=PrFL

Topic 1:
Introduction to Microprogrammed
Embedded Systems

Systemes Embarquées Microprogrammeés

©ESL/EPFL Prof. David Atienza Alonso, SEL-STI 1

=PrL Content of Session

= Microprogrammed Embedded Systems: what, why and when
= Comparisons with traditional embedded systems
= Main application fields and design constraints
= System-level architectures: hardware and software
= (C-based cross-development frameworks

= Case study: Nintendo DS (NDS) Lite
= Hardware architecture
= Software design: C-based cross-compilation flow
= Practical work 2: C programming on the Nintendo DS
= Practical Work 3: Advanced C Programming on the Nintendo DS

©ESL/EPFL 2

=P~L What has changed in “embedded Systems”?

= Definition of (traditional) embedded system:

= Required functionality features: ARMS

= Required design constraints:

©ESL/EPFL

Computer system designed to perform one (or few)
dedicated functions, often with limited computation

,HII|IIII|IIII||III‘IIII\IIH\H
o 1 2 3

complexity, but real-time computing constraints. ASICs or simple
It is part of a complete device typically microcontrollers
including hardware and mechanical parts. (8- or 16-bit PICs)

Availability A(t)= probability system working at time t
Reliability R(t) = probability system working correctly at time
Maintainability M(d) = probability of system working
correctly d time units after an error occurred.

Safety = no harm to be caused

Small size, but low cost (large production volume) & '
Low power use, minimum set of HW possible

What is “automotive electronics™?
Vehicle functions implemented
with embedded systems

Body electronics

System electronics: chassis,
engine
Information/entertainment

©® Automotive Electronics Through the Years

© Navigation systems using vehicle

Information information and communication buses
® Antillo-:k © Four-wheel drive
- braking system i
Chassis g Sy . © Four-wheel steerl.nq .
© Suspension) © Distance interval
@ Power steering control systems
) © Electronically controlled © Electronic combustion control
Engine @ Electronic ignition timing advance © Electronic valve timing control
@ Electronic fuel injection @ Per-cylinder knock control
© Automatic
Body ® Intermittent wipers air-conditioning control ® Keyless entry
@ Drive computer
1960 1970 1980 1990 2000 4

©ESL/EPFL Source: Shoichi Washino, "Present and Future Trends in Automotive Electronics," Mitsubishi Electric Advance, Vol. 78, no. 1

=PrL Automotive electronics market size

Cost of Electronics / Car ($)

1400

B l

1000
800 2011: The cost of silicon in
600 a car is higher than the cost
400 of steel [EEtlmes]
200 ~

0 —

1998 1999 2000 2001 2002 2003 2004 2005

Market o9 105 131 141 158 174 193 21.0
($billions)

70% of future innovations in our vehicles will be only possible
through improvements of the embedded electronic systems

©ESL/EPFL 5

Latest automotive electronics: complex set
of microprogrammed embedded systems

=PrFL

Digital radio
Vehicle computer
f

MOST
e

Window lift
Universal light

| ’___‘______,er > - '
- A0S
2® 9, \
M
Instruments Heating Wiper 7
(] - 2 Window
Add|t|onal | M M, | heating |
e m—m interior (EE =
Drive tral I|ght — | LIN Trunk =

' S, ' = GPS
Climate g LIN M : Heatlng -

EeRaE B Rl : 3 .
i Seat M M ; _m

OIS Light _ .
' iy ,_,‘-'* ' || = = = Heating SERNEPT ’
Steerlng wheel ! L Av—_ i —— A —

panel . TN b

Lock == Vi Universal motor

promme T e JE9— Universal panel
CAN Controller area network)
GPS Global Positioning System Latest BMWs contain more than
GSM Global System for Mobile Communications .
LIN Local interconnect network 150 embedded microprocessors

MOST Media-oriented systems transport
Source: Expanding automotive electronic systems, IEEE Computer, Jan. 2010

©ESL/EPFL 6

Latest market: digital convergence,
the “smart” mobile example

Entertaihment
""'Whlch are the main new components of these
microprogrammed embedded systems?

== l =
L\> Telematics

= One device, multiple functions
= Center of ubiquitous media and social networks
= Smart mobiles: next drive for semiconductor. Industry

J

Imaglng

©ESL/EPFL

1t new key component) IMAGE
Mobile graphics enable games, videos...

