
©ESL/EPFL 11Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Topic 1:
Introduction to Microprogrammed

Embedded Systems

©ESL/EPFL 2

Content of Session

 Microprogrammed Embedded Systems: what, why and when
 Comparisons with traditional embedded systems
 Main application fields and design constraints
 System-level architectures: hardware and software
 C-based cross-development frameworks

 Case study: Nintendo DS (NDS) Lite
 Hardware architecture
 Software design: C-based cross-compilation flow
 Practical work 2: C programming on the Nintendo DS
 Practical Work 3: Advanced C Programming on the Nintendo DS

©ESL/EPFL 3

What has changed in “embedded Systems”?

 Definition of (traditional) embedded system:
 Computer system designed to perform one (or few)

dedicated functions, often with limited computation
complexity, but real-time computing constraints.
It is part of a complete device typically
including hardware and mechanical parts.

 Required functionality features: ARMS
 Availability A(t)= probability system working at time t
 Reliability R(t) = probability system working correctly at time t
 Maintainability M(d) = probability of system working

correctly d time units after an error occurred.
 Safety = no harm to be caused

 Required design constraints:
 Small size, but low cost (large production volume)
 Low power use, minimum set of HW possible

ASICs or simple
microcontrollers

(8- or 16-bit PICs)

©ESL/EPFL 4

Key area for the evolution:
increase of automotive electronics

What is “automotive electronics”?
 Vehicle functions implemented

with embedded systems
• Body electronics
• System electronics: chassis,

engine
• Information/entertainment

©ESL/EPFL 5

Automotive electronics market size

8.9Market
($billions) 10.5 13.1 14.1 15.8 17.4 19.3 21.0

0
200
400
600
800

1000
1200
1400

1998 1999 2000 2001 2002 2003 2004 2005

Cost of Electronics / Car ($)

70% of future innovations in our vehicles will be only possible
through improvements of the embedded electronic systems

2011: The cost of silicon in
a car is higher than the cost

of steel [EEtimes]

©ESL/EPFL 6

Latest automotive electronics: complex set
of microprogrammed embedded systems

Source: Expanding automotive electronic systems, IEEE Computer, Jan. 2010

Latest BMWs contain more than
150 embedded microprocessors

©ESL/EPFL 7

Latest market: digital convergence,
the “smart” mobile example

Broadcasting

TelematicsImaging

Computing

Communication
Entertainment

 One device, multiple functions
 Center of ubiquitous media and social networks
 Smart mobiles: next drive for semiconductor. Industry

Which are the main new components of these
microprogrammed embedded systems?

©ESL/EPFL 8

1st new key component) IMAGE
Mobile graphics enable games, videos...

Millions of units
Jon Peddie Research

Handheld Multimedia Devices report

0

100

200

300

400

500

600

700

800

900

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

MM phones
Non 3D MM phones
Native API based phones

• Resolution started with ~176x208 (2001)
• In Japan, QVGA (320x240) is the minimum now
• Nokia series 90 is 640x320
• iPhone4 is 960x640

Less than VGA first,
but almost 1024x768
already here, this has
made the market grow

New applications and
services

©ESL/EPFL 9

2nd new key component) COMMUNICATION
First in automotive applications!

“At least 9 out of 12 of new planed subsystems for next-generation
cars need networks of microprogrammed embedded systems”

[Toyota-ARM10]

©ESL/EPFL 10

But also in “traditional” consumer/home
applications…

[TechNews, Dec. 2010]

“22% of all TVs shipped worldwide in 2010 were Network-enabled;
25M units in 2010 and 122M expected in 2014 (approximately 75%)”

©ESL/EPFL 11

3rd new key component) I/O VERSATILITY
Multiple types of I/O interfaces are needed

[Reflection Tech., Inc]

 Traditionally, none or just keyboards and command-line
“I see no advantage whatsoever to a graphical user

interface (GUI)” B. Gates – Microsoft, 1983

 Dec. 1996: “Mobile phone vendors and entertainment
providers will turn to a virtual multi-IO display-based
smart phone to offer powerful new services, and
differentiate themselves from competitors.”

 Jan. 24, 1984, 1st Macintosh: a mouse and a
GUI for the first individual computer

Wii console, Nov. 2006

iPhone,
Jun. 2007Nokia, 1989-2003Nokia 7710, 2003-04 Nintendo 3DS,

Feb. 26, 2011

http://www.youtube.com/watch?v=XKBWrGQ6YAI&feature=related

©ESL/EPFL 12

What has changed in “embedded Systems”?

