=P wsLABORATORY

&

Topic 3:
I/O and Peripheral Devices Management

Systemes Embarqués Microprogrammes

Prof. David Atienza Alonso, SEL-STI 1

=P-L Content of Session

= Types of I/O and peripheral management
= /O interfaces and required management operations
= Synchronization between I/O devices and microprocessors’ CPUs
= Prioritizing multiple interrupt sources: multi-level interrupts handling

=]/O management for ARM architectures
= 1/O peripheral subsystem in ARM microprocessors
= Management of timers in the NDS using the libnds library

= Use of timers and screen together in the NDS:
designing a chronometer game

©ESL/EPFL

=P~L 1/0 and peripheral management on the NDS

= Two 32-bit ARM cores manage the I/O and peripherals
= ARM 946E-S: most of the keys, LCD TFT, GBA flash
= ARM 7TDMI-S: sound, wifi, touchscreen, screen open-close and X-Ykeys

LCD TFT

Select, Start
keys
Screen

open-close GBA Flash

©ESL/EPFL

rpr- Interface to 1/O subsystem and
=P-L . . .
design considerations

=]/O subsystem enables the interaction of the CPU with the “external” world
iIn Von-Neumann and Harvard computing architectures

= Access through a bus (shared medium) to connect variable number of peripherals

= Three main design considerations
= Request and transfer of operation and command/data with the CPU
= Synchronization of component status (being utilized, ready or not)
= Prioritize handling from different peripherals that request concurrent transfers

MEMORIES

©ESL/EPFL

~nr=; Basic functionality needed in I/O peripheral
=P-L
to process request from CPU

= Addressing: selection of 1/0 device for the microprocessor to do the transfer

= Transfer: data communication between microprocessor and peripheral

= Type of data transfer
Read: microprocessor « peripheral
Write: microprocessor — peripheral

= Conversions between data formats
Electrical levels (TTL: 1 > 2.0V; 0 < 0.8V; RS-232-C: 1 <-3.0V; 0 > +3.0V)
Coding conversion (e.g., ASCII-Binary, float and double, etc.)
Serial-parallel vs. parallel-serial conversion
Analog-digital vs. digital-analog conversion

= Synchronization: transfer control mechanism for the microprocessor to know
= If the peripheral is ready to receive and send data
= |f the peripheral has finished a transfer and it is ready to receive a new one

©ESL/EPFL

~pr; Implementation of 1/O peripheral functionality:
=P-L
Interfaces, drivers and libraries

= Peripherals are always connected with the microprocessor through a
hardware interface (= hardware controller = adapter = 1/O card)

= Translation of CPU orders to the peripheral

= Software driver: defines the set of basic operations and configuration
operations of the hardware interface (e.g., read(), write(), etc.)

= Reads/Writes in a set of registers of the hardware interface

= Function library: set of high-level operations where each operation needs
to call a group of basic operations of the driver (e.g., printf())

CPU

(

Example

—\

CPU <:Zj>

system

HARDWARE j [
INTERFACE _
Direct

or I/O
BUS

connection

/

/

PERIPHERAL

©ESL/EPFL

CPU Orders (SW driver) »> HW interface
Read N bytes starting from
Surface S
Cylinder C
Sector T
Orders HW Interface — peripheral
Position heads in cylinder C
Position heads in sector T
Select head of surface S
Read N bytes
Remove heads

=Pr-L Structure of the 1/0O Interface

i i CPU Systerm INTEREFACE
= Communication from CPU to or I/0 bus

peripheral requires four interface
. == Conttol Reg. > P»ICONTROL

registers: ADDRESS—
1. Output data register | StatusReg. 4= & STATUS

Used by CPU to write data to be sent DATA[€= _[owmudaE]
2. Input data register Register

Used by peripheral to write data to be |CONTROL[====P inoui data ' PATA

< P -

returned to the CPU Register

3. Status register Comunication > < Comunication
- Read by CPU to know peripheral status CPU-Interface Interface-peripheral

Device ready/not; Data reg. full/empty; Transfer done/not

4. Control register

- Writen by the CPU to transmit orders to the peripheral , _
Word Addr. Memory order (Little-Endian)