* Resolution started with ~176x208 (2001)
« In Japan, QVGA (320x240) is the m|n|mum now
» Nokia series 90 is 640x320
* iPhone4 is 960x640

Millions of units
Jon Peddie Research
Handheld Multimedia Devices report
\
—|E2 MM phones H
I Non 3D MM phones -
Native APl based phones

|

Less than VGA first,
but almost 1024x768
already here, this has
made the market grow

i i New applications and
]| ‘ services

8

©ESL/EPFL

=pr1 2" new key component) COMMUNICATION
=Pr-L
First in automotive applications!

Biometrics 100 GB HD _
A Y
e o e =,
i 7 fM | '
e | h.

Car Multimedia

Autosar Enabled Digital

Audio/Video

Gamrw T uw O
.
a i
1

Eluetomh
Fuel Cell
@ Technology
o ayi
Gas Station/Garage
Digital Content —

=8 Audio/Local Info Fault Tolerant Network
Car Servicing Data Chassis Control

Drive-by-Wire

.Ii _

ICeIIF"h one

NFC i/ RFID
Automated
Car Toll

“At least 9 out of 12 of new planed subsystems for next-generation
cars need networks of microprogrammed embedded systems”

[Toyota-ARM10] 9

©ESL/EPFL

cpe| But also in “traditional” consumer/home
lications...

Smart Cards for
protected content

1 billion fransistor chips
ARM11 MPcore 1GHz CPU
HOTV 1080p / 7201

H.264 & VC1 Video

T B) = Dolby Digital 5.1
“22% of all TVs shipped worldwide in 2010 were Network-enabled;

25M units in 2010 and 122M expected in 2014 (approximately 75%)”
[TechNews, Dec. 2010] 10

©ESL/EPFL

=pr| 3" new key component) /0 VERSATILITY
Multiple types of I/O interfaces are needed

= Traditionally, none or just keyboards and command-line

“l see no advantage whatsoever to a graphical user
- interface (GUI)” B. Gates — Microsoft, 1983

T T

8
| MICRSSOFT.

= Jan. 24, 1984, 1st Macintosh: a mouse and a
GUI for the first individual computer

= Dec. 1996: “Mobile phone vendors and entertainment
providers will turn to a virtual multi-IO display-based
smart phone to offer powerful new services, and
differentiate themselves from competitors.” [Reflection Tech., Inc]

NNNNNNNN

‘ .) ., ’ \;f%ﬂ.";;\:\. iPhone, Nintendo 3
Nokia 7710, 2003-04 N T RE\N | o) ’
okia 7710, 2003-0 Ul X Jun. 2007 Feb. 26,2011

YCEOL/EFrL

http://www.youtube.com/watch?v=XKBWrGQ6YAI&feature=related

=P~L What has changed in “embedded Systems”?

= Definition of microprogrammed embedded system:

= Computer system designed to perform a domain-specific set of
functions (including video, communication and large set of I/0O
devices), but with limited computation and soft real-time
constraints. It is a portable device that includes hardware,
software and mechanical parts.

= ARMS functionality features important, but not essential
= No lives really at risk, only customers unhappiness...
= Not general purpose computing! Still required embedded design
constraints not to lose the market -6
= Small size/weight, lower cost possible (medium production vol.)
= Low power integration is the most important constraint:
1. HW: minimum set of components for target functionality
2. SW: efficient use of components in different application domains

“Current 3G phones can hardly be operated nowadays for more than

an hour, if data is really being transmitted” [Financial Times, 2010]

©ESL/EPFL 12

http://www.youtube.com/watch?v=XKBWrGQ6YAI&feature=related

cpre| Hardware Architectures of
=LELE microprogrammed embedded systems

= Four fundamental hardware components

1. Central Processing unit/s (CPUs): 32-bit
Reduced Instruction Set Computers (RISC)

2. Memory hierarchy: 1-2 level of cache, fast and
main memories, and external solid-state memories

3. Interconnects: One or more multiple buses
(different number of bit widths or speeds)

4. 1/0O devices: Multiple, custom set per domain

= NDS Lite architecture il

|
BIOS2
- 2 CPUs: ARM9 and ARM7 /0 1 3 L CPU2 | BIOS 1 |
= D-/I-Cache, 4MB main mem., 656KB — T p O
of VRAM. two 16KB fast RAM /O 2 BIOS3

= 17 16-bit and eight 32-bit buses S

= 1 TFT LCDs, 1 TFT touch-screen, 8 /0 3 CPU3
buttons, 4-direction pad, microphone,
speaker, Wifi and GBA cart-based
flash card, ...

