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The C language

 Nowadays, the most commonly-used programming 
language for embedded systems

 Powerful and easy-to-use to express algorithmic steps
 Only 32 reserved words

 Considered “high-level” assembly …
 Low-level control of what the processor does
 Efficient compilers available almost for every existing architecture
 High efficiency of the produced code

 … but highly portable
 From mainframes to microprocessors and micro-controllers
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A C Language Tutorial

The examples have been extracted and adapted from:
Programming in C – A Tutorial
Brian Kernighan, Bell Labs

http://www.lysator.liu.se/c/bwk-tutor.html

“Introduction au langage C”, Bernard Cassagne (CNRS),                  
(free on-line access and PDF in Moodle website of our course)

http://www.lysator.liu.se/c/bwk-tutor.html
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The program structure in C

main() {
printf("hello, world\n");

}

Execution starts with the first 
statement of the main function

printf is a standard library (stdio.h) function 
that format and prints texts to the standard 

output

 One or more functions
 At least, there is one main function
 Different functions are called in order to do the work

 Functions are limited by: { } 
 Statements end up in:  ;
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A functional program in C:
An example of variables, types and declarations

 This program sums three elements and returns the sum
a, b, c, and sum are declared as integer type variables

 Variables names should not contain strange characters (a-z, A-Z, 0-9, _)

main() {
int a, b, c, sum;
a = 1;  b = 2;  c = 3;
sum = a + b + c;
printf("sum is %d", sum);

}

Basic assignments
a = 1; b = 2; c = 3;
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Basic Types in C

 Variables should be declared before used (specifying their type)

 Basic Types
int Integer of a word size

char Character (or integer) of 1 byte size

float Real number in simple precision floating point

double Real number in double precision floating point
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Constants in C

● '\n' new line

● '\t' tab

● '\b' backspace

● '\0' end

● '\\' character \

● 77 decimal

● 077 octal

● 0x77 hexadecimal

int a; char quest, newline, flags;
a = 1;
quest = '?';
newline = '\n';
flags = 077;
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printf (stdio.h)

●%d formatted as decimal number

●%o formatted as octal number

●%x formatted as hexadecimal number

●%s it places a text string

main( ) {
int n;
n = 511;
printf ("What is the value of %d in octal notation?", n);
printf ("%s! %d decimal is %o octal\n", "Correct", n, n);

}
The text to be 

formatted

The format
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 Basic conditional statement
if (expression) statement;

 Two types of operations
 Relational Operation:   ==  !=  <  >  <=  >=
 Logical Operation: &&  ||  !

 Example: if (a < b && (a < 0 || a > 100)) 

Conditional statement
if, relation and logical operations

Int c = 16;
if(c == 0x0010)

printf(”c is equal to 16");

It evaluates if the 
expression is ≠0

false: = 0
true: ≠ 0
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Basic Logic Expressions

 a == b 1 if a equals to b
 a != b 1 if a differs from b
 a > b 1 if a is greater than b
 a < b 1 if a is less than b
 a >= b 1 if a is greater than/equal to b
 a < b 1 if a is less than/equal to b
 a && b 1 if a  ≠ 0 and b ≠ 0
 a || b 1 if a ≠ 0 or b ≠ 0
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Conditional expression:
The else clause 

 Each if statement might have an associate else clause
 if (expression) statement1;
else statement2;

 A different way
 expression1 ? statement1 : statement2

-It evaluates expresion1

-If true (≠0), then evaluates statement1

-If it is false (=0), then evaluates statement2

As it is an statement, different if-then-else clauses can be nested
 if (expression1)  if(expression2) statement2_1;

else statement2_2; 

Statement1 is executed if the 
expression is ≠ 0

Conditional ternary 
operator

else clauses associate to the 
closest if statement
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Blocks and the else clause

 Blocks, limited by {}, are used delimit groups of statements
 They are considered as a statement

if (a < b) {
t = a;
a = b;
b = t;

}
A block instead of a 
single statement is 
executed when the 

condition is true
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Arithmetic

 Arithmetic Operators: +  - *  /  %

Characters can be treated as 8-bit integers

main( ) {
char c = ‘R’;
if(c % 2 == 0)

printf(“%c is an even char (%d) \n”, c, c);
else

printf(“%d is an odd char (%d) \n”, c, c);
}

If c is an even character 
(e.g. 0, 2, 4…)

Modulus operator
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C characters:
They follow the ASCII code order
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Operator precedence

