, ↑, →, ↓

keys

LCD TFT

Select, Start
keys

Screen
open-close GBA Flash

Fast memory
(WRAM)

Audio

M3i/R4
cartridge

©ESL/EPFL
4

Secondary Storage on the NDS

▪ The ARM9 and ARM7 processors have access to secondary storage via the
memory interface

ARM9 BUS 32-bit

ARM 9
CPU

NDS
Secondary Storage

ARM7 BUS 32-bit

ARM 7
CPU

Memory Interface

M
e

m
o

ry
 B

u
s

(1
6

-B
it

)
M3i/R4 Catridge GBA FLASH

DMA Engine

©ESL/EPFL
5

Different types of storage: main memories

and secondary memories storage

BUS

8
0
8
5 8

0

8

5

8
0
8
5 8

0

8

5

8
0
8
5

80

85

I/O subsystem interface translates

requests from words to block size

MEMORIESCPU

Main memories (SRAM/DRAM) Secondary storage (FLASH, HDD, …)

Volatile memory

(only valid if NDS on)

Permanent storage

(retains state even if NDS is off)

Fast memories (but limited space) Slow memories (but large space)

Minimum access size : WORD

(depends on processor instruct. size)

Minimum access size : BLOCK

(depends on the I/O device)

▪ Secondary storage organization: File System

▪ Method to store data into an easy-to-manipulate

database and human-readable names

▪ Hierarchical data organization in 2 types:

- Directories and Files

▪ Mem. buffers as cache to avoid bus transactions

©ESL/EPFL
6

Components of a file system: Files

▪ Fundamental logical storage unit defined

by I/O subsystem interface to provide a

mechanism to group data on physical

storage device

I/O

conversion

Physical

view

Logical view

User

▪ File structure determined by each system designer, three options:
A. Original physical view
B. Sequence of fixed length records
C. Index-like structure (e.g., tree)

▪ Structure stored in first fields
of file (header), typically:

1. Id: file identifier in the system

2. Offset: displacement to data start

3. Size: size of file

4. Type: type of file

5. Name: human-readable name

▪ Generally two types of access to a file are provided

▪ Sequential access: start accessing from the beginning and read sequentially

▪ Random access: access to any byte in the file directly

©ESL/EPFL
7

Components of a file system: Directories

▪ Container of files to provide a

mechanism to keep track of files

▪ A directory is a file that stores one

record/pointer for each file in that directory

▪ Recursive/hierarchical structures possible

▪ A directory records info about the files

in its particular partition

▪ Typically contains per file:

A. Name and Attributes

B. Name and pointer to Attribute information

©ESL/EPFL
8

▪ Each file/directory stored on consecutive disk blocks

▪ E.g., Disk with 4K block size,

a 20K file is stored on 5 blocks

▪ Advantages

▪ Simple to implement: only needed disk address of 1st block and nr. of blocks

▪ Excellent read performance because only one disk operation reads entire file

▪ Disadvantages:

▪ Disk fragmentation: occurs when files are removed. Keep track of used blocks?

▪ Large files: must know final size of

new file to be able to choose the

correct hole to place it

▪ Consecutive allocation is ideal for write-once devices: CD-ROMs, DVDs, etc.

Implementations of a file system in physical

storage devices: Contiguous allocation

©ESL/EPFL
9

▪ A linked list of disk blocks is kept in this method

▪ First block: header and pointer

▪ E.g., In disk with 4K block size,

a 20K file is stored on

any 5 available physical blocks

▪ Advantages

▪ Every disk blocks can be used (except for internal fragmentation)

▪ Still easy to perform sequential reads

▪ Disadvantages:

▪ Random access to each block is very costly in time because we have to read all

the previous blocks of a file before that block

▪ Because of pointer the amount of data stored in each block is not a power of two

▪ Indirect allocation is the general method used in I/O devices with R/W

support: Flash memories, hard disk drives, etc.

