g

wsLABORATORY

Topic 1 (Revision):
Overview of C Language for
Microprogrammed Embedded Systems
and Memory Hierarchy Use iIn NDS

Systemes Embarqués Microprogrammes

Prof. David Atienza Alonso, SEL-STI 1

cPrL The C language

= Nowadays, the most commonly-used programming
language for embedded systems

Powerful and easy-to-use to express algorithmic steps
= Only 32 reserved words

Considered “high-level” assembly ...
= Low-level control of what the processor does
= Efficient compilers available almost for every existing architecture
= High efficiency of the produced code

= ... but highly portable

= From mainframes to microprocessors and micro-controllers)

©ESL/EPFL

cPrL A C Language Tutorial

The examples have been extracted and adapted from:
Programming in C — A Tutorial

Brian Kernighan, Bell Labs
http://www.lysator.liu.se/c/bwk-tutor.html

“Introduction au langage C”, Bernard Cassagne (CNRS), ’
(free on-line access and PDF in Moodle website of our course)

©ESL/EPFL

http://www.lysator.liu.se/c/bwk-tutor.html

cPrL The program structure in C

printf is a standard library (stdio.h) function

that format and prints texts to the standard
main() { output

printf("hello, world\n");

}

Execution starts with the first
statement of the main function

= (One or more functions
= At least, there is one main function
= Different functions are called in order to do the work

= Functions are limited by: {}
= Statements end up In: ;

©ESL/EPFL

A functional program in C:
An example of variables, types and declarations

=PrFL

= This program sums three elements and returns the sum

"a, b, c, and sum are declared as integer type variables

= Variables names should not contain strange characters (a-z, A-Z, 0-9,)

maln() { Basic assignments

int a, b, ¢, sum; a=1:b=2c=3;
a=1, b=2;, c=3;
sum=a+b+c;
printf("sum is %d", sum);

©ESL/EPFL

cPrL Basic Typesin C

= Variables should be declared before used (specifying their type)

= Basic Types

=“int Integer of a word size
=char Character (or integer) of 1 byte size
“float Real number in simple precision floating point

=double Real number in double precision floating point

©ESL/EPFL

=PrL Constants in C

\n" new line . 77 decimal

\t' tab . 077 octal

\b" backspace . Ox77 hexadecimal
\O' end

\' character \

Int a; char quest, newline, flags;
a=1;

guest = '?";

newline ='\n’;

flags = 077,

©ESL/EPFL

EPFL orintf (stdio.h)

20d formatted as decimal number
200 formatted as octal number
20x formatted as hexadecimal number

%s it places a text string

main() {

int n;

n=>511;

printf ("What is the value of %d in octal notation?", n);

printf ("%s! %d decimal is %o octal\n", "Correct", n, n); .
} The format The text to be

formatted

©ESL/EPFL

=preL | Co_ndltlonal statement
If, relation and logical operations

= Basic conditional statement
if (expression) statement;

= Two types of operations
= Relational Operation: == 1= < > <= >=
= Logical Operation: && || !

= Example: if (a<b && (a< 0|l a>100))

 ltevaluatesifthe

Int c = 16: expression is #0
if(c == 0x0010

printf("c is equal to 16");

(o]

©ESL/EPFL

cPrL Basic Logic Expressions

"a== lifaequalstob

“al=Db 1 if a differs from b

=a>Db 1 if ais greater than b

=a<b lifaislessthanb

=a>=h 1 if a Is greater than/equal to b
=a<b 1 if ais less than/equal to b

"a&&b 1ifa #0and b #0
“allb 1ifaz0orb#0

10

©ESL/EPFL

cpr| Conditional expression:
The else clause

= Each if statement might have an associate else clause

= If (expressmn) statementl; Statementl1 is executed if the
else statementz, ‘ expression is # 0

= A different way

= expressionl ? statementl : statement2

It evaluates expresionl Conditional ternary

If true (20), then evaluates statementl operator

If it is false (=0), then evaluates statement2

=sAs [t IS an statement, different if-then-else clauses can be nested

= If (expressionl) if(expression2) statement2_1,; else clauses associate to the
else statement2_2; closest if statement

©ESL/EPFL 11

=PrL Blocks and the else clause

= Blocks, limited by {}, are used delimit groups of statements
= They are considered as a statement

if (@a<b){

oo ~
TERTERL

A block instead of a

single statement is

executed when the
condition is true

12

©ESL/EPFL

=PrL Arithmetic

Modulus operator
= Arithmetic Operators: + - * /| % %

=Characters can be treated as 8-bit integers

main() {

char c = ‘R If c is an even character
If(C 0p 2 == ’ (e.g.0,2,4..)

