
1Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Topic 1 (Revision):
Overview of C Language for

Microprogrammed Embedded Systems
and Memory Hierarchy Use in NDS

©ESL/EPFL 2

The C language

 Nowadays, the most commonly-used programming
language for embedded systems

 Powerful and easy-to-use to express algorithmic steps
 Only 32 reserved words

 Considered “high-level” assembly …
 Low-level control of what the processor does
 Efficient compilers available almost for every existing architecture
 High efficiency of the produced code

 … but highly portable
 From mainframes to microprocessors and micro-controllers

©ESL/EPFL 3

A C Language Tutorial

The examples have been extracted and adapted from:
Programming in C – A Tutorial
Brian Kernighan, Bell Labs

http://www.lysator.liu.se/c/bwk-tutor.html

“Introduction au langage C”, Bernard Cassagne (CNRS),
(free on-line access and PDF in Moodle website of our course)

http://www.lysator.liu.se/c/bwk-tutor.html

©ESL/EPFL 4

The program structure in C

main() {
printf("hello, world\n");

}

Execution starts with the first
statement of the main function

printf is a standard library (stdio.h) function
that format and prints texts to the standard

output

 One or more functions
 At least, there is one main function
 Different functions are called in order to do the work

 Functions are limited by: { }
 Statements end up in: ;

©ESL/EPFL 5

A functional program in C:
An example of variables, types and declarations

 This program sums three elements and returns the sum
a, b, c, and sum are declared as integer type variables

 Variables names should not contain strange characters (a-z, A-Z, 0-9, _)

main() {
int a, b, c, sum;
a = 1; b = 2; c = 3;
sum = a + b + c;
printf("sum is %d", sum);

}

Basic assignments
a = 1; b = 2; c = 3;

©ESL/EPFL 6

Basic Types in C

 Variables should be declared before used (specifying their type)

 Basic Types
int Integer of a word size

char Character (or integer) of 1 byte size

float Real number in simple precision floating point

double Real number in double precision floating point

©ESL/EPFL 7

Constants in C

● '\n' new line

● '\t' tab

● '\b' backspace

● '\0' end

● '\\' character \

● 77 decimal

● 077 octal

● 0x77 hexadecimal

int a; char quest, newline, flags;
a = 1;
quest = '?';
newline = '\n';
flags = 077;

©ESL/EPFL 8

printf (stdio.h)

●%d formatted as decimal number

●%o formatted as octal number

●%x formatted as hexadecimal number

●%s it places a text string

main() {
int n;
n = 511;
printf ("What is the value of %d in octal notation?", n);
printf ("%s! %d decimal is %o octal\n", "Correct", n, n);

}
The text to be

formatted

The format

©ESL/EPFL 9

 Basic conditional statement
if (expression) statement;

 Two types of operations
 Relational Operation: == != < > <= >=
 Logical Operation: && || !

 Example: if (a < b && (a < 0 || a > 100))

Conditional statement
if, relation and logical operations

Int c = 16;
if(c == 0x0010)

printf(”c is equal to 16");

It evaluates if the
expression is ≠0

false: = 0
true: ≠ 0

©ESL/EPFL 10

Basic Logic Expressions

 a == b 1 if a equals to b
 a != b 1 if a differs from b
 a > b 1 if a is greater than b
 a < b 1 if a is less than b
 a >= b 1 if a is greater than/equal to b
 a < b 1 if a is less than/equal to b
 a && b 1 if a ≠ 0 and b ≠ 0
 a || b 1 if a ≠ 0 or b ≠ 0

©ESL/EPFL 11

Conditional expression:
The else clause

 Each if statement might have an associate else clause
 if (expression) statement1;
else statement2;

 A different way
 expression1 ? statement1 : statement2

-It evaluates expresion1

-If true (≠0), then evaluates statement1

-If it is false (=0), then evaluates statement2

As it is an statement, different if-then-else clauses can be nested
 if (expression1) if(expression2) statement2_1;

else statement2_2;

Statement1 is executed if the
expression is ≠ 0

Conditional ternary
operator

else clauses associate to the
closest if statement

©ESL/EPFL 12

Blocks and the else clause

 Blocks, limited by {}, are used delimit groups of statements
 They are considered as a statement

if (a < b) {
t = a;
a = b;
b = t;