 Definition of microprogrammed embedded system:
 Computer system designed to perform a domain-specific set of

functions (including video, communication and large set of I/O
devices), but with limited computation and soft real-time
constraints. It is a portable device that includes hardware,
software and mechanical parts.

 ARMS functionality features important, but not essential
 No lives really at risk, only customers unhappiness…

 Not general purpose computing! Still required embedded design
constraints not to lose the market
 Small size/weight, lower cost possible (medium production vol.)
 Low power integration is the most important constraint:

1. HW: minimum set of components for target functionality
2. SW: efficient use of components in different application domains

“Current 3G phones can hardly be operated nowadays for more than
an hour, if data is really being transmitted” [Financial Times, 2010]

http://www.youtube.com/watch?v=XKBWrGQ6YAI&feature=related

©ESL/EPFL 13

 Four fundamental hardware components
1. Central Processing unit/s (CPUs): 32-bit

Reduced Instruction Set Computers (RISC)
2. Memory hierarchy: 1-2 level of cache, fast and

main memories, and external solid-state memories
3. Interconnects: One or more multiple buses

(different number of bit widths or speeds)
4. I/O devices: Multiple, custom set per domain

Hardware Architectures of
microprogrammed embedded systems

 NDS Lite architecture
 2 CPUs: ARM9 and ARM7
 D-/I-Cache, 4MB main mem., 656KB

of VRAM, two 16KB fast RAM
 17 16-bit and eight 32-bit buses
 1 TFT LCDs, 1 TFT touch-screen, 8

buttons, 4-direction pad, microphone,
speaker, Wifi and GBA cart-based
flash card, …

I/O 1

I/O 2

I/O 3

BIOS2 CPU2 BIOS 1

BIOS3 CPU 1

CPU3
Main Memory
(SRAM/DRAM)SW-based and video

Memories

I/O
P
E
R
I
P
H
E
R
A
L
S

EXT.

©ESL/EPFL 14

NDS processing and I/O management

 Two asymmetric 32-bit Advanced RISC Microprocessors (ARM) cores
• ARM 946E-S: user software processing and main I/O peripherals
• ARM 7TDMI-S: dedicated I/O support (sound, wifi and specific keys)

ARM946E-S ARM7TDMI-S

ARM7
(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9
(66 MHz)

A, B, L, R
keys

←, ↑, →, ↓
keys

LCD TFT

Select, Start
keys

Screen
open-close GBA FlashFast memory

(WRAM)

Audio

©ESL/EPFL 15

Nintendo DS detailed memory map

 Complex mem. Hierarchy, and interconnects widths for each I/O peripheral
• ARM9 SW-controlled memories: D-/I- tightly coupled memories (TCMs)
• Shared memories between both processors: WRAM 0-1
• Several video-related memories (VRAM, Palette and OAM RAM)

CPU Core

Data TCM
16 KB

Inst. TCM
16 KB

Data Cache
4 KB

Inst. Cache
8 KB

Interface Unit

ARM9

CPU Core

Interface Unit

ARM7

WRAM (64 KB)

SRAM
(Main Memory)

4MB Rendering Engine

Display

ARM9 BIOS
(32 KB)

ARM7 BIOS
(32 KB)

OAM RAM
(2 KB)

Palette RAM
(2 KB)

WRAM0 (16 KB)

WRAM1 (16 KB)

WRAM

VRAM A (128 KB)

VRAM B (128 KB)

VRAM C (128 KB)

VRAM D (128 KB)

VRAM E (64 KB)

VRAM

VRAM F (16 KB)

VRAM G (16 KB)

VRAM H (32 KB)

VRAM I (16 KB)

AR
M

9
BU

S
32

-b
it

AR
M

7
BU

S
32

-b
it

M
em

or
y

Bu
s (

16
-B

it)
Memory Interface

Nintendo DS
Memory Architecture

Firmware (256 KB)

©ESL/EPFL 16

1967 BCPL Martin Richards Cambridge

1969 B Ken Thomson Bell Labs

1972 C Dennis Ritchie Bell Labs

1983 C++ Bjarne Stroustrup Bell Labs

1995 Java James Gosling Sun

SW side: controlling/programming
microprogrammed embedded systems

Low level = Assembly Language, each line is a minimum fundamental
operation to be done by microcontroller/microprocessor