printf(*%c is an even char (%d) \n", c, ¢);

else

printf(“%d is an odd char (%d) \n”, c, ¢); o

©ESL/EPFL 13

Pl C characters:
) They follow the ASCII code order

m

i)
I

DEC HEX 0OCT CHAR | DEC HEX 0OCT CH |DEC HEX OQCT CH|DEC HEX OQCT
0 0 000 ML 32 20 040 64 40 100 @ | 96 6O 140
1 1 0ol SoH 33 21 041 | 65 41 101 & | 97 &1 141
2 2 002 ST 34 22 D4z ¢ 65 42 102 B |88 B2 142
3 3 003 ETH 35 23 043 # | BT 43 102 o< |99 B3: 143
4 4 oo4 EOT 36 24 044 § EE 44 104 D |100 64 144
5 5 005 ERG 37 25 045 % | B9 45 105 E [101 B5s 145
5 B 006 ACK 3% 26 046 & |70 46 106 F | 102 BB 14F
7 7 007 BEL 39 27 047 71 47 107 G | 102 BF 147
g a 010 BS 40 22 080 ¢ 72 42 110 H | 104 B2 150
g o 011 TAB 41 29 051) 72 49 111 | 105 63 151
10 A 012 LF 42 2A 052 * 74 44 112 4 | 106 BA 152
11 B 013 wT 43 2B 053 + 75 4B 113 K | 107 BB 153
12 014 FF 44 2 054 76 4C 114 L | 108 B 154
12 D 015 CR 45 20 085 - 77 4D 115 M | 108 BD 155
14 E 016 S0 46 2E 056 . 72 4E 116 M | 110 BE 156
15 F 017 S A7 2F 08T i 79 4F 117 ©O | 111 BF 157
16 10 020 DLE 4% 20 06O O 20 S50 120 &80 112 7O 160
17 11 021 Dcl 49 31 061 1 21 51 121 @ | 113 71 161
18 12 022 DC2 50 32 02 2 82 52 122 R | 114 72 1B2
19 132 023 DC3 51 33 0632 3 g2 53 123 = [115 T3 163
20 14 024 DC4 52 34 0G4 4 24 54 124 T | 116 T4 164
21 15 025 MAK 53 35 065 5 85 55 1258 U | 117 75 1B&
22 16 026 SYM 54 36 0OGE B 85 56 126 ¥ | 118 76 1GG
23 17 027 ETB 55 37 0BT 7 a7 &7 127 wv | 119 77 1B7
24 12 030 AN 56 33 070 8 BE 58 130 ¥ |[120 F& 170
25 19 031 E 57 3@ 071 9 289 58 131 Y | 121 79 171
26 14 032 SUR 58 34 072 g0 &4 132 F | 122 A 172
27 1B 033 ESC 59 3@ 0OF3 91 58 133 [123 7B 173
28 1C 034 FS EO0 3 074 = 92 A 134 0 124 7C 174
29 1D 035 G5 6 D 075 = 92 50O 135] 125 7O 175
20 1E 036 RS 52 3E 076 = 94 SE 136 * | 126 TE 176
21 1F 037 S 53 3F 077 % 95 &F 137 _ | 127 TFF 177

Dy~ —""HNEHgI o0 T o TOSITTRT IR D0 TR

m
-

©ESL/EPFL

=PrFL

Operator precedence

= Strict preference

between operators

and symbols

= 1: Highest preference
= 15: Least preference

= For equal
preference,

then from left to right

on the same
statement

©ESL/EPFL

© 00 N o o A~ W N B

=
=)

e e o
a » W N

Category Operator Associativity
Postfix O-=.+-- Left to right
Unary + -l ~4+ - - (type) * & sizeof Right to left
Multiplicatrve |[* / % Left to right
Additive + - Left to right
Shift <l Left to right
E.elational <= = Left to right
Equality = I= Left to right
Bitwise AND |& Left to right
Bitwise XOER | Left to right
Bitwise OR || Left to right
Logical AND |&& Left to right
Logical OR ||| Left to right
Conditional |7: Right to left
Assignment |= += -= *= /= %= >»= <<= &= "= |= [Right to left
Comma Left to right

15

Operators precedence:
with and without parenthesis

s(c=a+b)<33
It assigns to c the result of a+b
and compares it to 33

The < operator has higher priority than =

"c=a+b<33
It performs a+b
and compares it to 33
and assigns the result of the comparison operation to c