 Strict preference
between operators
and symbols 
 1: Highest preference
 15: Least preference

 For equal
preference,         
then from left to right
on the same
statement

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Operators precedence:
with and without parenthesis

 (c = a + b) < 33
 It assigns to c the result of a+b
 and compares it to 33

 c = a + b < 33
 It performs a+b
 and compares it to 33
 and assigns the result of the comparison operation to c

The < operator has higher priority than  =
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Basic loop
while, assignment expression

While loop

● while (expression) statement;

 Behavior:
1.It evaluates the expression
2.If it is true (≠0) then it executes the statement and returns to the step 1.

main() {
int c = 0;
while(c < 16) {

printf(“%d ”, c);
c = c+1;

}
}
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Expressiveness of the C language

 More compact does not necessarily means superior
 It is easier to understand the first expression
 But advanced users rather use the second one because it is more compact

 It is said that C is an expressive programming language because
 It is mainly composed of expressions
 It is capable of expressing complex behaviors in few lines

Int c = 0;
while(c <16) printf(“%d “, c++);
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Increments and Decrements

 ++n is equivalent to n = n + 1
 --n is equivalent to n = n – 1
It is more clear, specially if n is complicated

 The post-fix expression returns the value before the increment or 
decrement expression

int a, b, x, y;
a = b = 5;
x = a++;
y = ++b;

a == 6 b == 6
x == 5 y == 6
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Arrays (vectors)

 Arrays can be declared and used in the following way:

 At declaration time, the number of elements must be stated
 It has to be constant
 Index goes from 0..N-1
 They can be N-dimensional

int x[10]; int y[10][10];
x[0] = 1; x[8] = x[9] = 5;
y[0][0] = y[1][0] = 8;
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Arrays example

 Counting upper-case characters in a sentence

main( ) {
int n = 0, count = 0; 
char line[] = “This Is My Line \n”;
while(line[n] != ’\n') {

if((line[n] >= ‘A’) && (line[n] <= ‘Z’)) 
count++;

n++;
}

}

The array size has to be 
known at compilation time 
(Length of the sentence!!)
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The for loop

This is a special case of the loop while
for(begin; expression; increment)

statement;

It is equivalent to
 initialization;
while(expression) {

statement;
increment;

}
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for loop examples

 Character arrays copy

 Array elements sum

 Bi-dimensional array initialization

for(i=0; (t[i]=s[i]) != '\0'; i++);

sum = 0;
for( i=0; i<n; i++) sum = sum + array[i];

for( i=0; i<n; i++ )
for( j=0; j<m; j++ )

array[i][j] = 0;

It does not need composed statements 
(blocks with ‘{}’)
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Functions
Definitions and Declarations

Function definition

 Function declaration

int min(int a, int b);
...
i = min(10, 6);
...

int min(int a, int b) {
return a < b ? a : b;

}

A void value can be returned = 
nothing is returned

The compiler checks that the 
function is correctly used

It declares argument types and return type



©ESL/EPFL   25

Implicit Declaration

 Functions have to be always declared

 If they are not explicitly declared, an implicit declaration is 
generated:
int function();

 The implicit declaration prevents the compiler from checking the 
function arguments

Unknown arguments
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The switch statement

 Some nested if/else can be more efficiently implemented using 
the switch statement:

switch(c) {
case 'a':

aflag++;
break;

case 'b':
bflag++;
break;

case 'c':
cflag++;
break;

default:
printf("%c?\n", c);

}

switch(c) {
case 'a': case 'A':

aflag++;
break;

case 'b': case 'B':
bflag++;
break;
...

}
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break and continue statements 

 The switch statement uses break; to exit
 Similarly, using break in a while or for loop results in the loop being finished

 The continue statement is used to step into the next iteration 
without executing the current one

for(;;) {
...
if (ExitCondition) break;
...

}
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Variables initialization

The initial value is provided during the variable definition
 Initializations can be more efficient than assignments

int x = 20; int a = 'k'; char c = 0177;
int y[] = { 1, 2, 3, 4 };
int* p = &y[1];
char* msg = “Format error";
char buf[] = “Insert your data";

msg and buf are not equivalent. The 
msg string cannot be modified. Why 
not?
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The pre-processor

Pre-processor: compilation previous step
Directives are interpreted
 Directives starts with #

 Comments are placed in between  /* */
 In C99 it is possible to also use:  // To the end of the line

#include <stdio.h>

FILE* f;

