&

wsLABORATORY

Topic 3: (Part E)
/O and Peripheral Devices Management

Secondary storage management in the
Nintendo DS

Systemes Embarqués Microprogrammeés

Prof. David Atienza Alonso, SEL-STI 1

=Pr-L Content of Session

= Use of secondary storage devices in the NDS
= Comparisons between memories and secondary storage units
= Components of a file system: files and directories
= Implementations of a file system: contiguous and indirect allocation
= |libFAT library methods for files and directories in the NDS

= Enabling File Allocation Table (FAT) systems in combination
to other I/O devices of NDS
= Listing Root directory of the NDS into a file
= Listing all files of a NDS unit into a file

= Adding score counters and managing scores record (store and
retrieval) in Tetris Game

= Adding storage and playing saved melodies in the Piano Player

©ESL/EPFL

/O subsystem management on the NDS:
Secondary Storage

=Pr-L

= Both processors have shared access to secondary storage
= ARM 7TDMI-S: standard NDS back-up for user configuration in GBA Flash
= ARM 946E-S: able to perform backups and add a filesystem in M3i/R4 cartridge
- Use of MicroSD card external to basic NDS configuration

ARMO946E-S

ARM7TDMI-S

CoreMP?. 5

Screen
open-close

©ESL/EPFL

cPrL Secondary Storage on the NDS

= The ARM9 and ARM7 processors have access to secondary storage via the
memory interface

ARM 9
CPU

ARM 7
CPU

M3i/R4 Catridge 4—»[GBA FLASH J

NDS
Secondary Storage

DMA Engine

emory Bus (16-Bit)

f—
owaene |

(U

M

(

©ESL/EPFL 4

Different types of storage: main memories
and secondary memories storage

Main memories (SRAM/DRAM)

Volatile memory
(only valid if NDS on)

Fast memories (but limited space)

Minimum access size : WORD
(depends on processor instruct. size)

Secondary storage (FLASH, HDD

Permanent storage
(retains state even if NDS is off)

Slow memories (but large space)

Minimum access size : BLOCK
(depends on the I/O device)

..

S

\
\
[

P " I/O subsystem interface translates

\ = Secondary storage organization: File System

Method to store data into an easy-to-manipulate
database and human-readable names

Hierarchical data organization in 2 types:
Directories and Files

= Mem. buffers as cache to avoid bus transactigns

-~ -
-
S ————
[]

©ESL/EPFL

cPrL Components of a file system: Files

= Fundamental logical storage unit defined
by 1/O subsystem interface to provide a User
mechanism to group data on physical

" /O, Physical

---- _|conversion vijew

storage device Logical view

= File structure determined by each system designer, three options:

A. Original physical view { Bk

1

B. Sequence of fixed length records e
C. Index-like structure (e.g., tree)

e

= Structure stored in first fields
of file (header) typically:

Record

“ Ant " Fox I Pig |

Id: file identifier in the system
Offset: displacement to data start

Size: size of file
Type: type of file

arwbdE

Name: human-readable name
(a)

(b)

" Cat " Cow || Dog || || Goat || Lion " Owl " " Pony " Rat ||Worml|

 ton] s [rame]

(c)

= Generally two types of access to a file are provided
= Seguential access: start accessing from the beginning and read sequentially

= Random access: access to any byte in the file directly

©ESL/EPFL

6

=Pr~L Components of a file system: Directories

= Container of files to provide a Root directory
mechanism to keep track of files

= Adirectory is a file that stores one A B 5
record/pointer for each file in that directory é\) %
C

= Recursive/hierarchical structures possible 2] ® [e
= A directory records info about the files () :
In its particular partition
= Typically contains per file: O © O C

Name and Attributes Shared file

Name and pointer to Attribute information

games i attributes games i “]
mail I attributes mail I 4
| . |
news i attributes news i T
work ! attributes work | \\
(a) (b) Data structure

containing the 7
©ESL/EPFL attributes

cpr| Implementatio_ns of a file_ system in physical
storage devices: Contiguous allocation

Each file/directory stored on consecutive disk blocks

- Eg’ DISk Wlth 4K bIOCk SIZ€, (4?:;:\(3) (Bi:ic{is) (12FgToEks) (SFQECis)
a 20K fileis storedon 5 blocks _ .~ r ’ : —
HEEE HEEEER HENEEEEENEEEE 4 EHEER
et — -—
File B File D File F
(3 blocks) (5 blocks) (6 blocks)

Advantages
= Simple to implement: only needed disk address of 15t block and nr. of blocks
= Excellent read performance because only one disk operation reads entire file

Disadvantages:
= Disk fragmentation: occurs when files are removed. Keep track of used blocks?

= Large files: must know final size of e (Flle) (Fle £) (Flle &)
file to be able to choose the r ’
new _ R T T T T T T
correct hole to place it — — —
File B 5 Free blocks 6 Free blocks

Consecutive allocation is ideal for write-once devices: CD-ROMs, DVDs, etc.