}
A block instead of a
single statement is
executed when the

condition is true

©ESL/EPFL 13

Arithmetic

 Arithmetic Operators: + - * / %

Characters can be treated as 8-bit integers

main() {
char c = ‘R’;
if(c % 2 == 0)

printf(“%c is an even char (%d) \n”, c, c);
else

printf(“%d is an odd char (%d) \n”, c, c);
}

If c is an even character
(e.g. 0, 2, 4…)

Modulus operator

©ESL/EPFL 14

C characters:
They follow the ASCII code order

©ESL/EPFL 15

Operator precedence

 Strict preference
between operators
and symbols
 1: Highest preference
 15: Least preference

 For equal
preference,
then from left to right
on the same
statement

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

©ESL/EPFL 16

Operators precedence:
with and without parenthesis

 (c = a + b) < 33
 It assigns to c the result of a+b
 and compares it to 33

 c = a + b < 33
 It performs a+b
 and compares it to 33
 and assigns the result of the comparison operation to c

The < operator has higher priority than =

©ESL/EPFL 17

Basic loop
while, assignment expression

While loop

● while (expression) statement;

 Behavior:
1.It evaluates the expression
2.If it is true (≠0) then it executes the statement and returns to the step 1.

main() {
int c = 0;
while(c < 16) {

printf(“%d ”, c);
c = c+1;

}
}

©ESL/EPFL 18

Expressiveness of the C language

 More compact does not necessarily means superior
 It is easier to understand the first expression
 But advanced users rather use the second one because it is more compact

 It is said that C is an expressive programming language because
 It is mainly composed of expressions
 It is capable of expressing complex behaviors in few lines

Int c = 0;
while(c <16) printf(“%d “, c++);

©ESL/EPFL 19

Increments and Decrements

 ++n is equivalent to n = n + 1
 --n is equivalent to n = n – 1
It is more clear, specially if n is complicated

 The post-fix expression returns the value before the increment or
decrement expression

int a, b, x, y;
a = b = 5;
x = a++;
y = ++b;

a == 6 b == 6
x == 5 y == 6

©ESL/EPFL 20

Arrays (vectors)

 Arrays can be declared and used in the following way:

 At declaration time, the number of elements must be stated
 It has to be constant
 Index goes from 0..N-1
 They can be N-dimensional

int x[10]; int y[10][10];
x[0] = 1; x[8] = x[9] = 5;
y[0][0] = y[1][0] = 8;

©ESL/EPFL 21

Arrays example

 Counting upper-case characters in a sentence

main() {
int n = 0, count = 0;
char line[] = “This Is My Line \n”;
while(line[n] != ’\n') {

if((line[n] >= ‘A’) && (line[n] <= ‘Z’))
count++;

n++;
}

}

The array size has to be
known at compilation time
(Length of the sentence!!)

©ESL/EPFL 22

The for loop

This is a special case of the loop while
for(begin; expression; increment)

statement;

It is equivalent to
 initialization;
while(expression) {

statement;
increment;

}

©ESL/EPFL 23

for loop examples

 Character arrays copy

 Array elements sum

 Bi-dimensional array initialization

for(i=0; (t[i]=s[i]) != '\0'; i++);

sum = 0;
for(i=0; i<n; i++) sum = sum + array[i];

for(i=0; i<n; i++)
for(j=0; j<m; j++)

array[i][j] = 0;

It does not need composed statements
(blocks with ‘{}’)

©ESL/EPFL 24

Functions
Definitions and Declarations

Function definition

 Function declaration

int min(int a, int b);
...
i = min(10, 6);
...

int min(int a, int b) {
return a < b ? a : b;

}

A void value can be returned =
nothing is returned

The compiler checks that the
function is correctly used

It declares argument types and return type

©ESL/EPFL 25

Implicit Declaration

 Functions have to be always declared

 If they are not explicitly declared, an implicit declaration is
generated:
int function();

 The implicit declaration prevents the compiler from checking the
function arguments

Unknown arguments

©ESL/EPFL 26

The switch statement

 Some nested if/else can be more efficiently implemented using
the switch statement:

switch(c) {
case 'a':

aflag++;
break;

case 'b':
bflag++;
break;

case 'c':
cflag++;
break;

default:
printf("%c?\n", c);

}

switch(c) {
case 'a': case 'A':

aflag++;
break;

case 'b': case 'B':
bflag++;
break;
...