#define MAXBUFSIZE 25

int buf[MAXBUFSIZE];
Includes the stdio.h file
(i.e., declarations from the 
standard C library)

Macro-constant

void strcopy(char s1[], char s2[]) { /* copy s1 to s2 */
int i;
for(i = 0; (s2[i] = s1[i]) != '\0'; i++);

}

Comments are eliminated 
by the pre-processor so the 
compiler ignores them
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Bitwise operations and 
Special Assignments

Operations are evaluated bit by bit among the operands
a & b AND
a | b OR (or inclusive)
a ^ b XOR (or exclusive)
~a 1's Complement
! Logic negation
a << b Shift b bits to the left
a >> b Shift b bits to the right

 Special assignments
 a -= b a = a - b
 a &= b a = a & b
 a <<= b a = a << b
 …
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Floating point

 Calculating the average of a real simple precision vector

double sum;
float avg, y[10];
sum = 0.0;
for( i=0; i<n; i++ )

sum =+ y[i];
avg = sum/n;

Different numeric types can be 
mixed. There is a implicit type 
promotion
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goto statement and labels

Normally, the use of goto statement is not required                     
(and VERY STRONGLY discouraged!)
 Beginners might fall into abusing of goto statement, making the code hard to 
understand

 There is always a structured way to program the same 
functionality, while being much clearer to follow for any additional 
user or maintainer of the code

loopA:
...
if (a > b) goto loopA;
...
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Automatic and Extern variables

 Automatic variables are local 
to the block

 Extern variables are always 
available

void g() {
extern int i;
...

}

if (a < b) {
int i;
...

}

int i;
void f() {

...
}

They disappear at the 
end of the block

Extern variables are 
automatically 
initialized to 0

The i variable is available to 
different functions, even 
from different files
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Advanced data management in C:
Pointers and addresses

Pointer: Object containing memory address of an object

Type of pointer: determined by the type of pointed object

int x = 1, y = 2, z[10];
int *ip;
ip = &x;
y = *ip;
*ip = 0;
ip = &z[0];

Except void*

& retrieves the memory address of the object

* retrieves the object pointed by the pointer
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Pointers

 Pointer = the address of ...
A variable address is retrieved by using  &
The value of an object pointed by a pointer is retrieved by  *

int a, *b, c;
a = 10;
b = &a;
c = *b;

Pointer to an integer
a 10

b 50

c 10

50

54

58
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Advanced data Management in C:
Pointer arithmetic

 Arithmetic operations over pointers modify the object
referred by the pointer
 Incrementing/decrementing the pointer means referring to the
respective next/previous element: ptr++, ptr--, ptr=ptr+2, ptr=ptr-2 ...

Integers number represented by 3 memory positions
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Advanced data management in C: 
Arrays (or vectors)

Arrays are homogeneous sequences
 Index from 0 to N-1

int a[10];

 They are stored in consecutive positions in memory
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Advanced data management in C: 
Arrays and pointers

 Pointers and arrays representations are closely related

int a[10];
int* pa;
pa = &a[0];

Equivalent to pa = a

int *pa points to the first element of the array int a[10], 
which has a first pointer: a
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Advanced data management in C: 
Indexing arrays and pointer arithmetic

 Indexing arrays/matrices is like moving positions of pointers

pa + 1 == &a[1]
pa + 2 == &a[2]
pa[i] == *(pa + i) == a[i]

I am just increasing positions in the array!
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Pointers and arrays
Pointer Arithmetic

 Using the array name in an expression is equivalent to use the 
address of the first element of the array

 Pointer arithmetic can be used to access the array elements

char *y;
char x[100];

y = &x[0];
y = x;

char buf[100];
extern void f(char* p);

f(buf); Arrays are passed to functions as a 
pointer to the first element

*(y+1) == x[1];
*(y+i) == x[i];

y = &x[0]; y++;
*y == x[1];

Equivalent
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Pointers and arrays
A Pointer Arithmetic Example

 The name of an array, used in an expression, holds the address 
of the array first element

int length(char s[]) {
int n;
for(n=0; s[n] != '\0';)

n++;
return n;

}

int length(char* s) {
int n;
for(n=0; *s != '\0'; s++)

n++;
return n;

}

int length(char* s) {
int n;
for(n=0; *s++!='\0'; n++);
return n;

}

Nowadays, the code generated by 
compilers are equally efficient in all 
these situations.
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Passing Arguments
Passing values and references

In C, arguments are passed by value
 Passing the pointer is how references are passed to functions

Which value is printed by this fragment?

