
1Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Topic 3: (Part C)
I/O and Peripheral Devices Management

KEYS and TOUCHSCREEN
in the Nintendo DS

©ESL/EPFL 2

Content of Session

 Use of controls in the NDS: keys and touchscreen
 Detection of events in controls and I/O handling modes
 Polling for keys and touchscreen: libnds
 Efficient keys management: interrupts triggers and identification
 Tracking complex shapes using the touchscreen

 Using controls and graphics in the NDS
 Developing a basic Paint tool
 Try to be the fastest with colors: Simon game
 Adding keypad and touchscreen control to the Tetris

©ESL/EPFL 3

I/O subsystem management on the NDS:
Keys and touchscreen

 The two 32-bit ARM cores manage together the keys and touchscreen
 ARM 946E-S: most of the keys
 ARM 7TDMI-S: touchscreen, screen open-close and X-Y keys

ARM946E-S ARM7TDMI-S

ARM7
(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9
(66 MHz)

A, B, L, R
keys

←, ↑, →, ↓
keys

LCD TFT

Select, Start
keys

Screen
open-close GBA FlashFast storage

(WRAM)

Audio

©ESL/EPFL 4

Keys and touchscreen on NDS

 The ARM9 and ARM7 manage the keys and touchscreen together

ARM9 BUS 32-bit

ARM 9
CPU

NDS
KEYS & TOUCHSCREEN

Interrupt
Controller

TOUCH SCREEN

ARM7 BUS 32-bit

ARM 7
CPU

REG_KEYCNTREG_KEYINPUT REG_KEYXY

Analog-to-Digital
Converters

rawx, rawy,
px, py, z1, z2

A, B, L, R, START, SELECT,
←, →, ↑, ↓

KEYs

X, Y Keys

©ESL/EPFL 5

NDS keys/touchscreen identification:
Specialized I/O register

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

KEY_START
KEY_SELECT
KEY_B

KEY_RIGHT
KEY_LEFT
KEY_UP

KEY_A

KEY_DOWN
KEY_R
KEY_L
KEY_X
KEY_Y
KEY_TOUCH
KEY_LID

 Events detected are configured in a 16-bit special register: REG_KEYCNT
 ARM 946E-S: A, B, Select, Start, Right/Left/Up/Down, and R/L
 ARM 7TDMI-S: X, Y, touchscreen, and screen open-close (LID)

©ESL/EPFL 6

Synchronization of keys/touchscreen and
NDS processors

 Keys: the two basic mechanisms for I/O syncronization exist
 I/O interrupts: directly managing the REG_KEYCNT register

− setup interrupts using bits manipulation of the register using C code

 Polling: programmed I/O with active waiting, methods of libnds:
− void scanKeys() : scans and stores pressed keys
− uint32 keysHeld() : returns keys pressed and held
− uint32 keysDown() : returns keys just pressed
− uint32 keysUp() : returns keys just released

 Touchscreen: no buffering for pressed grids of the screen
 Polling for I/O syncronization, methods of libnds:

− void touchRead(touchPosition* pos) : where was the touchscreen pressed?

©ESL/EPFL 7

Using the keys/touchscreen with polling:
use of libnds methods

ARM7

ARM9
Touchscreen X, Y

keys

Screen
closing

A, B, L, R keys
←, ↑, →, ↓

keys

Select, Start
keys

REG_KEYXY

REG_KEYINPUT

scanKeys

keysCurrent
keysUp
keysDown
keysHeld
touchRead

libnds

 Control of ARM9 and ARM7 interaction with keys/touchscreen in two steps
1. Fetch keys currently pressed from both processors in internal memory buffers
2. Use of the appropriate method according to desired event to check

©ESL/EPFL 8

Polling the keys:
Check when pressing a single key

#include <nds.h>
#include <stdio.h>

int main(void)
{

consoleDemoInit();
for(;;) {

scanKeys();
unsigned keys = keysHeld();
swiWaitForVBlank();
if (keys==KEY_A) printf("A");

}
return 0;

}

 Use of active loop: for(;;)
 Just need to change keysHeld() to detect another event

 keysDown(), keysUp()…
 Identify the pressed key using one of the macros: KEY_x

©ESL/EPFL 9

#include <nds.h>
#include <stdio.h>
int main(void) {

consoleDemoInit();
for(;;) {

scanKeys();
unsigned keys = keysHeld();
swiWaitForVBlank();
printf("\x1b[23;0f%c%c%c%c %c%c%c%c %c%c",

(keys & KEY_DOWN ? 'v': '-'),
(keys & KEY_UP ? '^': '-'),
(keys & KEY_LEFT ? '<': '-'),
(keys & KEY_RIGHT? '>': '-'),
(keys & KEY_A ? 'A': '-'),
(keys & KEY_B ? 'B': '-'),
(keys & KEY_X ? 'X': '-'),
(keys & KEY_Y ? 'Y': '-'),
(keys & KEY_L ? 'L': '-'),
(keys & KEY_R ? 'R': '-'));

}
}

Polling the keys:
Check when pressing multiple keys

 It is the same method as before, just adding a case for each key…

©ESL/EPFL 10

Polling the touchscreen

 Idem as with keys, get and store registers data: scanKeys()
 Use touchRead(touchPosition* pos) to poll touchscreen

 a touchPosition structure must be declared and provided as first
argument to the function

 Fields px and py store the touched pixel coordinates
 (0,0) is returned when the screen is not touched
 The value of px and py is in the range of the screen size (0..254, 0..191)

(0-255)
(0-191)