©ESL/EPFL 16

cpel Basic loop

while, assighment expression

= While loop

while (expression) statement;

= Behavior:

1.1t evaluates the expression
2.If it is true (#0) then it executes the statement and returns to the step 1.

main() {
intc =0;
while(c < 16) {
printf(“%d ", c); s
c =c+l;

©ESL/EPFL 17

cPrL Expressiveness of the C language

= More compact does not necessarily means superior
= [tis easier to understand the first expression
= But advanced users rather use the second one because it is more compact

= Jtis said that C is an expressive programming language because
= Itis mainly composed of expressions
= Itis capable of expressing complex behaviors in few lines

Int ¢ = O;
while(c <16) printf(“%d “, c++);

©ESL/EPFL 18

=PrL Increments and Decrements

= ++n IS equivalentton=n+1

= --n IS equivalentton=n-1
[t is more clear, specially if n is complicated

= The post-fix expression returns the value before the increment or
decrement expression

inta, b, x,y;

a=b=5; a==6 b==6
X = a++; X == y ==
y = ++b;

©ESL/EPFL 19

cPrL Arrays (vectors)

= Arrays can be declared and used in the following way:

int x[10]; int y[10][10];
X[0] = 1; x[8] =x[9] = 5;
y[0][O] = y[1][O] = 8;

= At declaration time, the number of elements must be stated
= It has to be constant
= Index goes from 0..N-1
= They can be N-dimensional

©ESL/EPFL 20

cPrL Arrays example

= Counting upper-case characters in a sentence

- The array size has to be |
known at compilation time
(Length of the sentence!!)

main() {
intn =0, count =0;
char line[] = “This Is My Line \n”;
while(line[n] !="\n") {

if((line[n] >= ‘A’) && (line[n] <= Z’))
count++;

©ESL/EPFL 21

cPrL The for loop

*This is a special case of the loop while

=for(begin; expression; increment)
statement;

=*|t IS equivalent to
= |nitialization;
while(expression) {

statement;
Increment;

22

©ESL/EPFL

cPrL for loop examples

= Character arrays copy

for(i=0; (t[i]=s[i]) != "\O'; i++);

= Array elements sum

sum =0;
for(i=0; i<n; i++) sum = sum + array]Ji];

= Bi-dimensional array initialization

for(i=0; i<n; i++)
for(j=0; j<m; j++)
arraylil[j] = 0;

It does not need composed statements
(blocks with ‘{})

©ESL/EPFL 23

Functions
=PrL Definitions and Declarations

=Function definition

int min(int a, int b) { A void value can be returned =
returna<b?a:b; nothing is returned

}

= Function declaration

int min(int a, int b); Wdares argument types and return type

i =min(10, 6);
The compiler checks that the
function is correctly used .

©ESL/EPFL 24

cPrL Implicit Declaration

* Functions have to be always declared

= |f they are not explicitly declared, an implicit declaration is
generated:
int function(); gknown arguments

= The implicit declaration prevents the compiler from checking the
function arguments

©ESL/EPFL 25

=PrL The switch statement

= Some nested if/else can be more efficiently implemented using
the switch statement:

switch(c) {
case 'a': I switch(c) {
’ 8k. ; case 'a': case 'A":
. reak; aflag++;
case 'b':
. break;
Eflaglzﬂ case 'b': case 'B'":
g reak; bflag++;
case 'c':
break;
cflag++; i
break; }
default:
printf("%c?\n", c); ‘
}

©ESL/EPFL 26

=PrL break and continue statements

= The switch statement uses break; to exit
= Similarly, using break in a while or for loop results in the loop being finished

for(;;) {

if (ExitCondition) break;

= The continue statement is used to step into the next iteration
without executing the current one :

©ESL/EPFL 27

=PrL Variables initialization

*The Initial value is provided during the variable definition
= Initializations can be more efficient than assignments

int x=20; inta ="k'; charc=0177;
inty[]={1,2,3,4};

int* p = &y[1];

char* msg = “Format error";
char buf[] = “Insert your data";

msg and buf are not equivalent. The
msg string cannot be modified. Why
not?