 Multiple levels of abstraction possible, the choice depends on required I/O
efficiency and complexity in general of embedded system validation

Abstraction
level

MCS-48 (8048, 8035, 8748) [Intel Corp., 1976]
(8-bit architecture, 64-128B RAM, 1MHz)

-

+

High-level abstraction languages

PIC16x84 families [Microchip, 1993]
(14-bit architectures, 512B-2.5KB RAM, up to 20MHz)

©ESL/EPFL 17

Java and C: trendiest languages for
microprogrammed embedded systems

 Very different objectives, but both have found their reason to be there
• Java: most retargettable solution (Virtual machine), interpreted language
• C: closest to HW language, very optimized compilation technology

Source: http://www.langpop.com/

Source: http://www.tiobe.com/

“For infrastructure technology, C will be
hard to displace” [Dennis Ritchie, 1972]

“Java will be the next wave in computing: no
worries about portability” [James A. Gosling, 1995]

©ESL/EPFL 18

Cross-development for microprogrammed
embedded systems

 Microprogrammed embedded systems are devices with
limited resources, and are typically not powerful enough to
run a compiler, a file system or a development environment

 Cross development is the separation of the system build
environment from the target environment

 Benefits
 Faster compilation of applications
 Debugging and testing with more resources than available on target

embedded system

©ESL/EPFL 19

Cross-toolchain for microprogrammed
embedded systems based on C language

• The complete flow to generate the final binary for the target
platform and its validation for the target microprogrammed
embedded systems requires a cross-compilation toolchain

• It is a set of tools running on a host machine, used to
1. Pre-process header files (#include) and macros (#define) and

Compile high-level source code (.c) the target object code (.o)
– Possible to get assembly output as intermediate step (.s)

2. Link pre-existing collections or libraries of object files (.o) to obtain a
final executable object (.elf) with all the necessary object code

3. Pack and format the executable object into a format that can run with
the target memory hierarchy and I/O subsystem (.nds)

©ESL/EPFL 20

NDS: System co-design framework for
cross-development with C language

Favourite editor
(our source code)

.c

Tool
Chain

.o

Target HW
Simulator

Develop. board
or final HW

Debugger

SOFTWARE PART HARDWARE PART

Development
PC

Target
architecture info.

.s

©ESL/EPFL 21

C-Based cross-compilation flow for
Nintendo DS: 2 processors – 2 flows

ARM7
compiler

files.c ARM7
source code

files.o ARM7
object code

AMR7
linker

file.arm7.elf

ARM7 executable

ARM9
compiler

files.cARM9
source code

files.oARM9
object code

ARM9
linker

file.arm9.elf

ARM9 executable

file.nds

NDS Builder

arm-eabi-gcc

arm-eabi-ld
+

arm-eabi-objcopy

ndstool

©ESL/EPFL 22

Seeking compatibility in compilation for
microprogrammed embedded systems

arm-eabi-gcc

files.cSource
code

files.oObject
code

arm-eabi-ld

file.elf
Executable

(platform
dependent)

Object
code

libraries

Header
files

● Two separated phases
1. Source code is easy to migrate

● Standard source language
(e.g., ANSI C)

● Standard multi-platform libraries
(e.g., stdio, stdlib, etc.)

2. Object code is not portable, not
even among compilers for the
same architecture

● Third-party object code linked in
platform-dependent phase, e.g.:

– libnds
– dswifi
– PAlib

ANSI C

Machine
dependent

©ESL/EPFL 23

Example: compiling C source code for NDS

#include <nds.h>
#include <stdio.h>
#define TRUE 1
#define FALSE 0

int main(void)
{

int i;
i = 5 * 2;
consoleDemoinit();
printf(“5 times 2 is %d.\n”, i);
printf(“TRUE is %d.\n”, TRUE);
printf(“FALSE is %d.\n”, FALSE);

}

Handled by the pre-processor

Handled by the compiler

Implemented in C
library for the target
platform (NDS)

©ESL/EPFL 24

Final packing process according to
microprogrammed embedded system I/O

1. Tool to pack binaries in 1 file (file.nds)
for NDS cartridge format: ndstool

● Headers
● Both executables

2. Additional tool to enables booting
from Slot2 (e.g., GameBoy Advance):
dsbuild

● Different headers
● Adds a loader

Field Start End Size
Game title 0x000 0x00B 12
Game code 0x00C 0x00F 4
Maker code 0x010 0x011 2
Unit code 0x012 0x012 1
Device code 0x013 0x013 1
Card size 0x014 0x014 1

Executables
(file.armX.elf) file.ndsndstool dsbuild file.ds.gba

... (39 fields)

©ESL/EPFL 25

Use of Git for Lab. Sessions and Project:
Introduction to Git

 Git is a version control system
 It allows us to keep track of changes in our software projects

 Key features
 History of projects developments
 Efficient multi-users working environment
 Traceability

©ESL/EPFL 26

Why using Git?

