
1Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Topic 3:

I/O and Peripheral Devices Management

©ESL/EPFL
2

Content of Session

▪ Types of I/O and peripheral management

▪ I/O interfaces and required management operations

▪ Synchronization between I/O devices and microprocessors’ CPUs

▪ Prioritizing multiple interrupt sources: multi-level interrupts handling

▪ I/O management for ARM architectures

▪ I/O peripheral subsystem in ARM microprocessors

▪ Management of timers in the NDS using the libnds library

▪ Use of timers and screen together in the NDS:

designing a chronometer game

©ESL/EPFL
3

I/O and peripheral management on the NDS

▪ Two 32-bit ARM cores manage the I/O and peripherals
▪ ARM 946E-S: most of the keys, LCD TFT, GBA flash
▪ ARM 7TDMI-S: sound, wifi, touchscreen, screen open-close and X-Ykeys

ARM946E-S
ARM7TDMI-S

ARM7
(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9
(66 MHz)

A, B, L, R
keys

←, ↑, →, ↓

keys

LCD TFT

Select, Start
keys

Screen
open-close GBA Flash

Fast Memory
(WRAM)

Audio

©ESL/EPFL
4

Interface to I/O subsystem and

design considerations

BUS

8
0
8
5

8085

8
0
8
5

8085

8
0
8
5

8085

I/O subsystem

MEMORIES

▪ I/O subsystem enables the interaction of the CPU with the “external” world
in Von-Neumann and Harvard computing architectures
▪ Access through a bus (shared medium) to connect variable number of peripherals

▪ Three main design considerations
▪ Request and transfer of operation and command/data with the CPU
▪ Synchronization of component status (being utilized, ready or not)
▪ Prioritize handling from different peripherals that request concurrent transfers

CPU

©ESL/EPFL
5

Basic functionality needed in I/O peripheral

to process request from CPU

▪ Addressing: selection of I/O device for the microprocessor to do the transfer

▪ Transfer: data communication between microprocessor and peripheral

▪ Type of data transfer

− Read: microprocessor  peripheral

− Write: microprocessor → peripheral

▪ Conversions between data formats

− Electrical levels (TTL: 1 > 2.0V; 0 < 0.8V; RS-232-C: 1 < -3.0V; 0 > +3.0V)

− Coding conversion (e.g., ASCII-Binary, float and double, etc.)

− Serial-parallel vs. parallel-serial conversion

− Analog-digital vs. digital-analog conversion

▪ Synchronization: transfer control mechanism for the microprocessor to know

▪ If the peripheral is ready to receive and send data

▪ If the peripheral has finished a transfer and it is ready to receive a new one

©ESL/EPFL
6

Implementation of I/O peripheral functionality:

interfaces, drivers and libraries

▪ Peripherals are always connected with the microprocessor through a

hardware interface (= hardware controller = adapter = I/O card)

▪ Translation of CPU orders to the peripheral

▪ Software driver: defines the set of basic operations and configuration

operations of the hardware interface (e.g., read(), write(), etc.)

▪ Reads/Writes in a set of registers of the hardware interface

▪ Function library: set of high-level operations where each operation needs

to call a group of basic operations of the driver (e.g., printf())

CPU Orders (SW driver) → HW interface
Read N bytes starting from

Surface S
Cylinder C
Sector T

Orders HW Interface → peripheral
Position heads in cylinder C
Position heads in sector T
Select head of surface S
Read N bytes
Remove heads

Example

CPU

HARDWARE

INTERFACE
PERIPHERAL

Direct

connection

system

or I/O

BUS

CPU

8 0 8 5 8

0

8

5

Flash

©ESL/EPFL
7

▪ Communication from CPU to

peripheral requires four interface

registers:

1. Output data register

- Used by CPU to write data to be sent

2. Input data register

- Used by peripheral to write data to be

returned to the CPU

Structure of the I/O Interface

3. Status register

- Read by CPU to know peripheral status

- Device ready/not; Data reg. full/empty; Transfer done/not

4. Control register

- Writen by the CPU to transmit orders to the peripheral

- DRAM: read/write N bytes in row R, column C

- Printers: print character, jump line, jump page, etc.