©ESL/EPFL 11

#include <nds.h>

int main(void) {
consoleDemoInit();
for(;;) {

swiWaitForVBlank();
scanKeys();
unsigned held = keysHeld();
if (held & KEY_TOUCH) {

touchPosition touch;
touchRead(&touch);
printf("\x1b[6;5HTouch x = %04X, %04X\n",

touch.rawx, touch.px);
printf("\x1b[7;5HTouch y = %04X, %04X\n",

touch.rawy, touch.py);
}

}
}

Polling the touchscreen:
Identify and print position on LCD screen

©ESL/EPFL 12

Polling the touchscreen:
A Paint tool built in four steps

1. The framebuffer mode can be used as a canvas
 FB mode only available in the Main video engine,
 but touchscreen is controlled by default using the Sub video engine

2. Screens swapped by configuring the corresponding register
 Toggle bit 15 in the register REG_POWERCNT

3. The full canvas is whitened: all pixels set to white

©ESL/EPFL 13

Polling the touchscreen:
A Paint tool built in four steps

4. A touchPosition structure is used to poll the touchscreen
 Infinite loop polling the touchscreen
 The touched pixel, different from (0,0), is set to black

scanKeys();

©ESL/EPFL 14

 But drawbacks exist due to the speed of touchscreen device
 60 points read/sec with swiForVBlank()
 Plot diagonal line from one corner to opposite one (>256 points), which

would take more than 4 seconds!

 Solution: Interpolate values between two points and set the
color in the intermediate pixels

Polling the touchscreen:
A Paint tool built in four steps

Slow drawing: OK! Fast drawing: not OK!

©ESL/EPFL 15

Tracking complex shapes using the
touchscreen

 Active rectangular areas: typical in simple graphical user
interface (GUI) with touch surface divided into regions
 Easy to check with inequalities: >, <, <= or >=

 More complex shapes can be tracked: circles, ellipses,
rhombus, etc. But additional information is needed
 Starting point: changes in the coordinates reference

− Example: A circle centered in the screen with coordinates (127,95)

 Characteristics parameters of specific shape must be known
− Example: The radius of the circle

©ESL/EPFL 16

Tracking more complex shapes using the
touchscreen: A rhombus

 Centered in upper left quadrant of
the screen
 Center in coordinates (63, 47)

 Two steps:
1. Obtain the touched pixel and move the

coordinate reference
x = px - 63;
y = 47 - py;

2. Check if the point is inside the rhombus
abs(y) + abs(x) <= 47

19
2

px

256 px

(0,0) (47,0)

(0,47)

For other shapes the process is again shape specific, so the steps
must be developed on a case-per-case basis

©ESL/EPFL 17

Using the keys with interrupts:
configuring interrupt triggers

 Keys trigger an interrupt when a specific key is pressed by
configuring REG_KEYCNT

 REG_KEYCNT can be configured in two modes
 One key triggers an interrupt

− Bit 14: Requests an interrupt
 A combination of keys pressed together triggers an interrupt

− Bit 15: AND of all the keys to trigger the interrupt

 Examples:
 Key A, Left or Start trigger an interrupt when any of them is pressed

 Key A and B trigger an interrupt only when pressed together

REG_KEYCNT = (1<<14) | KEY_A | KEY_LEFT | KEY_START;

REG_KEYCNT = (1<<14) | KEY_A | KEY_B | (1<<15);

©ESL/EPFL 18

Using the keys with interrupts:
identifying the pressed key/s

 Advanced libnds functionality not available with interrupts
 The API provided by libnds will not work properly in the interrupt

service routine (ISR)
− keysHeld(), keysDown() or keysUp() do not return correct values.

 Necessary to read the register REG_KEYINPUT and
complement it to identify the pressed key with inverse logic
 A clear bit (zero) means that the key is pressed

 Example: Check if the START key triggered the interrupt

©ESL/EPFL 19

Practical Work 9:
The keypad and the touchscreen

 Exercises
 Exercise 1 – Read keypad by polling
 Exercise 2 – Read keypad triggering an interrupt
 Exercise 3 – Read the touchscreen by polling
 Exercise 4 – Assign Tetris actions to the keypad
 Exercise 5 – Assign Tetris actions to the

touchscreen
 *Exercise 6 – Simon game: Graphics with 16-bit

palettes
 *Exercise 7 – Simon game: Start game with the

keypad (START button)
 *Exercise 8 – Simon game: Tracking the

touchscreen in complex areas

* Additional exercises

©ESL/EPFL 20

Questions?

Let’s use keys and touchscreen
in the NDS!

	Systèmes Embarqués Microprogrammés
	Content of Session
	I/O subsystem management on the NDS:�Keys and touchscreen
	Keys and touchscreen on NDS
	NDS keys/touchscreen identification: �Specialized I/O register
	Synchronization of keys/touchscreen and NDS processors
	Using the keys/touchscreen with polling:�use of libnds methods
	Polling the keys: �Check when pressing a single key
	Slide Number 9
	Polling the touchscreen
	Slide Number 11
	Polling the touchscreen: �A Paint tool built in four steps
	Polling the touchscreen: �A Paint tool built in four steps
	Polling the touchscreen: �A Paint tool built in four steps
	Tracking complex shapes using the touchscreen
	Tracking more complex shapes using the touchscreen: A rhombus
	Using the keys with interrupts:�configuring interrupt triggers
	Using the keys with interrupts:�identifying the pressed key/s
	Practical Work 9: �The keypad and the touchscreen
	Slide Number 20