(IJI->;UI'I'II'U—;UITI'UB

SW-based and video
Memories

©ESL/EPFL 13

=PrL NDS processing and I/O management

= Two asymmetric 32-bit Advanced RISC Microprocessors (ARM) cores

* ARM 946E-S: user software processing and main I/O peripherals
- ARM 7TDMI-S: dedicated I/O support (sound, wifi and specific keys)

H

ARM9
(66 MHz)

(33 MHz)

Select, Start
keys
GBA Flash
14

Screen
open-close Fast memory

©ESL/EPFL

=PrFL

Nintendo DS detailed memory map

= Complex mem. Hierarchy, and interconnects widths for each 1/O peripheral
* ARM9 SW-controlled memories: D-/I- tightly coupled memories (TCMs)

» Shared memories between both processors: WRAM 0-1

- Several video-related memories (VRAM, Palette and OAM RAM)

©ESL/EPFL

ARM9
(Data TCM } [Inst. TCM } ARM7
16 KB 16 KB
$ E3 CPU Core
[CPU Core] c 1 1 N
Interface Unit
(Data%ache} [Inst.%ache] WRAM
a5 B8 [WRAMO (16 KB)])
| (Interface Unit)) [T (16 KB)] :T
= h - 0 WRAM (64 KB)
OAM RAM 5 ARM9 BIOS ARM?7 BIOS 3
2 z
Palette RAM (<))
E « Memory Interface
< J ~_
~_ — /E_X —
(Ma'"4'|‘\"n;m°'y) 3 (VRAM A (128KB))
. >
Nintendo DS el (vRam C(128KB)) l
. E (VRAM D (128KB))
Memory Architecture | & (VRAWE(6aKe))
~_~ (VRAMF(16KB))
(VRAMG (16KB))
(VRAMH (32KB))
(VRAMI(16KB)) 15

SW side: controlling/programming
microprogrammed embedded systems

=PrFL

= Multiple levels of abstraction possible, the choice depends on required I/O
efficiency and complexity in general of embedded system validation

Abstraction MCS-48 (8048, 8035, 8748) [Intel Corp., 1976]
level , " (8-bit architecture, 64-128B RAM, 1MHz)
- Low level = Assembly Language, each line is a minimum fundamental
operation to be done by microcontroller/microprocessor

PIC16x84 families [Microchip, 1993]
(14-bit architectures, 512B-2.5KB RAM, up to 20MHz)

High-level abstraction languages

V1967 BCPL Martin Richards ~ Cambridge

V1969 B Ken Thomson Bell Labs

V1972 C Dennis Ritchie Bell Labs
+ _; 1983 C++ Bjarne Stroustrup Bell Labs

OESL/EPFL 1995 Java James Gosling Sun 16

=PrFL

Java and C: trendiest languages for
microprogrammed embedded systems

= Very different objectives, but both have found their reason to be there
» Java: most retargettable solution (Virtual machine), interpreted language
« C: closest to HW language, very optimized compilation technology

C

Java

C++

PHP
JavaScript
Python

C#

Perl

SQL

Ruby

Shell

Visual Basic
Assembly
Actionscript
Objective C
Lisp

Delphi
Pascal
Scheme
Haskell

Tclj™l
Adal |
Lua =i

Fartran
ColdFusion

Cobol} |

Erlang
D

Scalal]
Smalltalk ||
OCaml}|

Forth
Rexx

N
0.