ERA;M: _rea.d/twr:e N ?yte.s " rc;w R.’ column C t 00000000 | Byte 3| Byte 2| Byte 1 | Byte 0
rinters: print character, jump line, jump page, etc. 00000004 | Bvte

~—

= Two OptiOﬂS to access them: Input/output data register

= Access using memory addresses: memory-mapped addresses
peripherals (ARM)

= Special assembly instructions (x86) Z
OESL/EPEL (1GB) FFFFFFFC | |

cPrL Synchronization I/O device and CPU

= Mechanism required each time the CPU wants to send/receive data
to/from a peripheral in order to ensure that the device is ready to perform

the transfer

= Two basic mechanisms for I/O subystem syncronization
= Programmed I/O with active waiting response

= |/O interrupts

Exceptions are high-priority interrupts in ARM processors
(typically due to hardware errors or unexpected external system events)

©ESL/EPFL

cpEL Synchronization 1/O device and CPU:
Programmed 1I/O with active waiting response

= Use of aloop in the CPU each time it wants to perform a transfer

= Check continously in software the status of the peripheral until it becomes
ready to perform the I/O transfer

» Read status register
= Problems !

| y Exami bi
= The CPU does not do useful work during the waiting loop xamine status bits

- Slow peripherals make the loop repeat thousands of times
PErip PTep NO_—~Periphera
‘ ready ?

= Program execution is stopped during I/O operations

- E.g., in a videogame it is not possible to stop the game YES
dynamism while user presses a key or moves the touchpad Transfer data from
= Impossibility to attend multiple peripherals or to peripheral

- While the CPU is waiting for a peripheral to get ready for a
transfer, it is not possible to serve another peripheral

tart anothe
transfer?

END

©ESL/EPFL

rpr- Synchronization I/O device and CPU:
=PrL .
/O Interrupts

= |/O Interrupts/exceptions: peripheral indicates CPU
when it is ready to perform a transfer, by activating a MEM
special dedicated line: Interrupt Request Line
(INTR)

= No waiting loop

= Multi-source interrupt: Several INTR lines possibly
arrive to the CPU, which decides which peripheral can '/O_
interrupt the current program execution peripherals

= Interrupts are managed using a special

type of CPU function (Set of assembly Peripheral ready for transfer
instructions): Interrupt Handler = It activates INTR to the CPU
: : : User User
= Each time a CPU receives an interrupt request, 5 / 5
it jumps to execute the interrupt handler after ogran rogram

the current program assembly instruction
= The interrupt handler performs the I/O

operation and reconfigures the peripheral \/
control register to get ready for next transfer Program interrupted, CPU executes the
Handlers should last as little as possible /O interrupt handler for peripheral

©ESL/EPFL 10

A Synchronization 1/O device and CPU.
=P-L . .
/O Interrupts vs. user functions

= Similarities PROGRAM /O Handler
= Both break the usual program sequence
We need to save the registers that we use Instr. 1 Instr. 1
inside the handler of the user function (r0...rn) Instr. 2 Instr. 2
i _ Instr. 3 Instr. 3
. INTR
_Both require saving program counter (PC) > nstr 4 netr 4
in the stack: |
nstr. 5 Instr. 5
At the end of both we need to return to the next Instr. 6
instruction from where the program jumped Instr. 7 @
. Instr. 8
|
Dlﬁ:ere.nCeS _ Instr. 9 Return assembly
= Aninterrupt handler can run without the ... _ instruct/ion from
control of the system designer nierrupLexLeption

- A user function only runs when the program requests it

= Interrupt handlers need to save the current program
status register (cpsr) in the stack and restore it before
returning to the program

- Their execution status is not related to the user main
program, while in functions it is related

©ESL/EPFL 11

cprp Prioritizing multiple interrupt sources:
Multi-level interrupts handling

= Multiple levels of interrupts: exception vectors table Exception
Several INTR lines: one handler for each of them Address vectors table

) ..) Ox1C | Address handler INTRO
Each level has a different priority according to how 0x18 [Address nandier INTRL

urgent handling the peripheral is (system designer decides) Ox14 [Address handier INTR2

= Use of priority decoder to handle priorities among lines 0x10 [Address handler INTR3

Handling always the highest priority device OXOC | Address handler INTR4

Store in stack PC and cpsr if a higher priority request arrives

If two devices use the same priority: first-in first-serve policy 0x00 |Address handler INTR..