Control Reg.

Status Reg.

Output data

Register

Input data

Register

CPU INTERFACE PERIPHERAL

CONTROL

STATUS

DATA

ADDRESS

DATA

CONTROL

System
or I/O bus

Comunication

CPU-Interface

Comunication

Interface-peripheral

00000000

00000004

(1GB) FFFFFFFC

.

.

.

.

.

Memory order (Little-Endian) Word Addr.

Byte 3 Byte 2

Byte 7

Byte 1 Byte 0

Byte 6 Byte 5 Byte 4

Input/output data register

addresses

▪ Two options to access them:

▪ Access using memory addresses: memory-mapped

peripherals (ARM)

▪ Special assembly instructions (x86)

©ESL/EPFL
8

Synchronization I/O device and CPU

▪ Mechanism required each time the CPU wants to send/receive data

to/from a peripheral in order to ensure that the device is ready to perform

the transfer

▪ Two basic mechanisms for I/O subystem syncronization

▪ Programmed I/O with active waiting response

▪ I/O interrupts

− Exceptions are high-priority interrupts in ARM processors

(typically due to hardware errors or unexpected external system events)

©ESL/EPFL
9

▪ Use of a loop in the CPU each time it wants to perform a transfer

▪ Check continously in software the status of the peripheral until it becomes

ready to perform the I/O transfer

Examine status bits

Peripheral

ready ?

Transfer data from

or to peripheral

Start another

transfer?

NO

YES

NO

YES

END

Read status register

Synchronization I/O device and CPU:

Programmed I/O with active waiting response

▪ Problems

▪ The CPU does not do useful work during the waiting loop

- Slow peripherals make the loop repeat thousands of times

▪ Program execution is stopped during I/O operations

- E.g., in a videogame it is not possible to stop the game

dynamism while user presses a key or moves the touchpad

▪ Impossibility to attend multiple peripherals

- While the CPU is waiting for a peripheral to get ready for a

transfer, it is not possible to serve another peripheral

©ESL/EPFL
10

▪ Interrupts are managed using a special

type of CPU function (set of assembly

instructions): Interrupt Handler

▪ Each time a CPU receives an interrupt request,

it jumps to execute the interrupt handler after

the current program assembly instruction

▪ The interrupt handler performs the I/O

operation and reconfigures the peripheral

control register to get ready for next transfer

- Handlers should last as little as possible

Synchronization I/O device and CPU:

I/O interrupts

▪ I/O Interrupts/exceptions: peripheral indicates CPU

when it is ready to perform a transfer, by activating a

special dedicated line: Interrupt Request Line

(INTR)

▪ No waiting loop

MEM

CPU

BUS

INTR0

Peripheral ready for transfer

 It activates INTR to the CPU

Program interrupted, CPU executes the

I/O interrupt handler for peripheral

User

Program

User

Program

▪ Multi-source interrupt: Several INTR lines possibly

arrive to the CPU, which decides which peripheral can

interrupt the current program execution

I/O

peripherals

INTRn

…
....

©ESL/EPFL
11

Synchronization I/O device and CPU:

I/O interrupts vs. user functions

▪ Similarities

▪ Both break the usual program sequence

− We need to save the registers that we use

inside the handler of the user function (r0…rn)

▪ Both require saving program counter (PC)

in the stack:

− At the end of both we need to return to the next

instruction from where the program jumped

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Instr. 8

Instr. 9

...........

PROGRAM

INTR

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 5

...........

RFE

I/O Handler

Return assembly

instruction from

interrupt/exception

in ARM

▪ Differences

▪ An interrupt handler can run without the

control of the system designer

- A user function only runs when the program requests it

▪ Interrupt handlers need to save the current program

status register (cpsr) in the stack and restore it before

returning to the program

- Their execution status is not related to the user main

program, while in functions it is related

©ESL/EPFL
12

Prioritizing multiple interrupt sources:

Multi-level interrupts handling

▪ Multiple levels of interrupts: exception vectors table

▪ Several INTR lines: one handler for each of them

▪ Each level has a different priority according to how

urgent handling the peripheral is (system designer decides)