“For infrastructure technology, C will be
hard to displace” [Dennis Ritchie, 1972]

“Java will be the next wave in computing: no
worries about portability” [James A. Gosling, 1995]

Source: http://lwww.langpop.com/

(.
\

SN

0.20 0.40 0.60

-\

\
U

' 275

Maormalized fraction of total hits (%)

- 5
m = =] 1 o
o in o n o

=
m B

25

Tiobe Programming Community Index

Time

—.Java == C++ ~—PHP (visual) Basic —— JavaScript
= C = Python c# Objective-C == Perl

Source: http://www.tiobe.com/

Cross-development for microprogrammed
embedded systems

= Microprogrammed embedded systems are devices with
limited resources, and are typically not powerful enough to
run a compiler, a file system or a development environment

= Cross development is the separation of the system build
environment from the target environment

= Benefits
= Faster compilation of applications

= Debugging and testing with more resources than available on target
embedded system

©ESL/EPFL 18

cpr| Cross-toolchain for microprogrammed
e embedded systems based on C language

- The complete flow to generate the final binary for the target
platform and its validation for the target microprogrammed
embedded systems requires a cross-compilation toolchain

 ltis a set of tools running on a host machine, used to
Pre-process header files (#include) and macros (#define) and
Compile high-level source code (.c) the target object code (.0)

— Possible to get assembly output as intermediate step (.S)

Link pre-existing collections or libraries of object files (.0) to obtain a
final executable object (.elf) with all the necessary object code

Pack and format the executable object into a format that can run with
the target memory hierarchy and 1/O subsystem (.nds)

©ESL/EPFL 19

cpe| NDS: System co-design framework for
cross-development with C language

— Target 5
\ architecture info.
.S

Tool

: Chain
Favourite editor

(our source code)

Development
PC
Debugger Target HW DeIOp. boar
Simulator or finalHW =
SOFTWARE PART HARDWARE PART

20

©ESL/EPFL

E files.c

\ 4

ARM7
compiler

I

ource code

C-Based cross-compilation flow for
Nintendo DS: 2 processors — 2 flows

ARMY7

arm-eabi-gcc

a

p

ARM9 E

files.c

source code

\ 4

ARM9
compiler

arm-eabi-Id

+ ARM9
object code

ARM7
object code

arm-eabi-objcopy

-~
S

file.arm?7 .elf H

ARMY7 executable

NDS Builder é{ file.arm9.elf
ARM9 executable

file.nds o1

©ESL/EPFL

Seeking compatibility in compilation for
microprogrammed embedded systems

Source [files.c ﬁj
code

. Two separated phases
1. Source code is easy to migrate

\ 4

Standard source language ,
arm-eabi-gcc

(e.g., ANSI C)
ANSIC
Standard multi-platform libraries _ p *
(e.g., stdio, stdlib, etc.) Machine L)
dependent Object fles.o

2. Object code is not portable, not code
even among compilers for the

same architecture

Object
code

_ _ arm-eabi-Id
Third-party object code linked in | lPraries
platform-dependent phase, e.g.: Executable v)
- libnds (platform file.elf
_ dswifi dependent) -
- PAIib

©ESL/EPFL 22

=Pi-L Example: compiling C source code for NDS

#include <nds.h>

#include <stdio.h> Handled by the pre-processor
#define TRUE 1

int main (void)

{
Handled by the compiler

int 1i;

i=5*2;

consoleDemoinit () ; Implemented in C

printf (5 times 2 is %d.\n”, 1i); library for the target

printf (“TRUE is %d.\n”, TRUE) ; olatform (NDS)
“FALSE is %d.\n”, FALSE) ;

LI y

©ESL/EPFL

23

Final packing process according to
microprogrammed embedded system 1/O

1. Tool to pack binaries in 1 file (file.nds)
for NDS cartridge format: ndstool

d Start End Size

Headers
Both executables Game title Ox000 0x00B 12
Game code 0x00C O0xO00F
2. Additional tool to enables booting Maker code 0x010 0x011
from Slot2 (e.g., GameBoy Advance):
dsbuild Unit code 0x012 0x012
Different headers Device code 0x013 0x013
Adds a loader Cardsize 0x014 0x014

F

; (39 fields)

@'ﬁfﬁﬁfﬁ'ﬁﬁ) ndstool P{ file.nds]) dsbuild M file.ds.gba }

24

©ESL/EPFL

cpr| Use of Git for Lab. S.essmns.and Project:
Introduction to Git

= Gitis a version control system
= |t allows us to keep track of changes in our software projects

= Key features
= History of projects developments
= Efficient multi-users working environment
= Traceability

git

25

©ESL/EPFL

=PrL Why using Git?