void flip(int *x, int* y) {
int temp;
temp = *x; *x = *y;
*y = temp;

}

int a, b;
a = 1; b = 2;
flip(&a, &b);
// a == 2 , b == 1

void fill0(int a[]) {
a[0] = 10;

}

int buf[10];
fill0(buf);
printf("%d", buf[0]);
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Data structures

Example 1:
Coordinates in 3D space

struct coordinates {
int    x;
int    y;
int    z;

};
struct coordinates point;
point.x = 4;
point.y = 6;
point.z = 2;

y zx

6 24

point

Struct element {
int value;
int *Next;

};

struct element *a, *b;  
a->value = 10;
a.Next = a;
b->value = 20;
b.Next = 0;
//a->value == (*a).value

Example 2:
Linked list

10 20 0
b

a

 Structures are used to create new complex types



©ESL/EPFL   44

Communicating data between parts of 
the programs: Passing arguments

 Two ways to pass arguments in C functions

int sum(int x, int y, int z){
z = x + y ;
printf (“z == %d”, z);

}

//main function
int main(){

int a=10; int b=5; int c=0;
sum(a, b, c);
//a, b and c are passed by value
printf (“c == %d”, c);

}

 Pass by reference Pass by value

int sum(int x, int y, int *z){
*z = x + y ;
printf (“*z == %d”, *z);

}
//main function
int main(){

int a=10; int b=5; int c=0;
sum(a, b, &c);
//a and b are passed by value
//c is passed by reference
printf (“c == %d”, c);

}

A copy of each argument is 
passed to the function 

Pointer argument are used to
pass the adress of a variable

z == 15 
c == 0 

Screen output
z == 15 
c == 15 

Screen output
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Static vs. dynamic memory management

 Two ways to allocate an array in memory

//Static memory
int StaticArray[10];

//Dynamic memory
int *DynamicArray; //Static pointer
…
DynamicArray=malloc( n*sizeof(int) ); //n=size of the array
ProcessArray(DynamicArray);
free(DynamicArray); //de-allocate memory

 Dynamic allocation
- Useful when the size is known only at run-time of the application

void *malloc(size_t size) ; /*similar to new int [ ] in c++*/
- Dynamic allocated memory must be freed once it not used anymore

void free(void *pointer);  /*similar to delete [ ] pointer in c++*/

 Static allocation:
- The size of the memory to be allocated is known before execution

int array[10];
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CPU Core
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Memory Interface

Nintendo DS
Memory Architecture

Firmware (256 KB)

Practical Work 3: Advanced 
C Programming on the Nintendo DS

 Acessing multiple memory locations: complex memory hierarchy

• ARM9 SW-controlled memories: D-/I- tightly coupled memories (TCMs)

How to manage these complex on-chip data memory hierarchy?
Use of pointers and data address management in C!
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Practical Work 3: Advanced 
C Programming on the Nintendo DS

 Matrix representations can be declared
in 2 different ways

Static Declaration

Dynamic Declaration

 

1 2  3
4  5  6
7  8  9

 

 

 
 
 

 

 

 
 
 

Algebraic

NDS Visualization
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Practical Work 3: Advanced 
C Programming on the Nintendo DS

 The matrices are then stored in different parts of the NDS 
memory hierarchy

 Can we run out of memory in these two cases below? How?
 Automatic static variables 
 Dynamic Memory

DTCM RAM

Static Memory Dynamic Memory
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Practical Work 3: Advanced                          
C Programming on the Nintendo DS

 Matrix representation
 Combining structures and dynamic memory

 

1 2  3
4  5  6
7  8  9

 

 

 
 
 

 

 

 
 
 

Algebraic Dynamic Declaration

NDS Visualization

Struct
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Practical Work 3: Advanced                             
C Programming on the Nintendo DS

 Exercises (and homework)
 Exercise 1 – Separating function prototypes from implementations
 Exercise 2 – Displaying matrices on NDS console
 Exercise 3 – Initialization of matrices
 Exercise 4 – Summation of arrays and matrices
 Exercise 5 – Vector sorting
 Exercise 6 – Matrices multiplication 
 *Exercise 7 – Run-time resources errors on the NDS 
 *Exercise 8 – Managing the different types of memory resources 

in the NDS
 *Exercise 9 – Allocating/deallocating memory
 *Exercise 10 – Understanding how arguments are passed 

between NDS functions 
* Data management for the NDS
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Questions?

Let’s manage the NDS using
the C language
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