}

©ESL/EPFL 27

break and continue statements

 The switch statement uses break; to exit
 Similarly, using break in a while or for loop results in the loop being finished

 The continue statement is used to step into the next iteration
without executing the current one

for(;;) {
...
if (ExitCondition) break;
...

}

©ESL/EPFL 28

Variables initialization

The initial value is provided during the variable definition
 Initializations can be more efficient than assignments

int x = 20; int a = 'k'; char c = 0177;
int y[] = { 1, 2, 3, 4 };
int* p = &y[1];
char* msg = “Format error";
char buf[] = “Insert your data";

msg and buf are not equivalent. The
msg string cannot be modified. Why
not?

©ESL/EPFL 29

The pre-processor

Pre-processor: compilation previous step
Directives are interpreted
 Directives starts with #

 Comments are placed in between /* */
 In C99 it is possible to also use: // To the end of the line

#include <stdio.h>

FILE* f;

#define MAXBUFSIZE 25

int buf[MAXBUFSIZE];
Includes the stdio.h file
(i.e., declarations from the
standard C library)

Macro-constant

void strcopy(char s1[], char s2[]) { /* copy s1 to s2 */
int i;
for(i = 0; (s2[i] = s1[i]) != '\0'; i++);

}

Comments are eliminated
by the pre-processor so the
compiler ignores them

©ESL/EPFL 30

Bitwise operations and
Special Assignments

Operations are evaluated bit by bit among the operands
a & b AND
a | b OR (or inclusive)
a ^ b XOR (or exclusive)
~a 1's Complement
! Logic negation
a << b Shift b bits to the left
a >> b Shift b bits to the right

 Special assignments
 a -= b a = a - b
 a &= b a = a & b
 a <<= b a = a << b
 …

©ESL/EPFL 31

Floating point

 Calculating the average of a real simple precision vector

double sum;
float avg, y[10];
sum = 0.0;
for(i=0; i<n; i++)

sum =+ y[i];
avg = sum/n;

Different numeric types can be
mixed. There is a implicit type
promotion

©ESL/EPFL 32

goto statement and labels

Normally, the use of goto statement is not required
(and VERY STRONGLY discouraged!)
 Beginners might fall into abusing of goto statement, making the code hard to
understand

 There is always a structured way to program the same
functionality, while being much clearer to follow for any additional
user or maintainer of the code

loopA:
...
if (a > b) goto loopA;
...

©ESL/EPFL 33

Automatic and Extern variables

 Automatic variables are local
to the block

 Extern variables are always
available

void g() {
extern int i;
...

}

if (a < b) {
int i;
...

}

int i;
void f() {

...
}

They disappear at the
end of the block

Extern variables are
automatically
initialized to 0

The i variable is available to
different functions, even
from different files

©ESL/EPFL 34

Advanced data management in C:
Pointers and addresses

Pointer: Object containing memory address of an object

Type of pointer: determined by the type of pointed object

int x = 1, y = 2, z[10];
int *ip;
ip = &x;
y = *ip;
*ip = 0;
ip = &z[0];

Except void*

& retrieves the memory address of the object

* retrieves the object pointed by the pointer

©ESL/EPFL 35

Pointers

 Pointer = the address of ...
A variable address is retrieved by using &
The value of an object pointed by a pointer is retrieved by *

int a, *b, c;
a = 10;
b = &a;
c = *b;

Pointer to an integer
a 10

b 50

c 10

50

54

58

©ESL/EPFL 36

Advanced data Management in C:
Pointer arithmetic

 Arithmetic operations over pointers modify the object
referred by the pointer
 Incrementing/decrementing the pointer means referring to the
respective next/previous element: ptr++, ptr--, ptr=ptr+2, ptr=ptr-2 ...

Integers number represented by 3 memory positions

©ESL/EPFL 37

Advanced data management in C:
Arrays (or vectors)

Arrays are homogeneous sequences
 Index from 0 to N-1

int a[10];

 They are stored in consecutive positions in memory

©ESL/EPFL 38

Advanced data management in C:
Arrays and pointers

 Pointers and arrays representations are closely related

int a[10];
int* pa;
pa = &a[0];

Equivalent to pa = a

int *pa points to the first element of the array int a[10],
which has a first pointer: a

©ESL/EPFL 39

Advanced data management in C:
Indexing arrays and pointer arithmetic

 Indexing arrays/matrices is like moving positions of pointers

pa + 1 == &a[1]
pa + 2 == &a[2]
pa[i] == *(pa + i) == a[i]

I am just increasing positions in the array!