▪ Use of priority decoder to handle priorities among lines

▪ Handling always the highest priority device

− Store in stack PC and cpsr if a higher priority request arrives

▪ If two devices use the same priority: first-in first-serve policy

Code of line with

highest (not

masked) priority

Active if any

interrupt level is

activated

Interrupt handling mask register (part of cpsr)

Priority

Encoder

(n to logn)

Less priority

More priority

▪ Enable/disable priority levels: special cpsr modification instructions in ARM

▪ Enabling or disabling certain bits in the interrupt handling mask register

▪ 1 mask bit (bk) per level If bk = 1 → INTRk level is enabled

If bk = 0 → INTRk level is disabled (or masked)
{

Exception

vectors table
Address handler INTR0

Address handler INTR1

Address handler INTR2

Address handler INTR3

Address handler INTR4

Address handler INTRn-1

0x1C
0x18
0x14
0x10
0x0C

…

0x00

Address

©ESL/EPFL
13

INTR0

INTR1

INTR2

(INTR0 < INTR1 < INTR2)

b2 b1 b0

Control Program Status Register

Mask bits
If bk = 1 → INTRk level enabled

If bk = 0 → INTRk level masked
cpsr:

INTR0

is handled end INTR0

▪ PC, cpsr and stack evolution

▪ Suppose that 3 interrupt requests arrive: INTR1 - INTR0 - INTR2

INTR0 arrives INTR1 arrives INTR2 arrives end INTR2
end INTR1

PC (n+1)

cpsr (111)

addr2

000

PC

cpsr

SP→

PC (q+1)

cpsr (100)

Stack

PC (n+1)

cpsr (111)

addr1

100

PC

cpsr

SP→

Stack

PC (n+1)

cpsr (111)

q+1

100

PC

cpsr

SP→

Stack

PC

cpsr

SP→

Stack

PC (n+1)

addr0

110

PC

cpsr

SP→

Stack

n+1

111

PC

cpsr

SP→

Stack

(No

modification)

▪ System with 3 levels of interrupts

Example of multi-level interrupt handling

INTR1

INTR0
Main program

INTR2

Handler level 1

addr1

q

q+1

RFE

Handler level2

addr2

RFEn

n+1

Inst nr.

…

RFE

Handler level 0

addr0

PC (n+1)

cpsr (111) cpsr (111)

©ESL/EPFL
14

▪ I/O peripheral subsystem is memory-mapped

▪ The peripheral ports are part of the 32-bit (4GB) memory address space

I/O peripheral subsystem in ARM

microprocessors

Exception

vectors table
FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruct

Reset

0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

Address

▪ Number of INTR lines/devices: ARM exception vectors table

▪ Multiple devices can share the same INTR

▪ Exception priorities (smaller number means higher priority)

1. Reset

2. Data Abort

3. FIQ

4. IRQ

5. Reserved – Used only in ARM v6

6. Prefetch Abort

7. Undefined Inst / SWI (software interrupt, defined by the system designer)

▪ In NDS we can only control one interrupt priority (SWI) for all peripherals

▪ We define how we assign priorities between devices interrupts on the handler code

▪ The rest of interrupt levels are all managed automatically by the NDS

All interrupt sources handled in the NDS using the libnds library methods

©ESL/EPFL
15

Program status registers (cpsr):

Information about ARM microprocessor status

▪ Condition code flags (or bits)

▪ N = Negative result from ALU

▪ Z = Zero result from ALU

▪ C = ALU operation Carried out

▪ V = ALU operation oVerflowed

▪ Interrupt Disable bits.

▪ I = 1: Disables the IRQ.

▪ F = 1: Disables the FIQ.