= Changes are efficiently tracked

You don’t need to rename several files
to trace different (updated) versions

= Multiple developers can work in parallel
Each one on his local environment
Users see which files have been modified by other colleagues
Only desired files from different users can be merged together

= Repository on cloud
Local versions for current updates are stored locally
The main repository is on the cloud
No risk of loosing your work

Mandatory use for final NDS projects in EE-310 course!

©ESL/EPFL

26

=PrL How to install git repositories — Linux/Unix

= [nstall git - Native Ubuntu OS

= |nstall with:
sudo apt-get update
sudo apt-get install git

= Reference — other distributions
Git (qgit-scm.com)

= Check installation success with
git —version
(should return the number of the installed git version)

We strongly encourage you to use these commands
from Ubuntu in the virtual machine directly!

27

©ESL/EPFL

https://git-scm.com/download/linux

=Pr~L How to install git repositories — Mac OS

= |nstall git - Mac OS

= Already installed if you have Xcode package
= |nstall with:
brew install git

= Reference
Git - Downloading Packaqge (qit-scm.com)

= Check installation success with
git —version
(should return the number of the installed git version)

28

©ESL/EPFL

https://git-scm.com/download/mac

=PrL How to install git repositories - Windows

= [nstall git - Windows PowerShell

Power Shell environment for Git: posh-git module
Check all required packages are already installed

Install reference commands
Git - Git in PowerShell (qgit-scm.com)

= Download installer
Git - Downloading Package (qit-scm.com)

= Check installation success with
git —version
(should return the number of the installed git version)

©ESL/EPFL 29

https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-PowerShell
https://git-scm.com/download/win

=PrL How to manage git repositories

= Main git commands
git clone
git status
git fetch
git pull
git push
git add /my_path/my_file_to_add
git remove /my_path/my_file_to_add
git commit —-m “short description of commit goal”

30

©ESL/EPFL

=PrL NDS Git repository

= Qur course’s repository is on EPFL GitLab:
https://gitlab.epfl.ch/syst-mes-embarqu-s-microprogramm-s1/practical-works

= All you need for the practical work sessions is there
= Instructions
= Source code
= Solutions (of previous week)

= Repo is updated every Friday after the lab session!
= Practical work of following week
= Solutions of current week

31

©ESL/EPFL

https://gitlab.epfl.ch/syst-mes-embarqu-s-microprogramm-s1/practical-works

cpr| Practical Work 2: Getting familiar with the
LB environment and starting with C for NDS

= Part A: First steps with the Virtual Machine for the NDS

= Use of VirtualBox: http://www.virtualbox.org

J > C Target
— architecture info.

: Chain
Eclipse
(our source code)

/—.O

Development Virtual T
PC Machine /S E_ ”
\ CeETTae NDS Simulator Ese
(DDD) (DeSmuME) Final HW:NDS NS

32

©ESL/EPFL

http://www.virtualbox.org/

=p Practical Work 2: Getting familiar with the
= environment and starting with C for NDS

= Part A: First steps with the Virtual Machine for the NDS

= Use of VirtualBox: http://www.virtualbox.org

11

Development Virtual Box
PC :

Current | Virtual Box allows to Working
environment install new OS on top environment
of the current OS

33

©ESL/EPFL

http://www.virtualbox.org/

cpr| Practical Work 2: Getting familiar with the
LB environment and starting with C for NDS

= Part A: First steps with the Virtual Machine for the NDS

= Use of VirtualBox: http://www.virtualbox.org

= Part B: Getting in touch with C in the NDS: “Hello World”

o c Target

archit“e info.
\ s

Tool
Chain

Eclipse
(our source code)

/ . = .0 \
— __,Jk : A
\MaChine 1 ”.i
e tor
X .E)

(GDB)

=

Development Virtual
PC

Final HW:NDS E

©ESL/EPFL

http://www.virtualbox.org/

cpr| Practical Work 2: Getting familiar with the
LB environment and starting with C for NDS

= Part A: First steps with the Virtual Machine for the NDS

Use of VirtualBox: http://www.virtualbox.org

= Part B: Getting in touch with C in the NDS: “Hello World”

sinclude s 1
‘sinclude <stdlo b

int main(void) (

consolepenotnit();

print(“\irello Worlawn');

white() {
swibitForiBlank();

