

Last name:

………………………………………………………..

First name:

………………………………………………………..

Section:

………………………………………………………..
Cours de 3ème année,

Section d’Electricité
Date and place: November 28th, 2014; ELG-124

Duration: 1h45
Systèmes Embarqués Microprogrammés Grade:

………………………………………………………..

Mid-term Exam
IMPORTANT NOTES:

− The skeleton project for the exam can be downloaded from the Moodle Site under the link “midterm_code”.

This project is similar to the ones provided during the practical sessions. In the source files there are
placeholders to implement each exercise of the exam.

− The exercises must be implemented in the skeleton project and completed in the indicated order.
− Follow carefully all the instructions given in the current document and in the comments of the source code files

of the skeleton project.
− A label “//…TO COMPLETE EXERCISE X” indicates where to write code for exercise X, X=1…5.
− The implemented exercises must work correctly in the NDS simulator to be considered as correctly done.

However, the source code will be also evaluated after the exam.
− A compressed file of the project including the implemented code must be submitted by means of the different

forms available on the Moodle Site after finishing each exercise.
− The presence in the exam counts as 1 point.

PROJECT DEFINITION:

The project consists in 5 exercises to implement a mini-game in which a random mosaic of white and black blocks
will be shown and the player must choose the predominant color within 1.5 seconds by touching the
corresponding region in the touchscreen. All the logic of the project is already implemented and only few
placeholders need to be completed.

EXERCISE 1 (0.5 points) Time: Works: YES / NO Teach.
Sign.:

The bottom screen will be used to show the controls of the game in which the player will need to choose the
predominant color. This will be done by means of an image (bottom.png) that you can download from the
Moodle site. For this exercise the missing parts of the functions in the file graphics_sub.c, which are prototyped
in the header graphics_sub.h, must be completed following the next steps:
NOTE: the macros related to the SUB engine are followed by the suffix “_SUB” (i.e.
BG_TILE_RAM_SUB, BG_PALETTE_SUB, BGCTRL_SUB, etc…).
• Uncomment the line related to exercise 1 in the main() function of the file main.c.
• Complete the function configureGraphics_Sub() in the file graphics_sub.c following

the given comments to configure the SUB engine in mode 5 and activate the
background BG2.

• Download the image bottom.png into the “data” folder of the project and create the
configuration grit file in order to obtain the bitmap and the corresponding palette
(therefore using pixels of 8bits length)

• Complete the function configBG2_Sub() in the file graphics_sub.c following the
given comments to configure the background correctly and transfer the image
information to the corresponding locations in memory.

• Compile the project and correct the possible errors.

EXERCISE 2 (1.5 points) Time: Works: YES / NO Teach.
Sign.:

The upper screen will be used to show a mosaic of white and black blocks. In order to do
so, a function called fillRectangle(…) is called by the logic of the game to display the
different blocks in the upper screen. In this exercise, the main engine must be configured
to work in extended rotoscale mode using 16bit colors (i.e. emulating framebuffer mode)
and the mentioned function must be implemented. Complete the following steps:

• Uncomment the line related to exercise 2 in the main() function of the file main.c.
• Complete the function configureGraphics_Main() in the file graphics_main.c

following the given comments to configure the MAIN engine in mode 5 and activate
the background BG2.

• Complete the function configBG2_Main() in the file graphics_main.c following the
given comments to configure the background correctly.

• Implement the function fillRectangle(…) in the file graphics_main.c, which is
prototyped and explained in detail in the file graphics_main.h.

• Compile the project and correct the possible errors. The upper screen of the
simulator must display the blocks depicted on the image on the right. No extra squares should appear and
the color must be as depicted.

EXERCISE 3 (1 point) Time: Works: YES / NO Teach.
Sign.:

The mosaic on the upper screen must be visible for a short period of time (1.5 seconds). If the player does not
choose a color within this time the game finishes and the player looses. In order to do so, a timer will be used. It
is required to complete the functions in the source file timer_management.c, which are prototyped in the header
file timer_management.h. Complete the following steps:

• Uncomment the line related to exercise 3 in the main() function of the file main.c.
• Complete the function configureTimer() in the file timer_management.c following the given comments in

order to configure a timer to trigger an interrupt every 100 ms.
NOTE: do not call irqInit() since the touchscreen will be used in the next exercise.