▪ Mode bits

▪ Specify the processor mode

▪ Sticky overflow flag - Q flag

▪ Architecture 5TE/J only (ARM9)

▪ Indicates if saturation has

occurred

▪ T Bit

▪ Architecture xT only

▪ T = 0: Processor in ARM state

▪ T = 1: Processor in Thumb state

▪ J bit

▪ Architecture 5TEJ only (ARM9)

▪ J = 1: Processor in Jazelle state

Managed automatically by NDS (libnds library)

©ESL/EPFL
16

Sources of interrupts in the NDS

▪ 25 sources:

▪ Graphic (x2)

▪ Timer (x4)

▪ DMA (x4)

▪ Keypad

▪ GBA Flashcard

▪ FIFO

▪ DS Card

▪ GFX FIFO

▪ Power Management

▪ SPI

▪ WIFI

▪ …

Libnds Description

IRQ_VBLANK Vertical blank

IRQ_TIMER0 Timer 0

IRQ_KEYS Keypad

IRQ_WIFI WIFI

IRQ_DMA0 DMA 0

Examples of interruption events (IRQ_MASK)

defined in the libnds library

All of them can be consulted in the VM in

/opt/devkitPro/libnds/include/nds/interrupts.h

©ESL/EPFL
17

How to handle NDS interruptions: libnds

application programmer interface (API)

▪ Initialize interrupts subsystem

▪ void irqInit();

− Usual way to initialize peripherals (except when using sound)

▪ Specify the handler to use for the given interrupt

▪ void irqSet(IRQ_MASK irq, VoidFunctionPointer handler);

▪ Remove the handler associated with the interrupt

▪ void irqClear(IRQ_MASK irq);

▪ Allow the given interrupt to occur

▪ void irqEnable(uint32 irq);

▪ Prevent the given interrupt from occurring

▪ void irqDisable(uint32 irq);

©ESL/EPFL
18

Example of interruption in libnds API:

Handling a key interrupt

Initializing the interruption

//Handler function

void keys_ISR () {

printf (“a key was pressed”);

}

//main function

int main(){

irqInit();

irqSet(IRQ_KEYS, &keys_ISR);

irqEnable(IRQ_KEYS);

…

irqClear(IRQ_KEYS);

irqDisable(IRQ_KEYS):

}

Keypad Handler function

Enabling the keypad interruption

Removing key_ISR handler.

(Keypad still triggers interrupt)

Keypad stops triggering interrupt

Mapping the keypad

interruption to its handler

©ESL/EPFL
19

Timers in NDS

▪ 4 timers available in the NDS

ARM9 BUS 32-bit

ARM 9
CPU

TIMER_DATA(0)

TIMER_CR(0)

TIMER 0

TIMER_DATA(1)

TIMER_CR(1)

TIMER 1

TIMER_DATA(2)

TIMER_CR(2)

TIMER 2

TIMER_DATA(3)

TIMER_CR(3)

TIMER 3

Real Time Clock (RTC)
(33.514 MHz)

Interrupt
Controller

NDS TIMERS

©ESL/EPFL
20

Handling interrupts using the libnds API:

the Timers

▪ 4 timers available in the NDS

▪ Libnds provides several macros to deal with timers:

▪ TIMER_CR(n)

− Returns a de-referenced pointer to the timer control register n

▪ TIMER_DATA(n)

− Returns a de-referenced pointer to the data register for timer n

▪ TIMER_ENABLE

− Enable the timer

▪ TIMER_DIV_VALUE, with VALUE= 1, 64, 256, or 1024

− Timer will count at (33.514 / VALUE) MHz

▪ TIMER_FREQ_VALUE (freq), with VALUE= 64, 256, or 1024

− Set up the register value to start and overflow each 1/freq second

▪ TIMER_IRQ_REQ

− Timer will request an interrupt on overflow (see TIMER_FREQ_VALUE (freq))

©ESL/EPFL
21

▪ Basic macros that libnds provides to deal with timers:

▪ TIMER_CR(n)

Returns timer control

register for timer ‘n’

▪ TIMER_DATA(n)

Returns data register for

timer ‘n’

- Macros to access specific timer registers

Handling interrupts using the libnds API:

the Timers

- Macros to set up the registers

▪ TIMER_IRQ_REQ

Timer will request an

interrupt on overflow

▪ TIMER_ENABLE

Enable timer

▪ TIMER_DIV_1

▪ TIMER_DIV_64

▪ TIMER_DIV_256

▪ TIMER_DIV_1024

Timer will count at

(33.514/number) MHz

▪ TIMER_FREQ(n)

▪ TIMER_FREQ_64(n)

▪ TIMER_FREQ_256(n)

▪ TIMER_FREQ_1024(n)

Compute starting point

of the register for a

given frequency ‘n’

©ESL/EPFL
22

Interruption: libnds API (Timer Example)

▪ How to use these macros ?