200 C/C++ - Template_armd/source/main.c - Eclipse
arch Project Run Window Help

File Edit Source Refactor Naviga

1)
riv & |AY®Y [YOy [&S A vy AeE@B | Hvive ey I 35Debug FEC/ICH
& % Naviga 28 [sProject| = O||[g) maine 53 =8
e
= osers @ 2] G 5 S 50 91 = 2
e e e Ty e vy = & Template_amo) 3 Basic tenplate code for starting a DS aop
v ¥ g Tenglate e e arnkencoders con” + & metadata 3
Hinterdo 05 ron tool 140 - hor 13 2669
by Rafoel W, Dove Hughy, Alese Karpenko + @ settings 5 e .
Bt . Teslate ared. s - /
e # & build 5#include <nds.n>
+ & source 7#include <stdio.h>
'] 2 cdtproject 8
Eclipse it waieiay ¢
B project 19int main(void) {
[core.13134 1
 Makefilz 12
our sour‘ [Template_arm9.am9 13 consoleDemoInit();
[& Template_arm9.elf 14 printf("\nHello World\n");
2 Template_armg.nds 15 whﬂe(}) {
16 swiWaitForVBlank();
17 }
18}
19
D lopment i
eve o p e VI rtu al [Problems | £ Tasks | & Console % . [Properties | 35 Debug| 9] Emor Log $ o EEE # By =0
C-Build [Template_am9
NUSLUUT ~C 7110/ dUNLLIT7 T LUES/WOT KSPALE T€MI0Ld Le_dTy/ TENp e d Ty, 1IUs -3 710N/ dUNLIT/ T LLES/WOT KSPdLE/ TeNpLate_dTiny/ T2 td e diny.arny =

b /opt/devkitPro/1idbnds/icon.bmp "Template arm9;www.devkitpro.org;www.drunkencoders.con"
Nintendo DS rom tool 1.40 - Apr 13 2609

by Rafael Vuijk, Dave Murphy, Alexei Karpenko

built ... Template_arm9.nds

PC Machine

Witable Smart Insert

Debugger = el
(GDB)

©ESL/EPFL

http://www.virtualbox.org/

=PrFL

= Part A: First steps with the Virtual M >
Use of VirtualBox: http://www.virtualbox
= Part B: Getting in touch with C in the d”

Eclipse
(our source code)

o T
Development Virtual &
PC \Machine
Debugger
J9€ |/ (DesSmuME)

(GDB)

©ESL/EPFL

http://www.virtualbox.org/

cpr| Practical Work 2: Getting familiar with the
B environment and starting with C for NDS

= Part A: First steps with the Virtual Machine for the NDS

= Use of VirtualBox: http://www.virtualbox.orqg
- llo World”

riv @ | BrOvQy | ®E Y fv T #xDebug FC/C++
[8 main.c % = O ! Registers 32 < [{ ¥ = O = Disassembly & =8 .
;/* """ A s 21U [Enter locationhere |+ | & (&) 7| %
- it Main - B
3 Basic template code for starting a DS app 0 10 13 consoleDemoInit(); +
1 P ! - 2 02000384: bl 0x2080a90 <console a rge
P 1 % 7 || e 14 printf("\nHello Wor l

02000388: 1dr r3, [pc, #12]
0200038a: adds r0, r3, #0

6#include <nds.h>

r3 | 33555329
7#include <stdio.h>

r4 | 184549376

archite info.

omeEs

3 0200038c: bl ©x20044ec <puts>
7 2 B 50 16 swiWaitFo r\(Bl;n
10int main(void) { si]0 02000390: bl 0x20035ec <swiWait .s
S 1 2 A 70 02000394: b.n ©x2000399 <main+l
12 | 02000396: nop (mov r8, r8)
+13 consoleDemoInit();| "o 02000398: ldrh ro, [r6, #8]
14 printf("\nHello World\n"); ey & : 020003%: 1sls ro, ro, #8
15 while(1) { il . consoleGetDefault:
1? } swiWaitForVBlank(); No details to disolav for the current ggggg;g; 't:rlll:ﬁ, [pc, #0]
18} = Variables 52 =0| 020003a0: ldmia.w r12, {r9}
19 Py _ || 020003bc: mov rl2, r3
Ak 020003be: ldr r1, [r3, #40]
Name Value 020003c0: mov r@, rl2
020003c2: ldr r2, [r0, #72]
N 020003c8: cmp r3, r2
45 Debug & » 2 a W v =0 020003ca: blt.n ©x200043a <newR
020003cc: strorl, [r0, #40]
- [c] Template_arm9.elf [C/C++ Application] 020003ce: cmp r2, #1
- §® gdbserver (2/22/11 5:21 PM) (Suspended) 020003d0: ble.n 0x2000442 <newR
= o Thread [0] (Suspended) 020003d2: movs r3, #0
= Lmain() inffi plate_ e/main.c:13 0x02000384 020003d4: subs r2, #1
- + fopt/devkitPro/devkitARM bin/arm-eabi-gdb (2/22/11 5:21 PM) .|| 020003d6: ldr r7, [0, #68]
i /homej/adminffiles/workspace/Template_arm9/Template_arm9.elf (2/22/11 5:21 PM) 020003d8: mov r8, r3