Less priority ﬂNTRO D—' } Code of line with
INTR; D_, o . highest (not
. ————* Priority —
Encoder masked) priority
. (ntology) | |NTR Active if any
More priority INTR, D_‘ interrupt level is
activated
\ | bo|by|-+ bns| Interrupt handling mask register (part of cpsr)/

= Enable/disable priority levels: special cpsr modification instructions in ARM
Enabling or disabling certain bits in the interrupt handling mask register

1 mask bit (b,) per level { If b, =1 — INTR, level is enabled
If b, = 0 —> INTR, level is disabled (or masked)

©ESL/EPFL 12

=Pr~L Example of multi-level interrupt handling

. . INTR
= System with 3 levels of mterrupts{ INTR, (INTRy<INTR; <INTR,)

Control Program Status Register INTR,
cpsr: [_axx [by[bi]bo] v p1ooie pits {If b, =1 — INTR, level enabled

~— | If b, =0 — INTR, level masked

= Suppose that 3 interrupt requests arrive: INTR; - INTR, - INTR,

Main program Handler level 1 INTR, Handler level2
—InSt nr. INTR., e raddrl. [A/lNTRZ v addr2
H / L e 4/ H
N = Handlerlevel0 S
“addro | RFE
H :
RFE
= PC, cpsr and stack evolution INTR,
INTR, arrives INTR, arrives INTR, arrives end INTR, end INTR, is handled end INTR,
Stack sp— _ Stack Stack Stack Stack Stack
PC (g+1)
SP— (No cpsr (100 SP— SP—», SP—
PC (n+1) modification) PC (n+1) PC (n+1) PC (n+1) PC (n+1)
cpsr (111) cpsr (111) cpsr (111) cpsr (111) cpsr(111)
SP—
PC addrl PC addr2 PC g+l PC PC addr0 PC n+1
cpsr 100 cpsr 000 cpsr 100 cpsr cpsr 110 cpsr 111
13

©ESL/EPFL

cprs| /10O perlph_eral subsystem in ARM
MICroprocessors

= |/O peripheral subsystem is memory-mapped
= The peripheral ports are part of the 32-bit (4GB) memory address space

= Number of INTR lines/devices: ARM exception vectors table Exception

= Multiple devices can share the same INTR Address vectors table
= Exception priorities (smaller number means higher priority) 0x1C FIQ
1. Reset 0x18 IRQ
0x14 | (Reserved) |
2. Data Abort 0x10 Data Abort
3. FIQ Ox0C | Prefetch Abort
4. 1IRQ 0x08 |Software Interrupt
5. Reserved — Used only in ARM v6 8X861 'U“def';ed ':‘S””Ct
6. Prefetch Abort X =
7. Undefined Inst / SWI (software interrupt, defined by the system designer)

= [n NDS we can only control one interrupt priority (SWI) for all peripherals
= We define how we assign priorities between devices interrupts on the handler code
= The rest of interrupt levels are all managed automatically by the NDS

All interrupt sources handled in the NDS using the libnds library methods
©ESL/EPFL

14

Cpe Program status registers (cpsr):
Information about ARM microprocessor status

31 25 27 24 23 14 15 g8 7T 6 5 4 L]
INZC‘U’Q JI Undeflined IIFT mode I
[| | [| [| [|

I f I 5 J X I c

= Condition code flags (or bits) -

= N = Negative result from ALU = Architecture 5TE/J only (ARM9)
= Z = Zero result from ALU = Indicates if saturation has
= C = ALU operation Carried out occurred

= V = ALU operation oVerflowed

Managed automatlcal_y by NDS (libnds library)

——— ---

_~~Tnterrupt Disable bits. TN * Architecture xT only
! = | =1:Disables the IRQ. = T =0: Processor in ARM state
\~~~ = E =1 Disables the FlQ -7 = T = 1: Processor in Thumb state
. Mode bits ===~~~ "
n Spec|fy the processor mode = Architecture 5TEJ Only (ARMg)