 Changes are efficiently tracked
 You don’t need to rename several files

to trace different (updated) versions

 Multiple developers can work in parallel
 Each one on his local environment
 Users see which files have been modified by other colleagues
 Only desired files from different users can be merged together

 Repository on cloud
 Local versions for current updates are stored locally
 The main repository is on the cloud
 No risk of loosing your work

Mandatory use for final NDS projects in EE-310 course!

©ESL/EPFL 27

How to install git repositories – Linux/Unix

 Install git - Native Ubuntu OS
 Install with:

− sudo apt-get update
− sudo apt-get install git

 Reference – other distributions
Git (git-scm.com)

 Check installation success with
− git –version
− (should return the number of the installed git version)

We strongly encourage you to use these commands
from Ubuntu in the virtual machine directly!

https://git-scm.com/download/linux

©ESL/EPFL 28

How to install git repositories – Mac OS

 Install git - Mac OS
 Already installed if you have Xcode package
 Install with:

− brew install git
 Reference

Git - Downloading Package (git-scm.com)

 Check installation success with
− git –version
− (should return the number of the installed git version)

https://git-scm.com/download/mac

©ESL/EPFL 29

How to install git repositories - Windows

 Install git - Windows PowerShell
− Power Shell environment for Git: posh-git module
− Check all required packages are already installed
− Install reference commands

Git - Git in PowerShell (git-scm.com)
 Download installer

Git - Downloading Package (git-scm.com)

 Check installation success with
− git –version
− (should return the number of the installed git version)

https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-PowerShell
https://git-scm.com/download/win

©ESL/EPFL 30

How to manage git repositories

 Main git commands
− git clone
− git status
− git fetch
− git pull
− git push
− git add /my_path/my_file_to_add
− git remove /my_path/my_file_to_add
− git commit –m “short description of commit goal”

©ESL/EPFL 31

NDS Git repository

 Our course’s repository is on EPFL GitLab:
https://gitlab.epfl.ch/syst-mes-embarqu-s-microprogramm-s1/practical-works

 All you need for the practical work sessions is there
 Instructions
 Source code
 Solutions (of previous week)

 Repo is updated every Friday after the lab session!
 Practical work of following week
 Solutions of current week

https://gitlab.epfl.ch/syst-mes-embarqu-s-microprogramm-s1/practical-works

©ESL/EPFL 32

Practical Work 2: Getting familiar with the
environment and starting with C for NDS

Eclipse
(our source code)

.c

Tool
Chain

.o

NDS Simulator
(DeSmuME) Final HW:NDS

Debugger
(DDD)

Target
architecture info.

.s

 Part A: First steps with the Virtual Machine for the NDS
 Use of VirtualBox: http://www.virtualbox.org

Development
PC

Virtual
Machine

http://www.virtualbox.org/

©ESL/EPFL 33

Practical Work 2: Getting familiar with the
environment and starting with C for NDS

 Part A: First steps with the Virtual Machine for the NDS
 Use of VirtualBox: http://www.virtualbox.org

Development
PC

Virtual Box

Current
environment

Virtual Box allows to
install new OS on top
of the current OS

+

Working
environment

http://www.virtualbox.org/

©ESL/EPFL 34

Practical Work 2: Getting familiar with the
environment and starting with C for NDS

 Part A: First steps with the Virtual Machine for the NDS
 Use of VirtualBox: http://www.virtualbox.org

 Part B: Getting in touch with C in the NDS: “Hello World”

NDS Simulator
(DeSmuME)

Development
PC

.c

Tool
Chain

.o

Final HW:NDS
Debugger
(GDB)

Target
architecture info.

.s

Eclipse
(our source code)

Virtual
Machine

http://www.virtualbox.org/

©ESL/EPFL 35

Practical Work 2: Getting familiar with the
environment and starting with C for NDS

 Part A: First steps with the Virtual Machine for the NDS
 Use of VirtualBox: http://www.virtualbox.org

 Part B: Getting in touch with C in the NDS: “Hello World”

Development
PC

.c

Tool
Chain

.o

NDS Simulator
(DeSmuME) Final HW:NDS

Debugger
(GDB)

Target
architecture info.