Implementations of a file system in physical

storage devices: Indirect allocation

Can we overcome these disadvantages for better performance?

©ESL/EPFL
10

Enhancing indirect allocation:

File Allocation Table (FAT) systems

▪ FAT: separate table of pointers to

keep the files’ blocks starts in memory

▪ E.g., In disk with 4K block size,

a 20K file (file A) is stored on

any 5 available physical blocks

▪ Advantage

▪ Random access only requires the starting

block number because there is no disk

reference involved

▪ Disadvantage

▪ Large number of blocks to index in the FAT

▪ E.g., in a 20 GB disk, 1 KB block size, 4 bytes per entry, how much

space for FAT?

- Approx. 80 MB used only in indexing! (20 M entries x 4 bytes)

File A(block 2)

File A(block 3)

File A(block 4)

File A(block 0)

File A(block 1)

©ESL/EPFL
11

Enhancing indirect allocation:

i-node systems

▪ i-node: separate table per file contains

attributes and disk addresses of blocks

of that file

▪ Typically the size of files is small

▪ Advantage:

▪ Use of index table depends only on the

number of open files instead of disk size

− If an i-node uses n bytes for k files open:

only kn bytes of memory are used

▪ Disadvantage

▪ If each i-node has room for a fixed number of

disk addresses what happens when a file

grows beyond this limit?

− Limited maximum possible size per file!

©ESL/EPFL
12

Libfat:

A library for FAT systems in the NDS

▪ Libfat provides functions and methods to manage a FAT-

based file system (typically for the ARM9)

▪ Different possible units where to configure it

− MicroSD card included in the M3i/R4 cartridge

− External units connected to the Slot 2

▪ Close interface to usual C programming functionality for file systems

− Standard C management interface to files: fopen, fclose, etc.

− Enhanced standard C management interface for directories

▪ It is compatible with devKitPro

▪ Included in toolchain, but not included by default in project template

▪ Necessary to add –lfat in the Makefile (first of the libraries)

− LIBS = -lfat -lnds9 -lmm9

©ESL/EPFL
13

Libfat Application Programmer Interface (API):

Two fundamental initialization methods

▪ Default configuration settings

▪ bool fatInitDefault(void);

− This function initializes the file system in the MicroSD card

▪ User-made configuration

▪ bool fatInit (uint32_t cacheSize, bool setAsDefaultDevice);

− cacheSize = Number of intermediate buffers (cache sectors) to avoid

multiple accesses to external secondary storage devices

– By default 8 in the NDS

– Useful to reduce it in large programs where memory consumption is critical

− SetAsDefaultDevice = Device where the file system will be mounted

– By default this parameter is set to true (MicroSD card)

▪ More information/methods in: /opt/devkitPro/libnds/include/fat.h

©ESL/EPFL
14

Libfat API:

Consulting directories content

▪ Iterator system to consult directories, three operations:

▪ DIR* opendir(char* dirPath);

− Returns a pointer to a DIR structure (hidden structure)

▪ dirent* dirNext(DIR* dt, char* fileName);

− Returns a pointer to a Directory Entry (dirent) structure (defined in dirent.h)

− Five main fields:

1. d_ino: I-node number

2. Offset: displacement to file start

3. d_reclen: size of file

4. d_type: type of file

5. d_name: name of file

▪ int stat(char* entryName, stat* st);

− Two steps to use this functionality

1. Status information of stored item saved in structure type stat (defined in fat.h)

2. Check the kind of entry: subdirectory or not: macro S_ISDIR(st->st_mode) will

return true if the item is a subdirectory, or false if it is a regular file.