28

©ESL/EPFL

cPrL The pre-processor

*Pre-processor. compilation previous step
=Directives are interpreted
= Directives starts with #

#include <stdio.h> #define MAXBUFSIZE 25

FILE* f; int buf[MAXBUFSIZE];
Includes the stdio.h file

(i.e., declarations from the Macro-constant
standard C library)

= Comments are placed in between /* */
= In C99 it is possible to also use: // To the end of the line

void strcopy(char s1[], char s2[]) { /* copy s1 to s2 */
inti;
for(i = 0; (s2[i] = s1[i]) !="\0'; i++); by the pre-processor so the

} compiler ignores them
—59/

©ESL/EPFL

Comments are eliminated

Bitwise operations and
Special Assignments

=Operations are evaluated bit by bit among the operands

"a&b AND

"a|b OR (or inclusive)
"a’b XOR (or exclusive)
"~3 1's Complement

ul Logic negation
"a<<b Shift b bits to the left

"a>>b Shift b bits to the right

= Special assignments

Ia_:b a:a-b [
"a&=Db a=a&b
"ma<<=b a=a<<b

©ESL/EPFL 30

cPrL Floating point

= Calculating the average of a real simple precision vector

double sum;

float avg, y[10]; : _

sum = 0.0; leferent num.erlc. typc.es' can be

for(i=0; i<n; i++) mixed. There is a implicit type
sum =+ Y[l], promotion

avg = sum/n;

©ESL/EPFL 31

cPrL goto statement and labels

*Normally, the use of goto statement is not required
(and VERY STRONGLY discouraged!)

= Beginners might fall into abusing of goto statement, making the code hard to
understand

loopA:

if (a > b) goto loopA,;

= There is always a structured way to program the same
functionality, while being much clearer to follow for any additional |
user or maintainer of the code

©ESL/EPFL 32

=PrL Automatic and Extern variables

= Automatic variables are local

to the block

= Extern variables are always

available

}
They disappear at the
end of the block

The i variable is available to
different functions, even
from different files

©ESL/EPFL

ﬁ(tern variables are
if (a<b){ inti; automatically
inti; void f() { initialized to O
}

void g() {
extern inti;

7
}

33

Advanced data management in C:
Pointers and addresses

=PrFL

=Pointer: Object containing memory address of an object

| Except void*

=Type of pointer: determined by the type of pointed object

intx=1,y =2, z[10];
int *ip;

Ip = &X; & retrieves the memory address of the object
—_ kI
};5_'8’_ * retrieves the object pointed by the pointer
ip = &z[0]; |

©ESL/EPFL 34

=PrL Pointers

= Pointer = the address of ...
=A variable address is retrieved by using &
*The value of an object pointed by a pointer is retrieved by *

int a, *b, c; 50
a=10; a 10
b = &a; ~ Pointer to an integer |
54
b 50
58 °
C 10

©ESL/EPFL 35

Advanced data Management in C:
Pointer arithmetic

= Arithmetic operations over pointers modify the object
referred by the pointer

= Incrementing/decrementing the pointer means referring to the
respective next/previous element: ptr++, ptr--, ptr=ptr+2, ptr=ptr-2 ...

Integers number represented by 3 memory positions

10111210051]|6

ptr++; | l

*ptr = 168;

) g

~N | O ||O
~N | O ||O
1O (IN
~N | W |- |0

714101419
3(1(8[4]2
0O]0|3|8]|0

©ESL/EPFL 36

Advanced data management in C:
Arrays (or vectors)

=PrFL

=Arrays are homogeneous sequences

= Index from O to N-1
int a[10]; I

= They are stored in consecutive positions in memory

a.

3[0] a[l] (I a[9]

©ESL/EPFL 37

Advanced data management in C:
Arrays and pointers

=PrFL

= Pointers and arrays representations are closely related

int a[10]; |
int* pa;
pa = &a[0];

Equivalenttopa=a |

Int *pa points to the first element of the array int a[10],

pa: which has a first pointer: a
0\\
a: [¥ ’
a[0] a[l] =« a[9]

©ESL/EPFL 38

s Advanced data management in C:
PrL
Indexing arrays and pointer arithmetic

* Indexing arrays/matrices is like moving positions of pointers

pa+ 1 ==&a[l]
pa + 2 == &al2]
pa[i] == *(pa + i) == a[l]

| am just increasing positions in the array!

pa: [,] pa+l\pa+2)
y

a[O] El[].] LI I a[9]

©ESL/EPFL 39

=PrFL

Pointers and arrays
Pointer Arithmetic

= Using the array name Iin an expression is equivalent to use the
address of the first element of the array

char *y;
char x[100];

y = &x[0];

ﬁiquivalent

y=X;

