FL &

Topic 3: (Part C)
/O and Peripheral Devices Management
KEYS and TOUCHSCREEN
in the Nintendo DS

Systemes Embarqués Microprogrammeés

Prof. David Atienza Alonso, SEL-STI 1

=Pr-L Content of Session

= Use of controls in the NDS: keys and touchscreen
= Detection of events in controls and I/O handling modes
= Polling for keys and touchscreen: libnds
= Efficient keys management: interrupts triggers and identification
= Tracking complex shapes using the touchscreen

= Using controls and graphics in the NDS
= Developing a basic Paint tool
= Try to be the fastest with colors: Simon game
= Adding keypad and touchscreen control to the Tetris

©ESL/EPFL

S—— /O subsystem management on the NDS:
|=P|"L
Keys and touchscreen

= The two 32-bit ARM cores manage together the keys and touchscreen
= ARM 946E-S: most of the keys
= ARM 7TDMI-S: touchscreen, screen open-close and X-Y keys

AR

ARM7 ARM9 Select, Start |
(33 MHz) (66 MHz) keys ’
¥ open-close |4 Fast storage GBA Flash

paS————

3

©ESL/EPFL

=PrL Keys and touchscreen on NDS

= The ARM9 and ARM7 manage the keys and touchscreen together

ARM 9 Interrupt
CPU Controller
< ARM?9 BUS 32-bit > < ARM?7 BUS 32-bit >

-— —

[REG_KEYINPUT J (REG_KEYCNT J) [REG_KEYXY] [;i"";’;’rj‘:"’:’z]
\ |
T f Analog-to-Digital)
_ Converters
A, B, L, R, START, SELECT,
(—, 9; 1‘, \L X’ Y Keys Vs {? ~
KEYs N DS TOUCH SCREEN
o J
\ KEYS & TOUCHSCREEN |

©ESL/EPFL

cpey NDS keys/touchscreen identification:
Specialized |/O reqister

= Events detected are configured in a 16-bit special register: REG_KEYCNT
= ARM 946E-S: A, B, Select, Start, Right/Left/Up/Down, and R/L
= ARM 7TDMI-S: X, Y, touchscreen, and screen open-close (LID)

;1”9876543210 w/}}
‘ —> KEY_A (8)
KEY_B
—> KEY_SELECT 5
> KEY_START \
> KEY_RIGHT
> KEY_LEFT
> KEY_UP
> KEY_DOWN
> KEY_R
> KEY_L
> KEY_X
> KEY_Y
> KEY_TOUCH
> KEY_LID

©ESL/EPFL

rpr Synchronization of keys/touchscreen and
cPrL
NDS processors

= Keys: the two basic mechanisms for |/O syncronization exist

/O interrupts: directly managing the REG_KEYCNT register
setup interrupts using bits manipulation of the register using C code

Polling: programmed I/O with active waiting, methods of libnds:
void scanKeys() : scans and stores pressed keys
uint32 keysHeld() : returns keys pressed and held
uint32 keysDown() : returns keys just pressed
uint32 keysUp() : returns keys just released

Touchscreen: no buffering for pressed grids of the screen

Polling for I/O syncronization, methods of libnds:
void touchRead(touchPosition* pos) : where was the touchscreen pressed?

©ESL/EPFL 6

Using the keys/touchscreen with polling:
use of libnds methods

m
o
11
—

= Control of ARM9 and ARMY interaction with keys/touchscreen in two steps
1. Fetch keys currently pressed from both processors in internal memory buffers
2. Use of the appropriate method according to desired event to check

A, B, L, R keys
ARM9 Select, Start
Touchscreen REG_KEYINPUT keys

4 N
_\1, keysCurrent
keysUp
ARM?7 > scanKeys —> keysDown
keysHeld
REG_KEYXY touchRead

| libnds

Screen
closing

©ESL/EPFL

Polling the keys:
Check when pressing a single ke

m
o
11
—

= Use of active loop: for(;;)

= Just need to change keysHeld() to detect another event
= keysDown(), keysUp()...