©ESL/EPFL 40

Pointers and arrays
Pointer Arithmetic

 Using the array name in an expression is equivalent to use the
address of the first element of the array

 Pointer arithmetic can be used to access the array elements

char *y;
char x[100];

y = &x[0];
y = x;

char buf[100];
extern void f(char* p);

f(buf); Arrays are passed to functions as a
pointer to the first element

*(y+1) == x[1];
*(y+i) == x[i];

y = &x[0]; y++;
*y == x[1];

Equivalent

©ESL/EPFL 41

Pointers and arrays
A Pointer Arithmetic Example

 The name of an array, used in an expression, holds the address
of the array first element

int length(char s[]) {
int n;
for(n=0; s[n] != '\0';)

n++;
return n;

}

int length(char* s) {
int n;
for(n=0; *s != '\0'; s++)

n++;
return n;

}

int length(char* s) {
int n;
for(n=0; *s++!='\0'; n++);
return n;

}

Nowadays, the code generated by
compilers are equally efficient in all
these situations.

©ESL/EPFL 42

Passing Arguments
Passing values and references

In C, arguments are passed by value
 Passing the pointer is how references are passed to functions

Which value is printed by this fragment?

void flip(int *x, int* y) {
int temp;
temp = *x; *x = *y;
*y = temp;

}

int a, b;
a = 1; b = 2;
flip(&a, &b);
// a == 2 , b == 1

void fill0(int a[]) {
a[0] = 10;

}

int buf[10];
fill0(buf);
printf("%d", buf[0]);

©ESL/EPFL 43

Data structures

Example 1:
Coordinates in 3D space

struct coordinates {
int x;
int y;
int z;

};
struct coordinates point;
point.x = 4;
point.y = 6;
point.z = 2;

y zx

6 24

point

Struct element {
int value;
int *Next;

};

struct element *a, *b;
a->value = 10;
a.Next = a;
b->value = 20;
b.Next = 0;
//a->value == (*a).value

Example 2:
Linked list

10 20 0
b

a

 Structures are used to create new complex types

©ESL/EPFL 44

Communicating data between parts of
the programs: Passing arguments

 Two ways to pass arguments in C functions

int sum(int x, int y, int z){
z = x + y ;
printf (“z == %d”, z);

}

//main function
int main(){

int a=10; int b=5; int c=0;
sum(a, b, c);
//a, b and c are passed by value
printf (“c == %d”, c);

}

 Pass by reference Pass by value

int sum(int x, int y, int *z){
*z = x + y ;
printf (“*z == %d”, *z);

}
//main function
int main(){

int a=10; int b=5; int c=0;
sum(a, b, &c);
//a and b are passed by value
//c is passed by reference
printf (“c == %d”, c);

}

A copy of each argument is
passed to the function

Pointer argument are used to
pass the adress of a variable

z == 15
c == 0

Screen output
z == 15
c == 15

Screen output

©ESL/EPFL 45

Static vs. dynamic memory management

 Two ways to allocate an array in memory

//Static memory
int StaticArray[10];

//Dynamic memory
int *DynamicArray; //Static pointer
…
DynamicArray=malloc(n*sizeof(int)); //n=size of the array
ProcessArray(DynamicArray);
free(DynamicArray); //de-allocate memory

 Dynamic allocation
- Useful when the size is known only at run-time of the application

void *malloc(size_t size) ; /*similar to new int [] in c++*/
- Dynamic allocated memory must be freed once it not used anymore

void free(void *pointer); /*similar to delete [] pointer in c++*/

 Static allocation:
- The size of the memory to be allocated is known before execution

int array[10];

©ESL/EPFL 46

CPU Core

Data TCM
16 KB

Inst. TCM
16 KB

Data Cache
4 KB

Inst. Cache
8 KB

Interface Unit

ARM9

CPU Core

Interface Unit

ARM7

WRAM (64 KB)

SRAM
(Main Memory)

4MB Rendering Engine

Display

ARM9 BIOS
(32 KB)

ARM7 BIOS
(32 KB)

OAM RAM
(2 KB)

Palette RAM
(2 KB)

WRAM0 (16 KB)