= J=1: Processor in Jazelle state

©ESL/EPFL 15

mrpr - -
cPrL Sources of interrupts in the NDS
= 25 sources: Examples of interruption events (IRQ_MASK)
- Graphic (x2) defined in the libnds library
= Timer (x4) Libnds Description
= DMA (x4)
IRQ_VBLANK Vertical blank
= Keypad
= GBA Flashcard IRQ_TIMERO Timer 0
= FIFO
IRQ_KEYS Keypad
= DS Card P
= GEX FIFO IRQ_WIFI WIFI
= Power Management IRQ_DMAO DMA 0
= SPI
= WIFI

All of them can be consulted in the VM in
" /opt/devkitPro/libnds/include/nds/interrupts.h

©ESL/EPFL 16

rpr- How to handle NDS interruptions: libnds
=P-L A .
application programmer interface (API

Initialize interrupts subsystem
= void irglnit();

Usual way to initialize peripherals (except when using sound)

= Specify the handler to use for the given interrupt
= void irgSet(IRQ_MASK irqg, VoidFunctionPointer handler);

= Remove the handler associated with the interrupt
= void irgClear(IRQ_MASK irq);

= Allow the given interrupt to occur
= void irgenable(uint32 irq);
= Prevent the given interrupt from occurring

= void irgDisable(uint32 irq);

©ESL/EPFL 17

=PFL

©ESL/EPFL

Example of interruption in libnds API:
Handling a key interrupt

/[[Handler function

Keypad Handler function

void keys ISR () {
printf (“a key was pressed”);

}

Initializing the interruption

//main function

int main(){/
irglnit();

irgSet(IRQ_KEYS, [&keys ISR);
irgEnable(IRQ_KEYS);

irqClear(IRQ_KEYS);
irgDisable(IRQ_KEYS):

}

Mapping the keypad
interruption to its handler

N

Enabling the keypad interruption

N

Removing key ISR handler.
(Keypad still triggers interrupt)

Keypad stops triggering interrupt
18

=Pr-L Timers in NDS

= 4 timers available in the NDS

ARM 9
CPU

|

A (S (A (S S

TIMER 0 TIMER 1 TIMER 2 TIMER 3
[TIMER_CR(0)] [TIMER_CR(1) [TIMER_CR(2)] [TIMER_CR(3)]
[TIMER_DATA(0)] [TIMER_DATA(1) [TIMER_DATA(2)] [TIMER_DATA(3)]
|\ ‘} 1 J |\ - I J |\ ? I J |\ T J
Real Time Clock (RTC) Interrupt
(33.514 MHz) Controller

©ESL/EPFL

cpe| Handling interrupts using the libnds API:
the Timers

= 4 timers available in the NDS

= Libnds provides several macros to deal with timers:
= TIMER_CR(n)
Returns a de-referenced pointer to the timer control register n
= TIMER_DATA(N)
Returns a de-referenced pointer to the data register for timer n
= TIMER_ENABLE
Enable the timer
= TIMER_DIV_VALUE, with VALUE= 1, 64, 256, or 1024
Timer will count at (33.514 / VALUE) MHz
= TIMER_FREQ_VALUE (freq), with VALUE= 64, 256, or 1024
Set up the register value to start and overflow each 1/freq second
= TIMER_IRQ_REQ
Timer will request an interrupt on overflow (see TIMER_FREQ VALUE (freq)) 20

©ESL/EPFL

cpe| Handling interrupts using the libnds API:
the Timers

= Basic macros that libnds provides to deal with timers:

- Macros to access specific timer registers

= TIMER_CR(n) = TIMER_DATA(N)
Returns timer control Returns data register for
register for timer ‘n’ timer ‘n’

- Macros to set up the registers

= TIMER_DIV_1 = TIMER_ENABLE | = TIMER_IRQ_REQ = TIMER_FREQ(n)

= TIMER_DIV_64 Enable timer Timer will requestan || * TIMER_FREQ_64(n)

= TIMER DIV _256 interrupt on overflow || « TIMER_FREQ 256(n)

- TIMER DIV 1024 = TIMER_FREQ 1024(n)

Timer will count at Compute starting point
(33.514/number) MHz of the register for a
given frequency n’

21

©ESL/EPFL

=PrL Interruption: libnds API (Timer Example)

= How to use these macros ?