= |dentify the pressed key using one of the macros: KEY x

#include <nds.h>
#include <stdio.h>

int main(void)
{
consoleDemolnit();
for(;;) {
scanKeys();
unsigned keys = keysHeld();
swiWaitForVBIlank();
if (keys==KEY_A) printf("A");
}

return 0;

©ESL/EPFL } 8

=1 Polling the keys:
' Check when pressing multiple keys

m
U

= [tis the same method as before, just adding a case for each key...

#include <nds.h>
#include <stdio.h>
int main(void) {
consoleDemolnit();
for(;;) {
scanKeys();
unsigned keys = keysHeld();
swiWaitForVBlank();
printf("\x1b[23;0f%c%c%c%c %c%c%c%c %c%c",
(keys & KEY_DOWN ? 'v': '-'),
(keys & KEY_UP ? 'A': '),
(keys & KEY_LEFT ? '<": '),
(keys & KEY_RIGHT? ">": '-"),
(keys & KEY_A ? 'A": '-),
(keys & KEY_B ? 'B": '-'),
(keys & KEY_X ? 'X": '-'),
(keys & KEY_Y ? 'Y": '),
(keys & KEY_L ?'L": '-"),
(keys & KEY_R ? 'R': '-"));
}
}

©ESL/EPFL

cPrL Polling the touchscreen

= |dem as with keys, get and store registers data: scanKeys()

= Use touchRead(touchPosition* pos) to poll touchscreen

= a touchPosition structure must be declared and provided as first
argument to the function

typedef struct {
ulé rawx; //!< Raw x value from the A2D
ulé rawy; //'!'< Raw x value from the A2D
ulé px; //'< Processes pixel X value (0-255)
ulé py; //'< Processes pixel Y value (0-191)
ulé z1; //'!'< Raw cross panel resistance
ulé z2; //'!'< Raw cross panel resistance

} touchPosition;

= Fields px and py store the touched pixel coordinates
= (0,0) is returned when the screen is not touched
= The value of px and py is in the range of the screen size (0..254, 0..191)

©ESL/EPFL 10

Polling the touchscreen:
|dentify and print position on LCD screen

m
o
11
—

#include <nds.h>

int main(void) {
consoleDemolnit();
for(;;) {
swiWaitForVBIlank();
scanKeys();
unsigned held = keysHeld();
if (held & KEY_TOUCH) {
touchPosition touch;
touchRead(&touch);
printf("\x1b[6;5HTouch x = %04X, %04X\n",
touch.rawx, touch.px);
printf("\x1b[7;5HTouch y = %04X, %04X\n",
touch.rawy, touch.py);

©ESL/EPFL 1

cpel Polling the touchscreen:
A Paint tool built in four steps

1. The framebuffer mode can be used as a canvas
= FB mode only available in the Main video engine,
= but touchscreen is controlled by default using the Sub video engine

2. Screens swapped by configuring the corresponding register
= Toggle bit 15 in the register REG_POWERCNT

3. The full canvas is whitened: all pixels set to white
int main(void) {

//Configure the Engine in FB mode
REG DISPCNT = MODE FBO;

//Configure the VRAM block

VRAM A CR = VRAM ENABLE | VRAM A L(D;
//Swap the LCD

REG_POWERCNT ~= BIT(15);]

//F1ill the canvas with WHITE color
memset (VRAM A,OxFF,256*192%2);

©ESL/EPFL 12

=1 Polling the touchscreen:
' A Paint tool built in four steps

m
U

4. A touchPosition structure is used to poll the touchscreen
= Infinite loop polling the touchscreen
= The touched pixel, different from (0,0), is set to black

//Declaration of the touch struct
touchPosition touch;
while(1) {scanKeys();
//Poll the touch-screen
touchRead (&touch) ;
//If the touch is different to (0,0@), change the color of th
if(touch.px || touch.py)
VRAM A[touch.py * 256 + touch.px] = ARGB16(1,0,0,0);

swiWaitForVBlank();

©ESL/EPFL 13

=preL Polling the touchscreen:
A Paint tool built in four steps

= But drawbacks exist due to the speed of touchscreen device
= 60 points read/sec with swiForVBlank()

= Plot diagonal line from one corner to opposite one (>256 points), which
would take more than 4 seconds!

Slow drawing: OK! Fast drawing: not OK!