.s

Eclipse
(our source code)

Virtual
Machine

http://www.virtualbox.org/

©ESL/EPFL 36

Development
PC

.c

Tool
Chain

.o

NDS Simulator
(DeSmuME) Final HW:NDS

Debugger
(GDB)

Target
architecture info.

.s

Eclipse
(our source code)

Virtual
Machine

Practical Work 2: Getting familiar with the
environment and starting with C for NDS

 Part A: First steps with the Virtual Machine for the NDS
 Use of VirtualBox: http://www.virtualbox.org

 Part B: Getting in touch with C in the NDS: “Hello World”

http://www.virtualbox.org/

©ESL/EPFL 37

Practical Work 2: Getting familiar with the
environment and starting with C for NDS

Eclipse
(our source code)

.c

Tool
Chain

.o

NDS Simulator
(DeSmuME) Final HW:NDS

Debugger
(GDB)

Target
architecture info.

.s

 Part A: First steps with the Virtual Machine for the NDS
 Use of VirtualBox: http://www.virtualbox.org

 Part B: Getting in touch with C in the NDS: “Hello World”

Development
PC

Virtual
Machine

http://www.virtualbox.org/

©ESL/EPFL 38

Practical Work 2: Getting familiar with the
environment and starting with C for NDS

 Part A: First steps with the Virtual Machine for the NDS
 Use of VirtualBox: http://www.virtualbox.org

 Part B: Getting in touch with C in the NDS: “Hello World”
 Additional exercises
 Exercise 1: Use of printf(). Change the ¨Hello world¨ message by

another one
 Exercise 2: Find the maximum, the minimum, and the average

among the values of a pre-initialized array of integers.
 Exercise 3: For a given integer n find the factorial (n!) with an

iterative function and/or an recursive one.
 Exercise 4: Given 2 integer numbers, find their Greatest Common

Divisor (GCD).

http://www.virtualbox.org/

©ESL/EPFL 39

Practical Work 3: Advanced
C Programming on the Nintendo DS

 Exercises (and homework)
 Exercise 1 – Separating function prototypes from implementations
 Exercise 2 – Displaying matrices on NDS console
 Exercise 3 – Initialization of matrices
 Exercise 4 – Summation of arrays and matrices
 Exercise 5 – Vector sorting
 Exercise 6 – Matrices multiplication
 *Exercise 7 – Run-time resources errors on the NDS
 *Exercise 8 – Managing the different types of memory resources

in the NDS
 *Exercise 9 – Allocating/deallocating memory
 *Exercise 10 – Understanding how arguments are passed

between NDS functions
* Data management for the NDS

©ESL/EPFL 40

Questions?

Let’s create our first
program for NDS

	Systèmes Embarqués Microprogrammés
	Content of Session
	What has changed in “embedded Systems”?
	Key area for the evolution: �increase of automotive electronics
	Automotive electronics market size
	Latest automotive electronics: complex set� of microprogrammed embedded systems
	Slide Number 7
	1st new key component) IMAGE�Mobile graphics enable games, videos...
	2nd new key component) COMMUNICATION First in automotive applications!
	But also in “traditional” consumer/home applications…
	3rd new key component) I/O VERSATILITY Multiple types of I/O interfaces are needed
	What has changed in “embedded Systems”?
	Hardware Architectures of microprogrammed embedded systems
	NDS processing and I/O management
	Nintendo DS detailed memory map
	SW side: controlling/programming microprogrammed embedded systems
	Java and C: trendiest languages for microprogrammed embedded systems
	Cross-development for microprogrammed embedded systems
	Cross-toolchain for microprogrammed embedded systems based on C language
	NDS: System co-design framework for cross-development with C language
	C-Based cross-compilation flow for Nintendo DS: 2 processors – 2 flows
	Seeking compatibility in compilation for microprogrammed embedded systems
	Example: compiling C source code for NDS
	Final packing process according to microprogrammed embedded system I/O
	Use of Git for Lab. Sessions and Project:�Introduction to Git
	Why using Git?
	How to install git repositories – Linux/Unix
	How to install git repositories – Mac OS
	How to install git repositories - Windows
	How to manage git repositories
	NDS Git repository
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 3: Advanced C Programming on the Nintendo DS
	Slide Number 40