©ESL/EPFL 8

cpre| Implementations of a file system in physical

storage devices: Indirect allocation
A linked list of disk blocks is kept in this method

. : File A

First block: header and pointer e

E.g., In disk with 4K block size, T 7]

a 20K file is stored on File File File File
: . block block block block

any 5 available physical blocks 0 3 5 3

Physical 4 7 2 10
block

Advantages

Every disk blocks can be used (except for internal fragmentation)

Still easy to perform sequential reads

Disadvantages:

File
block

12

Random access to each block is very costly in time because we have to read all

the previous blocks of a file before that block

Because of pointer the amount of data stored in each block is not a power of two

Can we overcome these disadvantages for better performance?

support: Flash memories, hard disk drives, etc.

©ESL/EPFL

Indirect allocation is the general method used in I/O devices with R/W

=Pr-L

Enhancing indirect allocation:
File Allocation Table (FAT) systems

Physical

= FAT: separate table of pointers to block

keep the files’ blocks starts in memory

= Advantage

E.g., In disk with 4K block size,
a 20K file (file A) is stored on
any 5 available physical blocks

—_
O © 00 NN OO O, A W MN = O

-—
—

Random access only requires the starting
block number because there is no disk 13

. 14
reference involved I

—
N

= Disadvantage

©ESL/EPFL

Large number of blocks to index in the FAT

10

<—File A(block 2)

11

| <— File A(block 0) -

<—— File B starts here

<— File A(block 1)

12

<— File A(block 3)

14

<— File A(block 4)

—~—— Unused block

E.g., in a 20 GB disk, 1 KB block size, 4 bytes per entry, how much

space for FAT?

Approx. 80 MB used only in indexing! (20 M entries x 4 bytes)

10

=Pr-L

= |-node: separate table per file contains
attributes and disk addresses of blocks
of that file

= Typically the size of files is small

= Advantage:

Use of index table depends only on the
number of open files instead of disk size

If an i-node uses n bytes for k files open:
only kn bytes of memory are used

= Disadvantage

©ESL/EPFL

If each i-node has room for a fixed number of
disk addresses what happens when a file
grows beyond this limit?

Limited maximum possible size per file!

Enhancing indirect allocation:
I-node systems

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block &

Address of disk block 7

11

Libfat:
A library for FAT systems in the NDS

= Libfat provides functions and methods to manage a FAT-
based file system (typically for the ARM9)
= Different possible units where to configure it

MicroSD card included in the M3i/R4 cartridge
External units connected to the Slot 2
= Close interface to usual C programming functionality for file systems
Standard C management interface to files: fopen, fclose, etc.
Enhanced standard C management interface for directories

=Pr-L

= |t is compatible with devKitPro
= Included in toolchain, but not included by default in project template

= Necessary to add —Ifat in the Makefile (first of the libraries)
LIBS = -Ifat -Inds9 -Imm9

©ESL/EPFL 12

~~r; LIbfat Application Programmer Interface (API):
=PrL Y
Two fundamental initialization methods

= Default configuration settings

= bool fatInitDefault(void);
This function initializes the file system in the MicroSD card

= User-made configuration

= bool fatinit (uint32_t cacheSize, bool setAsDefaultDevice);

cacheSize = Number of intermediate buffers (cache sectors) to avoid
multiple accesses to external secondary storage devices

— By default 8 in the NDS

— Useful to reduce it in large programs where memory consumption is critical
SetAsDefaultDevice = Device where the file system will be mounted

— By default this parameter is set to true (MicroSD card)

= More information/methods in: /opt/devkitPro/libnds/include/fat.h

©ESL/EPFL 13

Libfat API:
Consulting directories content

=Pr-L

= [terator system to consult directories, three operations:
= DIR* opendir(char* dirPath);
Returns a pointer to a DIR structure (hidden structure)

= dirent* dirNext(DIR* dt, char* fleName);
Returns a pointer to a Directory Entry (dirent) structure (defined in dirent.h)

Five main fields: struct dirent
1. d_ino: I-node number { ot d i
: : __ino t d ino;
2. Offset: dlsp_lacemgnt to file start " off t d off:
3. d_reclen: size of file unsigned short int d reclen;
4. d_type: type of file unsigned char d_type;

char d name[256];

5. d_name: name of file

= Int stat(char* entryName, stat* st);

Two steps to use this functionality
1. Status information of stored item saved in structure type stat (defined in fat.h)

2. Check the kind of entry: subdirectory or not: macro S_ISDIR(st->st_mode) will
return true if the item is a subdirectory, or false if it is a regular file.