= Solution: Interpolate values between two points and set the
color in the intermediate pixels 14

©ESL/EPFL

Tracking complex shapes using the
touchscreen

n
[|

i
r

= Active rectangular areas: typical in simple graphical user
interface (GUI) with touch surface divided into regions
= Easy to check with inequalities: >, <, <= or >=

= More complex shapes can be tracked: circles, ellipses,
rhombus, etc. But additional information is needed

= Starting point: changes in the coordinates reference
Example: A circle centered in the screen with coordinates (127,95)

= Characteristics parameters of specific shape must be known
Example: The radius of the circle

©ESL/EPFL 15

rpr- Tracking more complex shapes using the
PrL
touchscreen: A rhombus

=11

= Centered in upper left quadrant of
the screen
= Center in coordinates (63, 47)

= Two steps: 256 px
1. Obtain the touched pixel and move the :
coordinate reference

X = pXx - 63;
y =47 - py;

2. Check if the point is inside the rhombus
abs(y) + abs(x) <= 47 (0,0) ' (47,0)

For other shapes the process is again shape specific, so the steps
must be developed on a case-per-case basis 16

©ESL/EPFL

- Using the keys with interrupts:
=P-L S .
configuring interrupt triggers

= Keys trigger an interrupt when a specific key is pressed by
configuring REG_KEYCNT

= REG_KEYCNT can be configured in two modes

= One key triggers an interrupt
Bit 14: Requests an interrupt

= A combination of keys pressed together triggers an interrupt
Bit 15: AND of all the keys to trigger the interrupt

= Examples:

= Key A, Left or Start trigger an interrupt when any of them is pressed
REG_KEYCNT = (1<<14) | KEY_A | KEY_LEFT | KEY_START;

= Key A and B trigger an interrupt only when pressed together
REG_KEYCNT = (1<<14) | KEY_A | KEY_B | (1<<15);

©ESL/EPFL 17

Using the keys with interrupts:
identifying the pressed key/s

n
[|

i
r

= Advanced libnds functionality not available with interrupts

= The API provided by libnds will not work properly in the interrupt
service routine (ISR)

keysHeld(), keysDown() or keysUp() do not return correct values.

= Necessary to read the register REG_KEYINPUT and
complement it to identify the pressed key with inverse logic
= A clear bit (zero) means that the key is pressed

= Example: Check if the START key triggered the interrupt

volid ISR Keys()

{
ulé keys = ~(REG_KEYINPUT);

//START KEY = Restart the game

if(keys & KEY START)|

©ESL/EPFL 18

cpreL Practical Work 9:
The keypad and the touchscreen

2 & Desmume - 59fps

= EXxercises
= Exercise 1 — Read keypad by polling
= Exercise 2 — Read keypad triggering an interrupt
= Exercise 3 — Read the touchscreen by polling
= Exercise 4 — Assign Tetris actions to the keypad

= Exercise 5 — Assign Tetris actions to the AT
tOUChscreen File Emulation Config Tools ?

= *Exercise 6 — Simon game: Graphics with 16-bit

00:03. 70

= *Exercise 7 — Simon game: Start game with the
keypad (START button) '

= *Exercise 8 — Simon game: Tracking the
touchscreen in complex areas ¢

* Additional exercises

©ESL/EPFL 19

m
o
11
—

Questions? %

Let’s use keys and touchscreen
in the NDS!

EEEEEEEEE 20

	Systèmes Embarqués Microprogrammés
	Content of Session
	I/O subsystem management on the NDS:�Keys and touchscreen
	Keys and touchscreen on NDS
	NDS keys/touchscreen identification: �Specialized I/O register
	Synchronization of keys/touchscreen and NDS processors
	Using the keys/touchscreen with polling:�use of libnds methods
	Polling the keys: �Check when pressing a single key
	Slide Number 9
	Polling the touchscreen
	Slide Number 11
	Polling the touchscreen: �A Paint tool built in four steps
	Polling the touchscreen: �A Paint tool built in four steps
	Polling the touchscreen: �A Paint tool built in four steps
	Tracking complex shapes using the touchscreen
	Tracking more complex shapes using the touchscreen: A rhombus
	Using the keys with interrupts:�configuring interrupt triggers
	Using the keys with interrupts:�identifying the pressed key/s
	Practical Work 9: �The keypad and the touchscreen
	Slide Number 20