Example:

TIMER_DATA(0) = TIMER_FREQ_64 (125) ;

Enable Timer 0 Timer 0 will count at

(33.514 / 64) MHz

Timer 0 will get

triggered on overflow

Access to Timer 0

control register

TIMER_CR(0) = TIMER_ENABLE | TIMER_DIV_64 | TIMER_IRQ_REQ ;

Access to Timer 0

data register
Set up the register value (in Hz) to a starting point which will make

it overflow each 1/125 = 0.008 second

©ESL/EPFL
23

Interruption: libnds API (Timer Example)

▪ Example configuring two timers: DIV_1 and DIV_3

DIV_1 : F1 = 33.514 MHz

T1 = 1/F1 second

start end

DIV_3 : F3 = 11.171 MHz

T3 = 1/F3 second

Real execution time

DIV_1 DIV_3

end - start = nr. of periods 7 3

Measured execution time 7 * T1 = 0.208 µs 3 * T3 = 0.268 µs

Higher frequency

Higher resolution

More accurate

timer

Measured time with DIV_1

Measured time with DIV_3

©ESL/EPFL
24

Interruption: libnds API (Timer Example)

▪ TIMER_DATA(0) is incremented each TIMER0 tick

▪ Maximum measured ticks = 216 – 1

▪ An interrupt is fired on overflow

DIV_1 DIV_1024

Maximum measured time (216 – 1) / 33514000 = 1.9ms (216 – 1) * 1024 / 33514000 = 2s

▪ How to make it fire an interrupt each X seconds for DIV_1024 ?

X = (number of ticks) * period

(number of ticks) = X / period = X * frequency

TIMER_DATA(0) = (216 – 1) – (number of ticks)

TIMER_DATA(0) = TIMER_FREQ_1024(Y) ;

Equivalent

Y = 1 / X

(in Hz)

▪ Interrupt each 1s

Y = 1 / 1 = 1

▪ Inter. each 100ms

Y = 1 / 0.1 = 10

©ESL/EPFL
25

Possible Timer Resolutions in libnds API

▪ Which values are possible to use with TIMER_FREQ_X(n)?

Divider FCYCLE=(33.514/DIV)MHz TCYCLE=1/FCICLE FMIN=FCYCLE/216 TMAX=216 TCYCLE

TIMER_DIV_1 33.514 MHz 29.838 ns 511.383 Hz 1.955 ms

TIMER_DIV_64 523.656 kHz 1.910 us 7.990 Hz 125.151 ms

TIMER_DIV_256 130.914 kHz 7.639 us 1.998 Hz 500.603 ms

TIMER_DIV_1024 32.729 kHz 30.554 us 0.499 Hz 2.002 s

Cycles (value in timer reg.)

65535

…

TIMER_DATA(n)

…

0

Overflow

Time

TCYCLE

TMAX

©ESL/EPFL
26

Practical Work 5: Interrupts in the NDS to

control multiple Timers

▪ Measuring Time

▪ Precise way to measure time using the timers

▪ Which function takes more time?

▪ How much?

▪ Need to handle interrupts for accuracy!

▪ Timers, Graphic (VBlank), Keys….

▪ Can we use them to create a small game?

©ESL/EPFL
27

Practical Work 5: Interrupts in the NDS to

control multiple Timers

▪ Exercises (and homework)

▪ Exercise 1 – Measure time using timers

▪ Exercise 2 – Implementing a chronometer using 2 timers’ interrupt

▪ Exercise 3 – Implementing a chronometer using 1 timer

▪ Exercise 4 – Refreshing the screen

properly using graphic interrupts

▪ Exercise 5 – Changing the color of

the clock periodically

▪ Exercise 6 – Printing lap time with

the keys

▪ Additional Exercise:

− Time challenge game

©ESL/EPFL
28

Questions?

Let’s use the ARM interrupts to

create a chronometer in NDS!