= Pointer arithmetic can be used to access the array elements

char buf[100];
extern void f(char* p);

f(buf); Arrays are passed to functions as a
pointer to the first element

©ESL/EPFL

*(y+1) == x[1];
*(y+i) == x[il;

y = &x[0]; y++;
*y == x[1];

40

cpe| Pointers and_arrays
A Pointer Arithmetic Example

= The name of an array, used in an expression, holds the address
of the array first element

int length(char s[]) { int length(char* s) {
int n; int n;
for(n=0; s[n] !="\0";) for(n=0; *s 1="\0'; s++)
N++; N+
return n; return n;

int length(char* s) {

Nowadays, the code generated by

compilers are equally efficient in all Intn; —
-0 -"\N'-])
these situations. for(n=0; *s++1="\0'; n++);
return n;

41

©ESL/EPFL

cpel P_assmg Arguments
Passing values and references

*In C, arguments are passed by value
= Passing the pointer is how references are passed to functions

void flip(int *x, int* y) { inta, b:
int temp; b
a=1,b=2;
temp = *x; *x = *y; ip(8a, &b)
*y B fllp(&a, &b);
} /[a==2,b==1

= Which value is printed by this fragment?

void fillO(int a[]) { int buf[10];
a[0] = 10; fillo(buf);
} printf("%d", buf[0]);

©ESL/EPFL 42

=PrFL

Data structures

= Structures are used to create new complex types

©ESL/EPFL

Example 1:
Coordinates in 3D space

struct coordinates {
int Xx;
int v,
int z;

I3

struct coordinates point;
point.x = 4;

point.y = 6;

point.z = 2;

Example 2:
Linked list

Struct element {
int value;
Int *Next;

3

struct element *a, *b;
a->value = 10;

a.Next = a;

b->value = 20;

b.Next = 0;

/la->value == (*a).value

10

20 O

A\

43

= Two ways to pass arguments in C functions

the

= Pass by value

A copy of each argument is
passed to the function

Communicating data between parts of
rograms: Passing arguments

= Pass by reference

Pointer argument are used to
pass the adress of a variable

}

}

©ESL/EPFL

iInt sum(int x, inty, int zZY{

Z=X+VY;
printf (“z == %d”, 2);

//main function
int main(){

int a=10; int b=5; int c=0;
sum(a, b, c¢);

//a, b and c are passed by value
printf (“c == %d”, c¢);

Screen output
z==15
C ==

iInt sum(int x, inty, int *z){
*Z=X+Y;
printf (**z == %d"”, *2);

}

//main function

iInt main(){
iInt a=10; int b=5; int c=0;
sum(a, b, &c);
/la and b are passed by value
/lc is passed by reference ¢
printf (“c == %d”, ¢);

Screen output
z==15
c==15

44

=PrL Static vs. dynamic memory management

= Two ways to allocate an array in memory

= Static allocation:

- The size of the memory to be allocated is known before execution
int array[10];

= Dynamic allocation
- Useful when the size is known only at run-time of the application
void *malloc(size_t size) ; /*similar to new int [] in c++*/
- Dynamic allocated memory must be freed once it not used anymore
void free(void *pointer); /*similar to delete [] pointer in c++*/

/[Static memory
int StaticArray[10];

//Dynamic memory ’
int *DynamicArray; //Static pointer

DynamicArray=malloc(n*sizeof(int)); //n=size of the array
ProcessArray(DynamicArray);

free(DynamicArray); //de-allocate memory

©ESL/EPFL 45

=PrFL

Practical Work 3: Advanced

C Programming on the Nintendo DS

= Acessing multiple memory locations: complex memory hierarchy

ARM9 SW-controlled memories: D-/I- tightly coupled memories (TCMSs)

ARM9

P
(DataTCM j [Inst. TCM] ARM7
16 KB 16 KB
3 [CPU Core
[CPU Core J I
ES ES N (Interface Unit
(Data Cachej [Inst. Cache] WRAM
4? BL8 [WRAMO (16 KB)]) ;
Interface Unit =
() [WRAM1 (16 KB)] -3
i} N g
OAM RAM ~ ARMO9 BIOS . ARM?7 BIOS el
(2 kB) “— ™ (32 KB) Firmware (256 KB) (32 KB) ~
3 J =
o 3
Palette RAM o <
(2 KB) — E ¢ Memory Interface >
) O
o SRAM = VRAM
H 4 N m
(Ma'“A':\"Aim°"V) (s VRAM A (128 KB) (\

How to manage these complex on-c

nip data memory hierarchy?

Use of pointers and data address management in C!