©ESL/EPFL
15

Libfat API:

Directories management – Create / Delete

▪ Create a directory

▪ bool mkdir(char* dirPath, mode_t mode);

− The new directory must be included in an existing one

− The second parameter establishes the permit bits. An OR mask can be

used with the following macros:

– S_IREAD, S_IWRITE, S_IEXEC

▪ Remove a directory

▪ bool remove(char* dirPath);

− If the path is correct, the function deletes the directory and returns true

− If the directory does not exist, it only returns false

©ESL/EPFL
16

Libfat API:

Files management – Open / close

▪ Open a file

▪ FILE* fopen(char* filePath, char* mode);

− It returns a file descriptor if it succeeds, otherwise it returns NULL

− Six modes can be specified to open a file:

1. “r” : open for reading

2. “r+” : open for reading and writing

3. “w” : open for writing

4. “w+” : open for reading and writing. Creates the file if it does not exist

5. “a” : open for appending (at the end of the existing file)

6. “a+” : open for reading (at the beginning) and appending (at the end)

▪ Close an opened file

▪ bool fclose(FILE* f_id);

− All the opened files must be closed before the application finishes

©ESL/EPFL
17

Standard C:

Files management – Read / Write

▪ Read data from a file

▪ int fscanf(FILE* file_id, char* format, ¶m1, ¶m2, ….);

− Read the parameters specified in the given format string (second

parameter) from the file specified by file_id

− Similar padding process to scanf

– The parameters are pointers to specific data types

− Example: Reading name, surname and age from a file called “identity.txt”

▪ int fread(void* buff, size_t sizeElem, size_t nElem, FILE* file_id);

− Read of nElem elements with a fixed size per elements (sizeElem)

− Input: pointer to file specified by file_id

− Output: data is saved in the buff buffer

©ESL/EPFL
18

Standard C:

Files management – Read / Write

▪ Write data in a file

▪ int fprintf(FILE* file_id, char* format, param1, param2, ….);

− Same functionality as printf, but output written in file instead of on terminal

− Parameters are associated (padded) with the input formatted string

− Example: Printing an address in a file called “myfile.txt”

▪ int fwrite(void* buff, size_t sizeElem, size_t nElem, FILE* file_id);

− Write of nElem elements with a fixed size per elements (sizeElem)

− Input: buffer (buff)

− Ouput: file specified by file_id

©ESL/EPFL
19

Example: Listing Root directory of NDS

into a file

▪ How can we create an NDS program that lists all the

element of the root directory (“/”) and write the list in a file

(“List.txt”) in the same directory

▪ The main steps to follow are the following:

1. Include necessary header files for the library

2. Initialize the libfat library

3. Declare the necessary structures (DIR*, dirent*, stat).

4. Open the necessary files and directories

5. Read / Write files or directories

A. Get directory entry

B. Get the status information

C. Write the corresponding entry in the file

6. Close the files and directories

©ESL/EPFL
20

Example: Listing Root directory of NDS

into a file

1. Include the necessary files

▪ “fat.h” includes the

initialization of the library

▪ “sys/dir.h” includes DIR*

manipulation (opendir,

closedir)

▪ “dirent.h” Includes the dirent

declaration.

2. Initialize the library

▪ Default configuration

3. Declare the necessary

structures and variables

▪ Files and directories

4. Open files and directories

©ESL/EPFL
21

5. Read / Write files

and directories

A. Get Entry

B. Get stat

C. Write in file

6. Close files or

directories

Example: Listing Root directory of NDS

into a file

©ESL/EPFL
22

Practical Work 11:

File system use in the NDS

▪ Exercises

▪ Exercise 1 – Listing root directory of the NDS into a file

▪ Exercise 2 – Listing all files of a NDS unit into a file

▪ Exercise 3 – Tetris Game: Inserting the score counters

in the bottom screen

▪ Exercise 4 – Tetris Game: Managing score in the Tetris

Game

▪ Exercise 5 – Tetris Game: Storing and retrieving

highest score in the Tetris Game

▪ *Exercise 6 – Piano Player: Listing melody files into

the music directory

▪ *Exercise 7 – Piano Player: Playing stored melodies

▪ *Exercise 8 – Piano Player: Playing complex melodies

with note length

* Additional exercises

©ESL/EPFL
23

Questions?

Let’s use the file system in the

NDS!