WRAM1 (16 KB)

WRAM

VRAM A (128 KB)

VRAM B (128 KB)

VRAM C (128 KB)

VRAM D (128 KB)

VRAM E (64 KB)

VRAM

VRAM F (16 KB)

VRAM G (16 KB)

VRAM H (32 KB)

VRAM I (16 KB)

AR
M

9
BU

S
32

-b
it

AR
M

7
BU

S
32

-b
it

M
em

or
y

Bu
s (

16
-B

it)

Memory Interface

Nintendo DS
Memory Architecture

Firmware (256 KB)

Practical Work 3: Advanced
C Programming on the Nintendo DS

 Acessing multiple memory locations: complex memory hierarchy

• ARM9 SW-controlled memories: D-/I- tightly coupled memories (TCMs)

How to manage these complex on-chip data memory hierarchy?
Use of pointers and data address management in C!

©ESL/EPFL 47

Practical Work 3: Advanced
C Programming on the Nintendo DS

 Matrix representations can be declared
in 2 different ways

Static Declaration

Dynamic Declaration

1 2 3
4 5 6
7 8 9

















Algebraic

NDS Visualization

©ESL/EPFL 48

Practical Work 3: Advanced
C Programming on the Nintendo DS

 The matrices are then stored in different parts of the NDS
memory hierarchy

 Can we run out of memory in these two cases below? How?
 Automatic static variables
 Dynamic Memory

DTCM RAM

Static Memory Dynamic Memory

©ESL/EPFL 49

Practical Work 3: Advanced
C Programming on the Nintendo DS

 Matrix representation
 Combining structures and dynamic memory

1 2 3
4 5 6
7 8 9

















Algebraic Dynamic Declaration

NDS Visualization

Struct

©ESL/EPFL 50

Practical Work 3: Advanced
C Programming on the Nintendo DS

 Exercises (and homework)
 Exercise 1 – Separating function prototypes from implementations
 Exercise 2 – Displaying matrices on NDS console
 Exercise 3 – Initialization of matrices
 Exercise 4 – Summation of arrays and matrices
 Exercise 5 – Vector sorting
 Exercise 6 – Matrices multiplication
 *Exercise 7 – Run-time resources errors on the NDS
 *Exercise 8 – Managing the different types of memory resources

in the NDS
 *Exercise 9 – Allocating/deallocating memory
 *Exercise 10 – Understanding how arguments are passed

between NDS functions
* Data management for the NDS

©ESL/EPFL 51

Questions?

Let’s manage the NDS using
the C language

	Systèmes Embarqués Microprogrammés
	The C language
	A C Language Tutorial
	The program structure in C
	A functional program in C:�An example of variables, types and declarations
	Basic Types in C
	Constants in C
	printf (stdio.h)
	Conditional statement�if, relation and logical operations
	Basic Logic Expressions
	Conditional expression:�The else clause
	Blocks and the else clause
	Arithmetic
	C characters:�They follow the ASCII code order
	Operator precedence
	Operators precedence:� with and without parenthesis
	Basic loop�while, assignment expression
	Expressiveness of the C language
	Increments and Decrements
	Arrays (vectors)
	Arrays example
	The for loop
	for loop examples
	Functions�Definitions and Declarations
	Implicit Declaration
	The switch statement
	break and continue statements
	Variables initialization
	The pre-processor
	Bitwise operations and �Special Assignments
	Floating point
	goto statement and labels
	Automatic and Extern variables
	Advanced data management in C:�Pointers and addresses
	Pointers
	Advanced data Management in C:�Pointer arithmetic
	Advanced data management in C: Arrays (or vectors)
	Advanced data management in C: Arrays and pointers
	Advanced data management in C: Indexing arrays and pointer arithmetic
	Pointers and arrays�Pointer Arithmetic
	Pointers and arrays�A Pointer Arithmetic Example
	Passing Arguments�Passing values and references
	Data structures
	Communicating data between parts of the programs: Passing arguments
	Static vs. dynamic memory management
	Practical Work 3: Advanced �C Programming on the Nintendo DS
	Practical Work 3: Advanced �C Programming on the Nintendo DS
	Practical Work 3: Advanced �C Programming on the Nintendo DS
	Practical Work 3: Advanced C Programming on the Nintendo DS
	Practical Work 3: Advanced C Programming on the Nintendo DS
	Slide Number 51