Example:

TIMER_CR(0) = |TIMER_ENABLE| | | TIMER_DIV 64 || |TIMER IRQ REQ

/ / / /

Accessto Timer0 epaple Timer 0 Timer O will count at Timer O will get
control register (33.514 / 64) MHz triggered on overflow

TIMER_DATA(0) ={TIMER_FREQ 64 (125)

/ /

Access to Timer 0 Set up the register value (in Hz) to a starting point which will make
data register it overflow each 1/125 = 0.008 second

©ESL/EPFL 22

= Example configuring two timers: DIV_1 and DIV_3

DIV_1: F1=33.514 MHz

T1 = 1/F1 second g SR
: T

DIV_3: F3=11.171 MHz] | | ’l_

T3 = 1/F3 second

T3

Real execution time

Higher frequency

Measured time with DIV_1

\l/ Measured time with DIV_3 :
Higher resolution : 1
l sstarte- Send
DIV_1 DIV_3
More accurate _
end - start = nr. of periods 7 3

timer
Measured execution time 7*T1=0.208pus 3*T3=0.268 s

©ESL/EPFL 23

=PrL Interruption: libnds API (Timer Example)

TIMER_DATA(O) is incremented each TIMERO tick
= Maximum measured ticks = 216 — 1
= An interrupt is fired on overflow

DIV_1 DIV_1024
Maximum measured time (216 —1)/33514000=1.9ms (216 — 1) * 1024 / 33514000 = 2s

= How to make it fire an interrupt each X seconds for DIV_1024 ?

X = (number of ticks) * period Y = 1/X
(number of ticks) = X / period = X * frequency (in Hz)

TIMER_DATA(O) = (2!¢ — 1) — (number of ticks) = Interrupt each 1s

Equivalent v=1/1=1
= [nter. each 100ms
Y=1/0.1=10

TIMER_DATA(O) = TIMER_FREQ_1024(Y) ;

©ESL/EPFL 24

=“P=L Possible Timer Resolutions in libnds API

= Which values are possible to use with TIMER_FREQ_X(n)?

ACycles (value in timer reg.)

Overflow
65535 —
TIMER_DATA(n)
—
TCYCLE
Time
0 >
| |
TMAX

Divider Fevele=(33.514/DIV)MHZ | Teye e=Fcicie Fuin=FcycLe/21° Tuax=2" Teyele
TIMER_DIV_1 33.514 MHz 29.838 ns 511.383 Hz 1.955 ms
TIMER DIV_64 | 523.656 kHz | 1.910 us | 7.990 Hz | 125.151 ms
TIMER_DIV_256 | 130.914 kHz | 7639 us | 1.998 Hz | 500.603 ms
TIMER DIV 1024 | 32.729 kHz | 30554us | 0.499 Hz | 2.002 s

©ESL/EPFL 25

m

= Measuring Time
Precise way to measure time using the timers

int result, number;

result 5 floor(sqrt((double) number));

result =|iSqrt(number);

Which function takes more time?
How much?

= Need to handle interrupts for accuracy!
Timers, Graphic (VBIlank), Keys....

= Can we use them to create a small game?

©ESL/EPFL

= Practical Work 5: Interrupts in the NDS to
P-L | .
control multiple Timers

8 @ Desmume - 59fps

File Emulation Config Tools 7

Time = B8:-12:1=21
Time = @:23:932
Time = 8:24:383

26

cpr Practical Work 5: Interrupts in the NDS to

control multiple Timers

= Exercises (and homework)

©ESL/EPFL

Exercise 1 — Measure time using timers

Exercise 2 — Implementing a chronometer using 2 timers’ interrupt

Exercise 3 — Implementing a chronometer using 1 timer

Exercise 4 — Refreshing the screen
properly using graphic interrupts

Exercise 5 — Changing the color of
the clock periodically

Exercise 6 — Printing lap time with
the keys

Additional Exercise;:
Time challenge game

Questions?

ofl

Let’s use the ARM interrupts to
create a chronometer in NDS!

28

EEEEEEEEE