©ESL/EPFL 14

Libfat API:
Directories management — Create / Delete

=Pr-L

= Create a directory

= bool mkdir(char* dirPath, mode_t mode);
The new directory must be included in an existing one

The second parameter establishes the permit bits. An OR mask can be
used with the following macros:

— S_IREAD, S_IWRITE, S_IEXEC

= Remove a directory

= bool remove(char* dirPath);
If the path is correct, the function deletes the directory and returns true
If the directory does not exist, it only returns false

©ESL/EPFL 15

Libfat API:
Files management — Open / close

=Pr-L

= Open afile
= FILE* fopen(char* filePath, char* mode);
It returns a file descriptor if it succeeds, otherwise it returns NULL
Six modes can be specified to open a file:
1. “r" . open for reading

“r+” . open for reading and writing
“w” : open for writing
w+” : open for reading and writing. Creates the file if it does not exist

a’ . open for appending (at the end of the existing file)
“a+” : open for reading (at the beginning) and appending (at the end)

13

o0k W

= Close an opened file

= bool fclose(FILE*f id);
All the opened files must be closed before the application finishes

©ESL/EPFL 16

cpr| Standard C:
Files management — Read / Write

= Read data from a file

= int fscanf(FILE* file_id, char* format, ¶m1, ¶mz2,);
Read the parameters specified in the given format string (second
parameter) from the file specified by file id

Similar padding process to scanf
— The parameters are pointers to specific data types

Example: Reading name, surname and age from a file called “identity.txt

FILE* f = fopen("/identity].txt", "r");

char name[256], surname[256];

int age;

fscanf(f, "%s %s %1", name, surname, &age);

= Int fread(void* buff, size_t sizeElem, size_t nElem, FILE* file_id);
Read of nElem elements with a fixed size per elements (sizeElem)
Input: pointer to file specified by file_id
Output: data is saved in the buff buffer

©ESL/EPFL 17

cpr| Standard C:
Files management — Read / Write

= Write data in a file
= int fprintf(FILE* file_id, char* format, param1, paramz2,);
Same functionality as printf, but output written in file instead of on terminal
Parameters are associated (padded) with the input formatted string
Example: Printing an address in a file called “myfile.txt”

FILE* f = fopen("/myfile.txt", "w+");

int number = 4, zip = 1015;

char* str = "New Orleans Street";

fprintf(f, "Street: %s, Number: %i, ZIP Code: %i", str, number, zip);

= Int fwrite(void* buff, size t sizeElem, size t nElem, FILE* file_id);
Write of nElem elements with a fixed size per elements (sizeElem)

Input: buffer (buff)
Ouput: file specified by file _id

©ESL/EPFL 18

Example: Listing Root directory of NDS
Into a file

=Pr-L

= How can we create an NDS program that lists all the
element of the root directory (*/°) and write the list in a file
(“List.txt”) in the same directory

= The main steps to follow are the following:

1. Include necessary header files for the library
Initialize the libfat library
Declare the necessary structures (DIR*, dirent*, stat).
Open the necessary files and directories

Read / Write files or directories
Get directory entry
Get the status information
Write the corresponding entry in the file

6. Close the files and directories

a bk wnn

©ESL/EPFL 19

cpre| Example: Listing Root directory of NDS
Into a file

#include <nds.h>

1. Include the necessary files #include <stdio.h>

= “fat.n” includes the #include <sys/dir.h>
initialization of the library #include <fat.h>
#include <dirent.h>

= “sys/dir.h” includes DIR*
manipulation (opendir,

closedir) int main(void) {
it
= “dirent.h” Includes the dirent fatInitDefault();
declaration.
o _ IIStru;tures
2. Initialize the library DIR® dii I
. . struc iren ent,;
= Default configuration FILE* file: P
truct stat st;
3. Declare the necessary LI L
structures and variables —
_ _ _ di = opendir("/");
= Files and directories //Open file

file = fopen("/List.txt", "w+");

4. Open files and directories

©ESL/EPFL 20

cpo| Example: Llstln_g Root_dlrectory of NDS
into a file

//0pen directory
di = opendir("/");

//Open file]|

file = fopen("/List.txt", "w+");

5. Read / Write files

//List the items of the directory into the file

and directories while((pent=readdir(di)) '=NULL)
{
A. Get Entry stat(pent->d name,&st);
fprintf(file, "%s: %s\n",
B. Get St_at _ (S ISDIR(st.st mode) ? "DIR" : "FILE"),
C. Write in file pent->d name);
}
. //Close opened structures
6. Close files or closedir (di);

directories fclose(file);

while(1) {
swiWaitForVBlank();
}

21

©ESL/EPFL

Practical Work 11:
File system use In the NDS

= Exercises
= Exercise 1 — Listing root directory of the NDS into a file =

= Exercise 2 — Listing all files of a NDS unit into a file

= EXxercise 3 — Tetris Game: Inserting the score counters
In the bottom screen =

= EXercise 4 — Tetris Game: Managing score in the Tetris - ¢ J
Game 6

= EXxercise 5 — Tetris Game: Storing and retrieving * ‘)
highest score in the Tetris Game 2.0 Demume ‘

File Emulation Config Tools ?

= *Exercise 6 — Piano Player: Listing melody files into
the music directory

= *Exercise 7 — Piano Player: Playing stored melodies

= *Exercise 8 — Piano Player: Playing complex melodies
with note length

* Additional exercises

T

©ESL/EPFL

Questions?

o fl

Let’s use the file system in the
NDS!

23

EEEEEEEEE