020003da: mov rl0, r2
020003f6: movs rl, #9
AINAAAAE - movs rf. #1 v

Develo
P(-

NDS Simulator
DeSmuME) Final HW:NDS

Debugger
(GDB)

©ESL/EPFL

http://www.virtualbox.org/

cpr| Practical Work 2: Getting familiar with the
LB environment and starting with C for NDS

= Part A: First steps with the Virtual Machine for the NDS

= Use of VirtualBox: http://www.virtualbox.org

= Part B: Getting in touch with C in the NDS: “Hello World”

= Additional exercises

= Exercise 1: Use of printf(). Change the Hello world ™ message by
another one

= Exercise 2: Find the maximum, the minimum, and the average
among the values of a pre-initialized array of integers.

= Exercise 3: For a given integer n find the factorial (n/) with an
iterative function and/or an recursive one.

= Exercise 4: Given 2 integer numbers, find their Greatest Common
Divisor (GCD).

38

©ESL/EPFL

http://www.virtualbox.org/

Practical Work 3: Advanced
C Programming on the Nintendo DS

=PrFL

= Exercises (and homework)
= Exercise 1 — Separating function prototypes from implementations
= Exercise 2 — Displaying matrices on NDS console
= Exercise 3 — Initialization of matrices
= Exercise 4 — Summation of arrays and matrices
= Exercise 5 — Vector sorting
= Exercise 6 — Matrices multiplication
= *Exercise 7 — Run-time resources errors on the NDS

= *Exercise 8 — Managing the different types of memory resources
in the NDS

= *Exercise 9 — Allocating/deallocating memory

= *Exercise 10 — Understanding how arguments are passed
between NDS functions

* Data management for the NDS

©ESL/EPFL 39

Questions? %

Let’s create our first
program for NDS

40

EEEEEEEEE

	Systèmes Embarqués Microprogrammés
	Content of Session
	What has changed in “embedded Systems”?
	Key area for the evolution: �increase of automotive electronics
	Automotive electronics market size
	Latest automotive electronics: complex set� of microprogrammed embedded systems
	Slide Number 7
	1st new key component) IMAGE�Mobile graphics enable games, videos...
	2nd new key component) COMMUNICATION First in automotive applications!
	But also in “traditional” consumer/home applications…
	3rd new key component) I/O VERSATILITY Multiple types of I/O interfaces are needed
	What has changed in “embedded Systems”?
	Hardware Architectures of microprogrammed embedded systems
	NDS processing and I/O management
	Nintendo DS detailed memory map
	SW side: controlling/programming microprogrammed embedded systems
	Java and C: trendiest languages for microprogrammed embedded systems
	Cross-development for microprogrammed embedded systems
	Cross-toolchain for microprogrammed embedded systems based on C language
	NDS: System co-design framework for cross-development with C language
	C-Based cross-compilation flow for Nintendo DS: 2 processors – 2 flows
	Seeking compatibility in compilation for microprogrammed embedded systems
	Example: compiling C source code for NDS
	Final packing process according to microprogrammed embedded system I/O
	Use of Git for Lab. Sessions and Project:�Introduction to Git
	Why using Git?
	How to install git repositories – Linux/Unix
	How to install git repositories – Mac OS
	How to install git repositories - Windows
	How to manage git repositories
	NDS Git repository
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 2: Getting familiar with the environment and starting with C for NDS
	Practical Work 3: Advanced C Programming on the Nintendo DS
	Slide Number 40