©ESL/EPFL

VRAM F (16 KB)
VRAM G (16 KB)
VRAM H (32 KB)
VRAM I (16 KB)

46

=1 Practical Work 3: Advanced
' C Programming on the Nintendo DS

m

P

= Matrix representations can be declared NDS Visualization
In 2 different ways ©.© Desmume - 58fps

File Emulation Config Tools ?

Algebraic Static Declaration

//Matrix with 9 components preinitialized
]_ 22 53 int myMatrix[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

456/

/8 9

Dynamic Declaration

//Matrix with 9 components

int *myMatrix2 = malloc(sizeof(int)*9);
//Initialization

for(i=0; 1<9;i++) myMatrix2[i] = 1i+1;

47

©ESL/EPFL

Practical Work 3: Advanced
C Programming on the Nintendo DS

= The matrices are then stored in different parts of the NDS
memory hierarchy

Static Memory Dynamic Memory

/{}\
S I

)
=

= Can we run out of memory in these two cases below? How?
= Automatic static variables
= Dynamic Memory

©ESL/EPFL 48

Practical Work 3: Advanced
C Programming on the Nintendo DS

M
U
r

= Matrix representation

= Combining structures and dynamic memory ~ NDS Visualization

® @ Desmume - 58fps

Algebraic .) File Emulation Config Tools ?
J Dynamic Declaration

]_ ;2 :3 //3%3 Matrix _

tMatrix *myDynamicMatrix = malloc(sizeof(tMat
myDynamicMatrix->cols = 3;
Zl ES fs myDynamicMatrix->rows = 3;
myDynamicMatrix->mat = malloc(sizeof(int)*3*3
//Initialization

7 8 9 for(1=0;1<9;1++)

myDynamicMatrix->mat[i] = 1+1;

Struct

= Yt

21 typedef struct{
22 int *mat;
23 int rows;
24 int cols;
25 HMtMatrix;

26

©ESL/EPFL

49

Practical Work 3: Advanced
C Programming on the Nintendo DS

m

PrL

= Exercises (and homework)
Exercise 1 — Separating function prototypes from implementations
Exercise 2 — Displaying matrices on NDS console
Exercise 3 — Initialization of matrices
Exercise 4 — Summation of arrays and matrices
Exercise 5 — Vector sorting
Exercise 6 — Matrices multiplication
*Exercise 7 — Run-time resources errors on the NDS

*Exercise 8 — Managing the different types of memory resources
In the NDS

*Exercise 9 — Allocating/deallocating memory

*Exercise 10 — Understanding how arguments are passed
between NDS functions

* Data management for the NDS

©ESL/EPFL 50

Questions? %

Let’'s manage the NDS using
the C language

EEEEEEEEE 51

	Systèmes Embarqués Microprogrammés
	The C language
	A C Language Tutorial
	The program structure in C
	A functional program in C:�An example of variables, types and declarations
	Basic Types in C
	Constants in C
	printf (stdio.h)
	Conditional statement�if, relation and logical operations
	Basic Logic Expressions
	Conditional expression:�The else clause
	Blocks and the else clause
	Arithmetic
	C characters:�They follow the ASCII code order
	Operator precedence
	Operators precedence:� with and without parenthesis
	Basic loop�while, assignment expression
	Expressiveness of the C language
	Increments and Decrements
	Arrays (vectors)
	Arrays example
	The for loop
	for loop examples
	Functions�Definitions and Declarations
	Implicit Declaration
	The switch statement
	break and continue statements
	Variables initialization
	The pre-processor
	Bitwise operations and �Special Assignments
	Floating point
	goto statement and labels
	Automatic and Extern variables
	Advanced data management in C:�Pointers and addresses
	Pointers
	Advanced data Management in C:�Pointer arithmetic
	Advanced data management in C: Arrays (or vectors)
	Advanced data management in C: Arrays and pointers
	Advanced data management in C: Indexing arrays and pointer arithmetic
	Pointers and arrays�Pointer Arithmetic
	Pointers and arrays�A Pointer Arithmetic Example
	Passing Arguments�Passing values and references
	Data structures
	Communicating data between parts of the programs: Passing arguments
	Static vs. dynamic memory management
	Practical Work 3: Advanced �C Programming on the Nintendo DS
	Practical Work 3: Advanced �C Programming on the Nintendo DS
	Practical Work 3: Advanced �C Programming on the Nintendo DS
	Practical Work 3: Advanced C Programming on the Nintendo DS
	Practical Work 3: Advanced C Programming on the Nintendo DS
	Slide Number 51