• Complete the Interrupt Service Routine of the timer timerISR() in the file timer_management.c so that after
1.5 seconds it disables the timer interrupt and ends the game by calling the function playerLoses(), which
is already implemented within the project and prototyped in the header file game.h.

• Compile the project, correct the possible errors and check that after 1.5 seconds the mosaic of blocks
disappears and the screen is filled with the red color (which is the effect of calling the function
playerLoses()).

EXERCISE 4 (1 point) Time: Works: YES / NO Teach.
Sign.:

The player must choose a color by means of touching either the black area or the white one on the bottom
screen. A touch outside those areas must not have any effect. Moreover, the game can be restarted at any time
by pressing the START key. To do so, the function exercise_4() in the
source file main.c must be completed. The size of the areas can be
seen on the right. Follow the next steps:
• Uncomment the line related to exercise 4 in the main() function of

the file main.c.
• Complete the function exercise_4() in the file main.c following

carefully the comments given within the function.
• Compile the project, correct the possible errors and check that

the game is working as expected. If the correct color is chosen,
the upper screen will be filled in green. Otherwise, it will be fully
filled in red as in the case of the timeout (exercise 3).

NOTE: The upper screen will show a random mosaic of black
and white blocks.

EXERCISE 5 (1 point) Time: Works: YES / NO Teach.
Sign.:

The upper screen is divided into 16x12 blocks that compose the mosaic as shown in Fig.1. As the upper screen
of the Nintendo DS is a matrix of 256x192 pixels, each of the blocks consists on a square of 16x16 pixels. In this
exercise, a superposed background (BG0) in tiled mode will be used to display a partially transparent grid
transforming the underlying squared blocks in “rounded” dots, as depicted in Fig. 2. Therefore, each block will be
covered by 4 tiles, as shown in the diagram of Fig. 3.

TILE TILE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TILE TILE

Fig 1: Only background 2 is
active and the 16x12 mosaic

is displayed on it

Fig 2: Background 0 is also active

and superposed. It displays a
partially transparent grid.

Fig 3: Each of the blocks in background 2 is

covered by 4 tiles of background 0. The pixels of
color 0 (white in this image) are transparent

In order to complete the exercise follow the next steps:
• Modify the function configureGraphics_Main() in the file graphics_main.c, such that background 0 is

active (do not deactivate the background used in exercise 2).
• In order to leave space at the beginning of the VRAM bank for the tiles and the map of background 0,

change the configuration of background 2 in the function configBG2_Main() implemented in exercise 2 so
that the BMP_BASE number 1 is used instead of BMP_BASE 0. Modify the implementation of the function
fillRectangle(…) accordingly. Check that everything is working as before starting this exercise (i.e. blocks
are painted correctly as in Fig. 1)

HINT: Use the macro BG_BMP_RAM(1) to access the buffer where pixels are stored when painting the
rectangles in the function fillRectangle(…)

• Declare and fill the necessary tile(s) according to the diagram depicted above in the file graphics_main.c.
• Complete the function configBG0_Main() following the given comments in the source files to configure the

background BG0 in tiled mode using a 32x32 tile grid and 256 colors. Transfer the tile(s) defined in the
previous step, assign the corresponding colors to the used component(s) of the palette and create the map
to generate the semitransparent grid.

HINT: In order to not use overlapping memory regions, use the TILE_BASE 0 and one MAP_BASE
between the 1 and the 7

• Compile the project, correct the possible errors and check that the grid is correctly depicted transforming

the underlying blocks into rounded dots.

PLEASE MAKE SURE YOU HAVE SIGNED AT THE END OF THE EXAM AND ALL THE TEACHER
SIGNATURES IN ALL THE EXERCISES SLOTS ARE COMPLETED BEFORE YOU LEAVE THE EXAM,
OTHERWISE THE EXERCISES MAY NOT BE COUNTED FOR THE FINAL MARK

FINAL TIME: Student Sign.:

